
New boundary effect free algorithm for fast and

accurate image arbitrary scaling and rotation

Leonid Bilevicha and Leonid Yaroslavskya

aDepartment of Physical Electronics, Faculty of Engineering, Tel Aviv University,

69978, Tel Aviv, Israel

ABSTRACT

A new fast DCT-based algorithm for accurate image arbitrary scaling and rotation is described.
The algorithm is free from boundary effects characteristic for FFT-based algorithm and ensures
perfect interpolation with no interpolation errors. The algorithm is compared with other available
algorithms in terms of the interpolation accuracy, computational complexity and suitability for
real time applications.

Keywords: scaling, rotation, DCT, convolution, fast algorithm

1. INTRODUCTION

Scaling and rotation are basic image processing tasks with wide range of applications. The
rotation is usually implemented through either three-pass method1 (with 1D translations) or
non-separable DFT-domain method.2 Presently, for image scaling& rotation available are spline
methods3,4 implemented in spatial domain and discrete sinc-interpolation methods implemented
as a convolution in DFT domain.5,6 The spline methods work in image domain and tend to intro-
duce image blurring. The discrete sinc-interpolation methods are potentially perfectly accurate
but heavily suffer from boundary effects. We propose a novel DCT7-based scaling& rotation
algorithm that implements the ideal discrete sinc-interpolation and at the same time is very
substantially less vulnerable to boundary effects.

In video processing, a crucial issue is its computational complexity. Generally, there is a
trade-off between the accuracy and computational complexity. In this paper, we, along with
introducing a new improved DCT-based method of image arbitrary scaling& rotation, compare
its computational complexity with the complexity of spatial domain interpolation methods and
DFT-domain methods.

The definitions of different 2D DCT-related transforms used in this paper are provided in
Appendix A.

2. DCT-DOMAIN SCALING AND ROTATION ALGORITHM

2.1 Inverse Scaled Rotated Discrete Cosine Transform (IScRotDCT)

Suppose the input real image am,n of size N×N has to be scaled by arbitrary scaling factor σ and
rotated by arbitrary angle θ (in radians, positive θ corresponds to counter-clockwise rotation). We
need to choose a method to perform this scaling& rotation. The Inverse Scaled Rotated Discrete
Fourier Transform (IScRotDFT)5,6 suffers from heavy boundary effects due to periodicity of

Further author information: (Send correspondence to Leonid Bilevich)
bilevich@eng.tau.ac.il; http://www.eng.tau.ac.il/~bilevich/
yaro@eng.tau.ac.il; http://www.eng.tau.ac.il/~yaro/

mailto:bilevich@eng.tau.ac.il
http://www.eng.tau.ac.il/~bilevich/
mailto:yaro@eng.tau.ac.il
http://www.eng.tau.ac.il/~yaro/

DFT. In order to eliminate these effects, we mirror-reflect the input image am,n to double
length (in both dimensions) and apply IScRotDFT to the mirror-reflected image. Constraining
the output image ãk,l to be real-valued, we obtain the Inverse Scaled Rotated Discrete Cosine
Transform (IScRotDCT) defined as follows:

ãk,l =
2

⌊σN⌋

N(0)−1
∑

r=0

N(0)−1
∑

s=0

αC(1/2)
r,s (1)

× cos
[π

σN
(C (k + 1/2) + S (l + 1/2)−∆′

1) r
]

× cos
[π

σN
(C (l + 1/2)− S (k + 1/2)−∆′

2) s
]

,

where ãk,l is the scaled and rotated signal, N (0) is the “unified length” given by:

N (0) = min (N, ⌊σN⌋) , (2)

⌊·⌋ is the rounding operator:

σ ≥ 1 ⌊σN⌋ = CEIL(σN)
σ < 1 ⌊σN⌋ = FLOOR(σN)

, (3)

C and S are the “rotation factors”:

S = sin θ, C = cos θ, (4)

∆′
1, ∆

′
2 are the “centering factors”:

∆′
1 = (C + S)

⌊σN⌋
2

− σ
N

2
, ∆′

2 = (C − S)
⌊σN⌋
2

− σ
N

2
, (5)

α
C(1/2)
r,s is the “half-spectrum” given by:

α
C(1/2)
r,s = αC

r,s·

0 1 . . . N (0) − 2 N (0) − 1

0 1/4 1/2 . . . 1/2 1/4
1 1/2 1 . . . 1 1/2
...

...
...

...
...

