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ABSTRACT

A general framework is presented for recursive computa-
tion of image local statistics in sliding window of almost
arbitrary shape with “per-pixel” computational complex-
ity substantially lower than the window size. As special
cases, recursive algorithms are described for computing
image local statistics such as local mean, local variance,
local kurtosis, local order statistics (minimum, maximum,
median), local ranks, local DFT, DCT, DcST spectra in
diamond, octagon, triangle-shaped windows as well as in
windows with nonuniform weights, such as cosine, sine,
Hann, Hamming and Blackman windows.

1. INTRODUCTION

Computing image local statistics, such as local means,
variance, general local moments, local order statistics, ranks,
histograms, spectra, etc., in sliding window is frequently
required in image processing. Generally, for arbitrarily
shaped window ofWinSz pixels, the “per-pixel” compu-
tational complexity of this process isO(WinSz) or even,
for spectra,O(WinSz logWinSz). Even for moderate
window sizes, this complexity might be formidably large,
especially in real-time processing applications. Substan-
tial reduction of the computational complexity is possible
with the use of recursive computation methods which uti-
lize information common to consecutive overlapping win-
dows and compute local statistics for the current window
position by means of an appropriate modification of the
results obtained for the previous window position [1].

Recursive algorithms for computing local statistics in
the window of a rectangular shape are well known. These
algorithms include mean, histogram and median, order
statistics, spectra, e.g. DFT, DCT, DcST ( [1], [2], [3], [4]).

However, in many cases the rectangular window is far
from being optimal and windows of other shape are re-
quired. Recently, a number of recursive algorithms for
computing image local statistics in the window of non-
rectangular shape were suggested:

• mean and variance in octagonal window [5], mo-
ments in diamond, hexagon, general polygon win-
dows [6], mean in arbitrary window [7];

• histogram, median and order statistics in arbitrary
window [8].

In this paper, we suggest unification and extension of
these algorithms and present a general solution for recur-
sive computing local statistics in windows of virtually ar-
bitrary shape.

2. IMAGE LOCAL STATISTICS

We will define scanning window for local statistics mea-
surements by a window weight coefficients{wn} and de-
fine local statistics as following.

The local moment of orderP of a signala(k) in a win-
dow ofNw pixels in itsk-th position is defined as follows:

M
(k)
[P ] ,

Nw−1
∑

n=0

wn

[

a(k)
n

]P

. (1)

Common local statistical parameters (mean, variance, skew,
kurtosis) are linear combinations of the local moments.
These parameters are used for data statistical analysis, im-
age smoothing, enhancement and feature extraction.

The local weighted histogram counts, for each gray
level q, the weighted number of of signal samples with
this gray level. The value of local weighted histogram at
gray levelq is:

H
(k) {q} ,

Nw−1
∑

n=0

wnδ
{

q − a(k)
n

}

. (2)

Conventionally, local histograms are computed for win-
dows with uniform weights. Local histograms and closely
related local variational rows and local order statistics are
used in rank filtering for signal/image denoising, smooth-
ing, enhancement, extraction of object details and their
boundaries.

Yet another representatives of local statistics are local
spectra in different bases. The local signal spectrumα

(k)
r

with respect to the basisψr(n) is defined as:

α(k)ψ
r ,

Nw−1
∑

n=0

wna
(k)
n ψr(n). (3)

A variety of special cases of local spectra exist. The most
important cases are DFT, DCT and DcST spectra in a
window with uniform weight. Other examples are Walsh
and Haar spectra. The applications of spectral analysis



in scanning window include local adaptive signal/image
restoration (denoising, deblurring, resampling with dis-
crete sinc-interpolation, blind restoration, image enhance-
ment), differentiating, integrating, target location andop-
tical flow [1].

3. RECURSIVELY COMPUTED WINDOWS

3.1. Scanning modes

Recursive computations assume a certain arrangement of
image data in computer memory and a certain method of
scanning image data. According to a common conven-
tion, we assume that images are defined on a rectangular
sampling grid. On this grid, the foolwing scanning modes
are possible:progressive row-wise — column-wisescan-
ning mode;zig-zag row-wise — column-wisemode;zig-
zag row-wise — column-wisemode anddiagonal-45◦ —
diagonal-135◦ mode.

As it is shown in Figure 1,

1. In theprogressive row-wise — column-wisescan-
ning mode, all rows are scanned one after another
from left to right, and pixels are accessed in row-
wise order. In order to get pixels in column-wise or-
der, the progressive row-wise — column-wise mode
has to be applied to a transposed version of the orig-
inal image.

2. In thezig-zag row-wise — column-wisemode, all
rows are scanned in a one continuous scan. Even
rows are scanned from left to right and odd rows
are scanned from right to left. The pixels are ac-
cessed in the row-wise order. In order to get pix-
els in column-wise order, the zig-zag row-wise —
column-wise mode has to be applied to a transposed
version of the original image.

3. In thediagonal-45◦ — diagonal-135◦ mode, all pix-
els are accessed in the diagonal-45◦ order. In or-
der to access pixels in the diagonal-135◦ order, the
diagonal-45◦ — diagonal-135◦ mode has to be ap-
plied to a horizontally-flipped version of the origi-
nal image.

The first two scanning modes are suited for rectangular
windows with uniform weights, while the third scanning
mode is suited for non-rectangular windows with uniform
weights (e.g. diamond window).

The most simple way of local image processing is to
access pixels in the progressive row-wise — column-wise
scanning mode and to apply a recursion to each row sepa-
rately. This method has two drawbacks:

1. The computation of the first result in each row is
non-recursive;

2. No use is made of the similarity of neighboring “up-
date structrures” in consecutive rows.

As it was shown in [3], for computation of median in
a uniform rectangular window, the first drawback can be
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Figure 1. Different scanning modes in rectangular sam-
pling grid. Top row, left figure: the progressive row-wise
— column-wise scanning mode. Top row, right figure: the
zig-zag row-wise — column-wise scanning mode. Bot-
tom row: the diagonal-45◦ — diagonal-135◦ scanning
mode.

eliminated by changing the method of access to zig-zag
row-wise — column-wise scanning mode. In this way all
pixels are accessed in one continuous scan and there are
no non-recursive computations except one at the begin-
ning. As it was shown in [4], the second drawback can
be eliminated by recursive computation of “update struc-
tures” in the current row based on the “update structures”
in the previous row. One can generalize these methods to
formulate a recursivity principle that applies to different
local statistics operations in various windows.

For each row in image, the recursion can be performed
in two steps. At the first step, local statistics in all “up-
date structures” of the row are computed in parallel. This
computation is column-wise recursive and it utilizes the
“update structures” from the previous row. The results
are stored in anLSu buffers. At the second step, the
local statistics in “update structures” for the current row
are combined using row-wise recursion to obtain the local
statistics within the window for this row. The results for
the current row are stored in aLSw buffer.

In Figure 2, the examples of “update structures” for
different window shapes are presented. For instance, for
the rectangular window and for the diamond window the
“update structures” are pairs of window sides. The “up-
date structures” lay on rows or columns of rectangular sys-
tem of coordinates in case of rectangular window and on
diagonals of the rectangular grid in case of diamond win-
dow. The “update structures” are mutually independent
and therefore can be processed in parallel.

3.2. Recursivity in rectangular coordinates and inter-
laced scanning

The 2D windows can be divided into several classes. The
class of “full” windows includes uniform rectangle, rect-



angle with cosine-masking, diamond, hexagon and octagon.
The class of “sparse” windows includes sparse rectangle
and sparse diamond. The representatives of “sector” class
are sector diamond and sector octagon of different orien-
tation (NW, NE, SW, SE) and their combinations. The
class of “ring” windows consists of rectangular ring and
octagonal ring.

The “leaving update structures” and the “arriving up-
date structures” can be identified for window of an arbi-
trary shape [8]. As it is shown in Figure 2, the “update
structures” of simple geometrical shapes lay on columns,
rows and diagonals of the rectangular sampling grid.

In the rectangular sampling grid, the most convenient
shape of the window is a rectangular shape. An impor-
tant advantage of the rectangular window shape is its sep-
arability that enables decomposing computations to con-
secutive rows-wise and column-wise ones. The “update
structures” of the rectangle lay on columns and the rows.

The “decimated” version of a rectangle that can be
called sparse rectangleis also separable. The “update
structures” of the sparse rectangle lay on “sparse” columns
and rows. The “full” rectangle can be decomposed into
two interlaced sparse rectangles that can be processed in-
dependently. This method of two-stage processing can be
calledinterlaced scanning.

3.3. Recursivity in 45◦, 60◦-rotated coordinates and
interlaced scanning

The diamond shape is not separable. For the diamond
shape, the “update structures” lay on the diagonals of the
rectangular grid. The diagonals can be easily accessed us-
ing diagonal-45◦ — diagonal-1355◦ scanning mode.

The “decimated” version of a diamond shape, called
sparse diamond, is separable [6]. The “update structures”
for sparse diamond lay on the “sparse” diagonals. The
“full” diamond can be decomposed into two interlaced
sparse diamonds that can be processed independently.

Other window shapes (e.g. hexagon, octagon) are non-
separable. The “update structures” lay on columns, rows
and diagonals of the rectangular grid.