N (0) − 2 1/2 1 . . . 1 1/2

N (0) − 1 1/4 1/2 . . . 1/2 1/4

, (6)

and αC
r,s is the DCT spectrum of the input image am,n:

αC
r,s = DCT(am,n) =

2

N

N−1
∑

m=0

N−1
∑

n=0

am,n cos

[

π
(m+ 1/2) r

N

]

cos

[

π
(n+ 1/2) s

N

]

. (7)

Notes about the derivation of Eq. (1):

• The “centering factors” ∆′
1 and ∆′

2 are used in order to map the center of the input image
to the center of the output image.

• The last row and the last column of the spectral coefficients αC
r,s were halved in order to

improve the speed of convergence (to zero) of the scaling& rotation point-spread function
(PSF).

Note also that for integer σ and θ = 0 the Eq. (1) represents the DCT-domain zero-padding
scaling algorithm.5,8

2.2 Implementation through DCT-domain convolution

Conversion of IScRotDCT to convolution. Let’s define the modified “centering factors”:

∆̃1 = (C + S)
⌊σN⌋ − 1

2
− σ

N

2
, ∆̃2 = (C − S)

⌊σN⌋ − 1

2
− σ

N

2
. (8)

Also, let’s define a spectrum α
C(1/2),ZP
r,s that is obtained by zero-padding or truncation of DCT

spectrum αC
r,s:

α
C(1/2),ZP
r,s =

0 1 . . . N − 2 N − 1 N . . . ⌊σN⌋ − 1

0 1
4α

C
r,s

1
2α

C
r,s . . . 1

2α
C
r,s

1
4α

C
r,s

1 1
2α

C
r,s

1
2αr,s

...
... αC

r,s

... 0
N − 2 1

2α
C
r,s

1
2α

C
r,s

N − 1 1
4α

C
r,s

1
2α

C
r,s . . . 1

2α
C
r,s

1
4α

C
r,s

N
... 0 0

⌊σN⌋ − 1

(9)

for σ ≥ 1 and

α
C(1/2),ZP
r,s =

0 1 . . . ⌊σN⌋ − 2 ⌊σN⌋ − 1

0 1
4α

C
r,s

1
2α

C
r,s . . . 1

2α
C
r,s

1
4α

C
r,s

1 1
2α

C
r,s

1
2α

C
r,s

...
... αC

r,s

...
⌊σN⌋ − 2 1

2α
C
r,s

1
2α

C
r,s

⌊σN⌋ − 1 1
4α

C
r,s

1
2α

C
r,s . . . 1

2α
C
r,s

1
4α

C
r,s

(10)

for σ < 1.
Then the Eq. (1) can be converted to the form of convolution:

ãk,l =
1

⌊σN⌋ cos
[π

2σN

[

C
(

l2 − k2
)

− 2Skl
]

]

(11)

×

⌊σN⌋−1
∑

r=0

⌊σN⌋−1
∑

s=0

{

αC(1/2),ZP
r,s cos

[π

2σN

[

C
(

s2 − r2
)

− 2Srs+ 2
(

∆̃1r − ∆̃2s
)]]}

× cos
[π

2σN

[

C
(

(k − r)
2 − (l − s)

2
)

+ 2S (k − r) (l − s)
]]

−
⌊σN⌋−1
∑

r=0

⌊σN⌋−1
∑

s=0

{

αC(1/2),ZP
r,s sin

[π

2σN

[

C
(

s2 − r2
)

− 2Srs+ 2
(

∆̃1r − ∆̃2s
)]]}

× sin
[π

2σN

[

C
(

(k − r)
2 − (l − s)

2
)

+ 2S (k − r) (l − s)
]]

− 1

⌊σN⌋ sin
[π

2σN

[

C
(

l2 − k2
)

− 2Skl
]

]

×

⌊σN⌋−1
∑

r=0

⌊σN⌋−1
∑

s=0

{

αC(1/2),ZP
r,s sin

[π

2σN

[

C
(

s2 − r2
)

− 2Srs+ 2
(

∆̃1r − ∆̃2s
)]]}

× cos
[π

2σN

[

C
(

(k − r)
2 − (l − s)

2
)

+ 2S (k − r) (l − s)
]]

+

⌊σN⌋−1
∑

r=0

⌊σN⌋−1
∑

s=0

{

αC(1/2),ZP
r,s cos

[π

2σN

[

C
(

s2 − r2
)

− 2Srs+ 2
(

∆̃1r − ∆̃2s
)]]}

× sin
[π

2σN

[

C
(

(k − r)
2 − (l − s)

2
)

+ 2S (k − r) (l − s)
]]

+
1

⌊σN⌋ cos
[π

2σN

[

S
(

k2 − l2
)

− 2Ckl
]

]

×

⌊σN⌋−1
∑

r=0

⌊σN⌋−1
∑

s=0

{

αC(1/2),ZP
r,s cos

[π

2σN

[

S
(

s2 − r2
)

− 2Crs+ 2
(

∆̃1r + ∆̃2s
)]]}

× cos
[π

2σN

[

S
(

(l − r)
2 − (k − s)

2
)

+ 2C (l − r) (k − s)
]]

−
⌊σN⌋−1
∑

r=0

⌊σN⌋−1
∑

s=0

{

αC(1/2),ZP
r,s sin

[π

2σN

[

S
(

s2 − r2
)

− 2Crs+ 2
(

∆̃1r + ∆̃2s
)]]}

× sin
[π

2σN

[

S
(

(l − r)
2 − (k − s)

2
)

+ 2C (l − r) (k − s)
]]

− 1

⌊σN⌋ sin
[π

2σN

[

S
(

k2 − l2
)

− 2Ckl
]

]

×

⌊σN⌋−1
∑

r=0

⌊σN⌋−1
∑

s=0

{

αC(1/2),ZP
r,s sin

[π

2σN

[

S
(

s2 − r2
)

− 2Crs+ 2
(

∆̃1r + ∆̃2s
)]]}

× cos
[π

2σN

[

S
(

(l − r)
2 − (k − s)

2
)

+ 2C (l − r) (k − s)
]]

+

⌊σN⌋−1
∑

r=0

⌊σN⌋−1
∑

s=0

{

αC(1/2),ZP
r,s cos

[π

2σN

[

S
(

s2 − r2
)

− 2Crs+ 2
(

∆̃1r + ∆̃2s
)]]}

× sin
[π

2σN

[

S
(

(l − r)
2 − (k − s)

2
)

+ 2C (l − r) (k − s)
]]

.

“Regular” and “flipped” convolutions. From Eq. (11) we see that computation of the scaled
and rotated image ãk,l boils down to computation of four “regular” convolutions of the form

b
(1)
k,l =

⌊σN⌋−1
∑

r=0

⌊σN⌋−1
∑

s=0

α(1)
r,sh

(1)
k−r,l−s, (12)

where α
(1)
r,s is given by either

αC(1/2),ZP
r,s sin

[π

2σN

[

C
(

s2 − r2
)

− 2Srs+ 2
(

∆̃1r − ∆̃2s
)]]

or

αC(1/2),ZP
r,s cos

[π

2σN

[

C
(

s2 − r2
)

− 2Srs+ 2
(

∆̃1r − ∆̃2s
)]]

,

h
(1)
r,s is given by either

sin
[π

2σN

[

C
(

r2 − s2
)

+ 2Srs
]

]

or cos
[π

2σN

[

C
(

r2 − s2
)

+ 2Srs
]

]

,

and to computation of four “flipped” convolutions of the form

b
(2)
l,k =

⌊σN⌋−1
∑

r=0

⌊σN⌋−1
∑

s=0

α(2)
r,sh

(2)
l−r,k−s, (13)

that are converted to the transpose of the “regular” convolution:

b
(2)
l,k =

(

b
(2)
k,l

)T

=

⌊σN⌋−1
∑

r=0

⌊σN⌋−1
∑

s=0

α(2)
r,sh

(2)
k−r,l−s

T

, (14)

where α
(2)
r,s is given by either

αC(1/2),ZP
r,s sin

[π

2σN

[

S
(

s2 − r2
)

− 2Crs+ 2
(

∆̃1r + ∆̃2s
)]]

or

αC(1/2),ZP
r,s cos

[π

2σN

[

S
(

s2 − r2
)

− 2Crs+ 2
(

∆̃1r + ∆̃2s
)]]

,

h
(2)
r,s is given by either

sin
[π

2σN

[

S
(

r2 − s2
)

+ 2Crs
]

]

or cos
[π

2σN

[

S
(

r2 − s2
)

+ 2Crs
]

]

.

For simplicity of notation for the following derivation, let’s denote b
(1)
k,l and b

(2)
k,l by bk,l, α

(1)
r,s and

α
(2)
r,s by αr,s, h

(1)
r,s and h

(2)
r,s by hr,s.