4. PARALLELIZATION

4.1. Methods of computation parallelization

As a general way to recursive computing of local statistics
in windows of arbitrary shape, including arbirtary weighted
ones, we suggest parallelization of recursive computations
by splitting a computational task into several independent
sub-tasks that can be processed recursively. There are two
different methods of parallelization:

• multiple windows method,

• expansion of the window function over recursive
bases.

4.2. Multiple windows method

In multiple windows method, a given scanning window is
decomposed onto several non-overlapping or overlapping
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Figure 2. The “update structures” for windows of differ-
ent geometrical shapes in the rectangular system of coor-
dinates. First row: rectangle and sparse rectangle. Second
row: diamond and sparse diamond. Third row: hexagon
and octagon. Fourth row: diamond sector and octagon
sector. Fifth row: rectangular ring and octogonal ring.



sub-windows, or “building-blocks”, that allow recursive
computations. The processing is performed in parallel on
the sub-windows and then the results of sub-window com-
putations are combined by addition with certain weight
coefficients. If the sub-windows overlap, it will corre-
spond to weighted windows with weight coefficient de-
fined by the weight coefficients used in combining sub-
window coefficient results. A simple example of com-
posite window built from overlapping “building-blocks”
is a combination of overlapping square and diamond. This
window is an approximation of an octagon window, it is
nearly isotropic and has “soft” edges. Other examples of
composite windows are rings and combinations of sectors.
The rings are obtained by subtraction of small window
(usually of rectangular or octogonal shape) from the large
window of the same type circumscribing the small one
(usually two windows share a common center). The com-
binations of sectors are obtained by choosing the form of a
sector window (usually of diamond sector or octagon sec-
tor shape) and combining several sectors of the same type
and size but different orientation together to form parts of
a diamond or an octagon.

4.3. Expansion of window function over recursive bases

The method of expansion of window over recursive bases
allows to compute weighted local statistics in arbitrary
shaped window with arbitrary weights assigned to each
sample of the window. The most frequently used window
functions are: Uniform (rectangle, Dirichlet), Sine lobe,
Hann (“hanning”, raised cosine, sine squared), Hamming
and Blackman [9], [10]. The method parallelization of
computations by expansion of the window window func-
tion over recursive bases will be elaborated in the next
Section.

5. PARALLEL AND RECURSIVE COMPUTATION
OF LOCAL MOMENTS

5.1. General formulation

Computing local moments in a weighted window defined
by Eq. 1 can be regarded as a version of space invariant

digital filtering of an input signal
[

a
(k)
n

]P

with a filter with

point-spread function (PSF)wn:

M
(k)
[P ] =

Nw−1
∑

n=0

wn

[

a(k)
n

]P

. (4)

An approach to parallel and recursive implementation
of filtering was presented in [11]. According to this ap-
proach, filter with a given PSF is decomposed into a group
of recursive sub-filters working in parallel. This decompo-
sition is implemented through expansion of the filter PSF
over recursive basis functions.

Assuming that the filter PSF can be expanded into
a series over a system of basis functionsψr(n), (r =

0, . . . , Nr − 1,Nr ≤ Nw):

wn =

Nr−1
∑

r=0

λrψr(n), (5)

the filter output can be found as a weighted sum of coeffi-
cientsβr(k) of series expansion of the input signal:

M
(k)
[P ] =

Nr−1
∑

r=0

λrαr(k), (6)

where

αr(k) =

Nw−1
∑

n=0

[ak−n]
P
ψr(n). (7)

If a given window is specified by its weight coeffi-
cients within a non-rectangular geomentrical shape, for
the implementation of the above-described window func-
tion decomposition it must be re-defined as inscribed into
a rectangular window with zero weight coefficients in those
samples that are not occupied by the given window.

5.2. Recursive bases

It was found that the recursive basis functions belong to
class of power functions [11]:

ψr(n) = [ψr(0)]
n
. (8)

Two most important special cases of 1-D recursive basis
functions are the basis of exponential functions and the ba-
sis of rectangular functions. Sine and cosine functions od
DCT and DcST transforms, being linear combinations of
complex exponential functions, also belong to recursive
basis functions. Walsh, Walsh-Paley, Walsh-Hadamard
and Haar basis functions are additional examples of recur-
sive basis functions. Two-dimensional recursive bases are
obtained as separable combinations of one-dimensional
ones.

6. PARALLEL AND RECURSIVE COMPUTATION
OF LOCAL MOMENTS THROUGH

COMBINATIONS OF MULTIPLE WINDOWS

Assume that a windowW̄ outlinesL “building-block”
windowsWl (l = 0, . . . , L− 1) :

W̄ ,
⋃

l

Wl, (9)

and a constant weightwl is assigned to each “building-
block” window Wl. Parallel and recursive computation
of local moments by means of combining results of com-
putations in multiple recursive windows is based on the
following theorem.