“Even” and “odd” “regular” convolutions. Let’s convert all four versions of hr,s to the sum
of two summands:

hr,s = sin
[π

2σN

[

C
(

r2 − s2
)

+ 2Srs
]

]

(15)

= sin
[π

2σN
C
(

r2 − s2
)

]

cos
[π

σN
Srs

]

+ cos
[π

2σN
C
(

r2 − s2
)

]

sin
[π

σN
Srs

]

,

hr,s = cos
[π

2σN

[

C
(

r2 − s2
)

+ 2Srs
]

]

(16)

= cos
[π

2σN
C
(

r2 − s2
)

]

cos
[π

σN
Srs

]

− sin
[π

2σN
C
(

r2 − s2
)

]

sin
[π

σN
Srs

]

,

hr,s = sin
[π

2σN

[

S
(

r2 − s2
)

+ 2Crs
]

]

(17)

= sin
[π

2σN
S
(

r2 − s2
)

]

cos
[π

σN
Crs

]

+ cos
[π

2σN
S
(

r2 − s2
)

]

sin
[π

σN
Crs

]

,

hr,s = cos
[π

2σN

[

S
(

r2 − s2
)

+ 2Crs
]

]

(18)

= cos
[π

2σN
S
(

r2 − s2
)

]

cos
[π

σN
Crs

]

− sin
[π

2σN
S
(

r2 − s2
)

]

sin
[π

σN
Crs

]

.

We note from Eqs. (15)-(18) that in all four cases the first summand is an even function of r and
s and the second summand is an odd function of r and s, so we can represent the function hr,s

in the following form:

hr,s = he
r,s + ho

r,s, (19)

where he
r,s is the even function of r, s (i.e., he

r,s = he
−r,s, h

e
r,s = he

r,−s, h
e
r,s = he

−r,−s) and ho
r,s is

the odd function of r, s (i.e., ho
r,s = −ho

−r,s, h
o
r,s = −ho

r,−s, h
o
r,s = ho

−r,−s). (Note also that the
multiplier generating the product ho

r,s is either sin [πSrs/ (σN)] or sin [πCrs/ (σN)], so ho
r,0 = 0

for all r and ho
0,s = 0 for all s.)

So the “regular” convolution

bk,l =

⌊σN⌋−1
∑

r=0

⌊σN⌋−1
∑

s=0

αr,shk−r,l−s (20)

can be represented as a sum of “even” and “odd” “regular” convolutions:

bk,l = bek,l + bok,l, (21)

where bek,l is the “even” “regular” convolution given by

bek,l =

⌊σN⌋−1
∑

r=0

⌊σN⌋−1
∑

s=0

αr,sh
e
k−r,l−s (22)

and bok,l is the “odd” “regular” convolution given by

bok,l =

⌊σN⌋−1
∑

r=0

⌊σN⌋−1
∑

s=0

αr,sh
o
k−r,l−s. (23)

DCT-based convolution. The “even” and “odd” “regular” convolutions can be computed
using DCT-based algorithms:

bek,l =
⌊σN⌋
2

[

IDCT
(

ξCC
p,q η

CI
p,q

)

+ IDcS/CT
(

ξSC
p,q η

CI
p,q

)

(24)

+ IDC/cST
(

ξCS
p,q η

CI
p,q

)

+ IDcST
(

ξSS
p,qη

CI
p,q

)]

and

bok,l =
⌊σN⌋
2

[

IDcST
(

ξCC
p,q η

SI
p,q

)

− IDC/cST
(

ξSC
p,q η

SI
p,q

)

(25)

− IDcS/CT
(

ξCS
p,q η

SI
p,q

)

+ IDCT
(

ξSS
p,qη

SI
p,q

)]

,

where

ξCC
p,q = DCT(αr,s) , ξSS

p,q = DcST (αr,s) , (26)

ξSC
p,q = DcS/CT (αr,s) , ξCS

p,q = DC/cST (αr,s) , (27)

ηCI
p,q = DCTI

(

he
r,s

)

, ηSI
p,q = DcSTI

(

ho
r,s

)

, (28)

and different DCT-related transforms involved in these formulae are defined in Appendix A.

3. COMPUTATIONAL COMPLEXITY

We assume that both the input image am,n and the output image ãk,l are 2D real matrices.
In order to compute 2D scaled image, rotated image and scaled& rotated image by DCT or
DFT based methods, one needs to generate the cos/sin or exp factors, perform real or complex
additions/ multiplications and compute DCT or DFT transforms.

• The computational complexity of multiplication of N complex numbers is 4N real multi-
plications and 2N real additions, in total 6N real floating-point operations (flops).

• The 1D DFT is implemented by the Fast Fourier Transform (FFT) algorithm that needs
3 7
9N log2 N − 4 16

27N flops.9 The 2D separable DFT algorithm needs 7 5
9N

2 log2 N − 9 5
27N

2

flops.

• The “numerically stable” 1D DCT algorithm needs 2 1
3N log2 N −2 2

9N floating point oper-
ations (flops) and the “numerically stable” 1D DCT type-I algorithm needs 2 1

3N log2 N −
2 8
9N flops.10 The 2D non-separable DCT algorithm needs 3 3

4N
2 log2 N − 2N2 flops.11

Also, the following implementation details were taken into account:

• The 2D DFT-based scaling algorithm was implemented separably by 1D scaling of rows
followed by 1D scaling of columns.

• For the three-pass rotation with translation using splines we noticed that the spline coeffi-
cients have to be computed only at the first pass and only for the top half of rows. At the
second and third passes these coefficients are reused.

Computational complexity of discussed image scaling/rotation methods is listed in Table 1.
From Table 1 it is clear that the computational complexity of the DCT-based scaling& rotation
method is higher than that of the low-order splines. From the other hand, the DCT-based scaling
method is equivalent to very high-order spline and provides very accurate scaling results that
outperform those of low-order splines. In order to provide very high quality scaling using spline
interpolation, one has to use a high-order spline, e.g., B-spline of order p with computational
complexity (4p + 1) [1 +N/ (⌊σN⌋)] flops per one output sample.12 In this case the complexity
increases with the order of spline and becomes comparable and even higher that the complexity
of the DCT-based scaling. So the DCT-based scaling& rotation method is a natural choice for
very accurate image scaling& rotation with reasonable computational complexity.

Table 1: Comparison of computational complexities of 2D scaling, rotation and scaling& rotation
algorithms.

Type of the method Number of flops per one output sample

2D scaling implemented

with central B-spline of degree p (p odd)12 (4p+ 1)
(

1 + N
⌊σN⌋

)

2D DFT-based scaling 22 2
3 log2⌊σN⌋ − 15 5

9

with DFT-based cyclic convolution5,6 + 1
⌊σN⌋2

[

6
(

N (0)
)2

+ 7 5
9N

2 log2 N − 9 5
27N

2
]

2D DFT-based scaling 90 2
3 log2⌊σN⌋+ 10 4

9

with DFT-based “linear” convolution13 + 1
⌊σN⌋2

[

6
(

N (0)
)2

+ 7 5
9N

2 log2 N − 9 5
27N

2
]

Rotation with three-pass algorithm1

with translation implemented 7p+ 2
with central B-spline of degree p (p odd)1

Rotation with three-pass algorithm
with translation implemented in DFT domain1,14 22 2

3 log2 N − 18 5
9

Rotation with three-pass algorithm
with translation implemented in DCT domain5,15 21 log2 N − 11

DFT-based rotation
(with DFT-based cyclic convolution)2 30 2

9 log2 N − 12 20
27

DFT-based scaling& rotation 22 2
3 log2⌊σN⌋ − 15 5

9

(with DFT-based cyclic convolution)5,6 + 1
⌊σN⌋2

[

6
(

N (0)
)2

+ 7 5
9N

2 log2 N − 9 5
27N

2
]

DCT-based 330 log2⌊σN⌋ − 55

scaling and rotation + 1
⌊σN⌋2

[

4
(

N (0)
)2

+ 3 3
4N

2 log2 N − 2N2
]

4. EXPERIMENTAL VERIFICATION AND PERFORMANCE
COMPARISON

In this Section we compare the DCT-based scaling&rotation algorithm with conventional scaling&
rotation algorithms.

Example of rotated image. The image rotated by angle θ = 45◦ by the DCT-based scaling&
rotation algorithm is demonstrated in Figure 1. We observe that the rotated image is free of
boundary effects and the corners of the rotated image contain information that was mirror-
reflected from the central part of the image. Also, we can verify that the rotated image is
centered correctly.