Theorem 1. The weighted sum of moments over any com-
bination of windows is equal to the weighted moment over
the outline (union) of the windows.



Proof. The moment of orderP over the windowWl is
given by:

M
(Wl)
[P ] ,

∑

n∈Wl

[an]
P
. (10)

It can be computed over the outline window̄W , using the
indicator function of the windowWl:

M
(Wl)
[P ] =

∑

n∈W̄

δ(n ∈Wl) [an]
P
. (11)

The weighted sum of moments over a combination of win-
dows is given by:

M̄[P ] ,
∑

l

wlM
(Wl)
[P ] . (12)

Then:

M̄[P ] =
∑

l

wl
∑

n∈W̄

δ(n ∈Wl) [an]
P

=
∑

n∈W̄

{

∑

l

wlδ(n ∈Wl)

}

[an]
P

=
∑

n∈W̄

w̄n [an]
P

, M
w

[P ], (13)

whereM
w

[P ] denotes the weighted moment of orderP

over the outline windowW̄ and w̄n denotes the weight
of the samplean. This weight is equal to the weighted
sum of indicator functions over the windows:

w̄n =
∑

l

wlδ(n ∈ Wl). (14)

This proves the theorem.

7. PARALLEL AND RECURSIVE COMPUTATION
OF LOCAL HISTOGRAMS AND THEIR

DERIVATIVES THROUGH COMBINATIONS OF
MULTIPLE WINDOWS

7.1. Weighted histogram theorem

Assume that windowW̄ can be represnted as composed
of L “building-block” windowsWl (l = 0, . . . , L− 1):

W̄ ,
⋃

l

Wl, (15)

and a constant weightwl is assigned to each “building-
block” windowWl. Assume also that the weight of sam-
ple in the outline windowW̄ is equal to the sum of weights
of this sample in the “building-block” windows owning
it. Then the weighted histogram over the outline window
W̄ can be found as a weighted sum of histograms over
“building-block” windowsWl.

Theorem 2. The weighted sum of histograms over any
combination of windows is equal to the weighted histogram
over the outline (union) of the windows.

Proof. The histogram over the windowWl is given by:

H
(Wl){q} ,

∑

n∈Wl

δ {q − an} . (16)

It can be computed from the histogram over the outline
window W̄ , using the indicator function of the window
Wl:

H
(Wl){q} =

∑

n∈W̄

δ(n ∈Wl)δ {q − an} . (17)

The weighted sum of histograms over a combination of
windows is given by:

H̄{q} ,
∑

l

wlH
(Wl){q}. (18)

Then:

H̄{q} =
∑

l

wl
∑

n∈W̄

δ(n ∈Wl)δ {q − an}

=
∑

n∈W̄

{

∑

l

wlδ(n ∈Wl)

}

δ {q − an}

=
∑

n∈W̄

w̄nδ {q − an} , H
w{q}, (19)

whereH
w{q} denotes the weighted histogram over the

outline windowW̄ andw̄n denotes the weight of the gray
level q = an in the histogram. This weight is equal to the
weighted sum of indicator functions over the windows:

w̄n =
∑

l

wlδ(n ∈Wl). (20)

This equation proves the theorem.

7.2. Computing local weighted variational rows and
order statistics

Local weighted histograms can be used as bases for com-
puting local weighted variational rows that are defined
as cumulative sum of the weighted histogram and local
weighted order statistics, such as weighted median, and
their derivatives, such as inter-quantile distances and alike.
Local minima and local maxima over composite windows
can be found directly from recursively computed local min-
ima and maxima over the window “building-blocks”.

8. CONCLUSIONS

We briefly reviewed known methods of efficient recursive
computation of image local statistics, such as local mo-
ments, histograms and order statistics, and local spectra
in uniform windows of different geometrical shapes, and
presented a general approach to recursive computation, in
different ways of scanning image data, of local statistics
in windows of virtually arbitrary shapes and weights. The
approach exploits the idea of parallelization of computa-
tions by means of decomposition of given arbitrary win-
dow functions to a combination of either certain standard



uniform windows, such as rectangular, diamond, octagon,
diamond and octagon sectors, or of window functions that
are basis functions of orthogonal transforms such as DFT,
DCT, DcST, that allow recursive computation. Different
implementations of the approach to computing local im-
age moments and their derivatives and local histograms
and their derivatives are outlined. This opens new oppor-
tunities for real-time implementation of many image and
video processing algorithms that are based on the image
local statistics.
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