Comparison of different scaling&rotation methods. As test images for checking 2D scaling,
an image “text” and a pseudo-random image with uniform spectrum of size 256 × 256 were
used. In order to evaluate the accuracy of image resampling by the suggested DCT-domain
scaling & rotation algorithm in comparison with conventional bilinear/ bicubic16-based scaling &
rotation algorithms, we employed iterative Scaling/ Rotation & DeRotation/ DeScaling sequence
of operations (zooming-in of the original image by factor σ (σ ≥ 1) and rotation by angle θ
followed by rotation by the negative angle −θ and zooming-out by the reciprocal factor 1/σ).
For the ideal resampling procedure the resulting “zoom&rotate-back” image has to be identical
to the original image.

The results of 20-step iterative “zoom&rotate-back” of “text” image (σ = 1.1, θ = 11◦) by
bilinear/ bicubic/ DCT-based scaling & rotation algorithms are shown in Figure 2.

Figure 1: Demonstration of image rotated by the DCT-based scaling&rotation algorithm. Ro-
tated image (σ = 1, θ = 45◦).

The results of 20-step iterative “zoom&rotate-back” of “random” image (σ = 1.1, θ = 11◦)
by bilinear/ bicubic/ DCT-based scaling & rotation algorithms are shown in Figure 3.

Evolution of image spectra in such an iterative Scaling/ Rotation & DeRotation/ DeScaling
test one can evaluate from comparison of spectra of “zoom&rotate-back”-iterated images. The
magnitudes of DFT-spectra after 20-step iterative “zoom&rotate-back” of “random” image (σ =
1.1, θ = 11◦) by bilinear/ bicubic/ DCT-based scaling & rotation algorithms are shown in
Figure 4.

Comparing the presented results one can see that the bilinear/ bicubic scaling & rotation
methods tend to blur scaled & rotated images, also, DFT-based scaling & rotation methods
suffer from boundary artifacts. The suggested DCT-based scaling & rotation method produces
perfectly sharp images and is virtually free of boundary effects, demonstrating virtually perfect
accuracy of resampling.

5. CONCLUSION

A novel DCT-domain algorithm for image scaling& rotation by arbitrary scaling factors and
angles is presented. It was demonstrated that the proposed algorithm is virtually free of boundary
effects and ensures virtually perfect reconstruction accuracy. Thanks to the availability of fast
FFT-type algorithms for computing DCT and DCT-related transforms, the algorithm has a
reasonable computational complexity and represents a valuable alternative to known scaling&
rotation algorithms in image and video processing applications that need a very high resampling
accuracy.

(a) Test image. (b) Iterative Scaling/Rotation & DeRota-
tion/DeScaling (bilinear algorithm).

(c) Iterative Scaling/Rotation & DeRota-
tion/DeScaling (bicubic algorithm).

(d) Iterative Scaling/Rotation & DeRota-
tion/DeScaling (DCT algorithm).

Figure 2: Iterative Scaling/Rotation & DeRotation/DeScaling of the test “text” image (a) by the
bilinear algorithm (b), by the bicubic algorithm (c), and by the DCT-domain scaling&rotation
algorithm (d) (after 20 iterations).

(a) Test “random” image. (b) Iterative Scaling/Rotation & DeRota-
tion/DeScaling (bilinear algorithm).

(c) Iterative Scaling/Rotation & DeRota-
tion/DeScaling (bicubic algorithm).

(d) Iterative Scaling/Rotation & DeRota-
tion/DeScaling (DCT algorithm).

Figure 3: Iterative Scaling/Rotation & DeRotation/DeScaling of the test “random” image (a)
by the bilinear algorithm (b), by the bicubic algorithm (c), and by the DCT-domain scaling&
rotation algorithm (d) (after 20 iterations).

(a) Magnitude of DFT spectrum of the test image. (b) Magnitude of DFT spectrum after iterative scal-
ing & rotation (bilinear algorithm).

(c) Magnitude of DFT spectrum after iterative scal-
ing & rotation (bicubic algorithm).

(d) Magnitude of DFT spectrum after iterative scal-
ing & rotation (DCT algorithm).

Figure 4: Magnitude of DFT spectrum of iterative Scaling/Rotation & DeRotation/DeScaling
of the test “random” image (a) by the bilinear algorithm (b), by the bicubic algorithm (c), and
by the DCT-domain scaling&rotation algorithm (d) (after 20 iterations).

APPENDIX A. DEFINITIONS OF DCT-RELATED TRANSFORMS

• DCT (k = 0, . . . , N1 − 1, l = 0, . . . , N2 − 1, r = 0, . . . , N1 − 1, s = 0, . . . , N2 − 1)

αr,s = DCT(ak,l) (29)

=
2√

N1N2

N1−1
∑

k=0

N2−1
∑

l=0

ak,l cos

[

π
(k + 1/2) r

N1

]

cos

[

π
(l + 1/2) s

N2

]

.

• DC/cST (k = 0, . . . , N1 − 1, l = 0, . . . , N2 − 1, r = 0, . . . , N1 − 1, s = 1, . . . , N2)

αr,s = DC/cST (ak,l) (30)

=
2√

N1N2

N1−1
∑

k=0

N2−1
∑

l=0

ak,l cos

[

π
(k + 1/2) r

N1

]

sin

[

π
(l + 1/2) s

N2

]

.

• DcS/CT (k = 0, . . . , N1 − 1, l = 0, . . . , N2 − 1, r = 1, . . . , N1, s = 0, . . . , N2 − 1)

αr,s = DcS/CT (ak,l) (31)

=
2√

N1N2

N1−1
∑

k=0

N2−1
∑

l=0

ak,l sin

[

π
(k + 1/2) r

N1

]

cos

[

π
(l + 1/2) s

N2

]

.

• DcST (k = 0, . . . , N1 − 1, l = 0, . . . , N2 − 1, r = 1, . . . , N1, s = 1, . . . , N2)

αr,s = DcST (ak,l) (32)

=
2√

N1N2

N1−1
∑

k=0

N2−1
∑

l=0

ak,l sin

[

π
(k + 1/2) r

N1

]

sin

[

π
(l + 1/2) s

N2

]

.

• DCTI (k = 0, . . . , N1, l = 0, . . . , N2, r = 0, . . . , N1, s = 0, . . . , N2)

αr,s = DCTI (ak,l) (33)

=
1

2
√
N1N2

[

a0,0 + (−1)
r
aN1,0 + (−1)

s
a0,N2

+ (−1)
r+s

aN1,N2

+ 2

N1−1
∑

k=1

ak,0 cos

(

π
kr

N1

)

+ 2

N2−1
∑

l=1

a0,l cos

(

π
ls

N2

)

+ 2 (−1)
s
N1−1
∑

k=1

ak,N2
cos

(

π
kr

N1

)

+ 2 (−1)
r
N2−1
∑

l=1

aN1,l cos

(

π
ls

N2

)

+4

N1−1
∑

k=1

N2−1
∑

l=1

ak,l cos

(

π
kr

N1

)

cos

(

π
ls

N2

)

]

.

• DcSTI (k = 1, . . . , N1 − 1, l = 1, . . . , N2 − 1, r = 1, . . . , N1 − 1, s = 1, . . . , N2 − 1)

αr,s = DcSTI (ak,l) (34)

=
2√

N1N2

N1−1
∑

k=1

N2−1
∑

l=1

ak,l sin

(

π
kr

N1

)

sin

(

π
ls

N2

)

.

• IDCT (k = 0, . . . , N1 − 1, l = 0, . . . , N2 − 1, r = 0, . . . , N1 − 1, s = 0, . . . , N2 − 1)

ak,l = IDCT (αr,s) (35)

=
1

2
√
N1N2

{

α0,0 + 2

N1−1
∑

r=1

αr,0 cos

[

π
(k + 1/2) r

N1

]

+ 2

N2−1
∑

s=1

α0,s cos

[

π
(l + 1/2) s

N2

]

+4

N1−1
∑

r=1

N2−1
∑

s=1

αr,s cos

[

π
(k + 1/2) r

N1

]

cos

[

π
(l + 1/2) s

N2

]

}

.

• IDC/cST (k = 0, . . . , N1 − 1, l = 0, . . . , N2 − 1, r = 0, . . . , N1 − 1, s = 1, . . . , N2)

ak,l = IDC/cST (αr,s) (36)

=
1

2
√
N1N2

{

(−1)
l
α0,N2

+ 2 (−1)
l
N1−1
∑

r=1

αr,N2
cos

[

π
(k + 1/2) r

N1

]

+ 2

N2−1
∑

s=1

α0,s sin

[

π
(l + 1/2) s

N2

]

+4

N1−1
∑

r=1

N2−1
∑

s=1

αr,s cos

[

π
(k + 1/2) r

N1

]

sin

[

π
(l + 1/2) s

N2

]

}

.

• IDcS/CT (k = 0, . . . , N1 − 1, l = 0, . . . , N2 − 1, r = 1, . . . , N1, s = 0, . . . , N2 − 1)

ak,l = IDcS/CT (αr,s) (37)

=
1

2
√
N1N2

{

(−1)
k
αN1,0 + 2

N1−1
∑

r=1

αr,0 sin

[

π
(k + 1/2) r

N1

]

+ 2 (−1)
k
N2−1
∑

s=1

αN1,s cos

[

π
(l + 1/2) s

N2

]

+4

N1−1
∑

r=1

N2−1
∑

s=1

αr,s sin

[

π
(k + 1/2) r

N1

]

cos

[

π
(l + 1/2) s

N2

]

}

.

• IDcST (k = 0, . . . , N1 − 1, l = 0, . . . , N2 − 1, r = 1, . . . , N1, s = 1, . . . , N2)

ak,l = IDcST (αr,s) (38)

=
1

2
√
N1N2

{

(−1)
k+l

αN1,N2
+ 2 (−1)

l
N1−1
∑

r=1

αr,N2
sin

[

π
(k + 1/2) r

N1

]

+ 2 (−1)
k
N2−1
∑

s=1

αN1,s sin

[

π
(l + 1/2) s

N2

]

+4

N1−1
∑

r=1

N2−1
∑

s=1

αr,s sin

[

π
(k + 1/2) r

N1

]

sin

[

π
(l + 1/2) s

N2

]

}

.

REFERENCES

1. M. Unser, P. Thévenaz, and L. Yaroslavsky, “Convolution-based interpolation for fast, high-
quality rotation of images,” IEEE Trans. Image Process. 4, pp. 1371–1381, Oct. 1995.

2. R. W. Cox and R. Tong, “Two- and three-dimensional image rotation using the FFT,” IEEE
Trans. Image Process. 8, pp. 1297–1299, Sept. 1999.

3. M. Unser, “Splines: a perfect fit for signal and image processing,” IEEE Signal Proc.
Mag. 16, pp. 22–38, Nov. 1999.

4. C. de Boor, A Practical Guide to Splines, Springer-Verlag, 1978.
5. L. Yaroslavsky, “Fast discrete sinc-interpolation: a gold standard for image resampling,”

in Advances in Signal Transforms: Theory and Applications, J. Astola and L. Yaroslavsky,
eds., EURASIP Book Series on Signal Processing and Communications 7, ch. 8, pp. 337–405,
Hindawi, 2007.

6. L. Yaroslavsky, “Discrete transforms, fast algorithms, and point spread functions of nu-
merical reconstruction of digitally recorded holograms,” in Advances in Signal Transforms:
Theory and Applications, J. Astola and L. Yaroslavsky, eds., EURASIP Book Series on
Signal Processing and Communications 7, ch. 3, pp. 93–141, Hindawi, 2007.

7. N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,” IEEE T. Comput. 23,
pp. 90–93, Jan. 1974.

8. J. I. Agbinya, “Interpolation using the discrete cosine transform,” Electron. Lett. 28,
pp. 1927–1928, Sept. 24, 1992.

9. S. G. Johnson and M. Frigo, “A modified split-radix FFT with fewer arithmetic operations,”
IEEE T. Signal Proces. 55, pp. 111–119, Jan. 2007.

10. G. Plonka and M. Tasche, “Fast and numerically stable algorithms for discrete cosine trans-
forms,” Linear Algebra Appl. 394, pp. 309–345, Jan. 1, 2005.

11. S. C. Chan and K. L. Ho, “A new two-dimensional fast cosine transform algorithm,” IEEE
T. Signal Proces. 39, pp. 481–485, Feb. 1991.

12. M. Unser, A. Aldroubi, and M. Eden, “Fast B-spline transforms for continuous image rep-
resentation and interpolation,” IEEE Trans. Pattern Anal. Mach. Intell. 13, pp. 277–285,
Mar. 1991.

13. L. R. Rabiner, R. W. Schafer, and C. M. Rader, “The chirp z-transform algorithm and its
application,” Bell Syst. Tech. J. 48, pp. 1249–1292, May-June 1969.

14. L. Yaroslavsky, “Efficient algorithm for discrete sinc interpolation,” Appl. Optics 36,
pp. 460–463, Jan. 10, 1997.

15. P. Yip and K. R. Rao, “On the shift property of DCT’s and DST’s,” IEEE T. Acoust.
Speech 35, pp. 404–406, Mar. 1987.

16. R. G. Keys, “Cubic convolution interpolation for digital image processing,” IEEE T. Acoust.
Speech 29, pp. 1153–1160, Dec. 1981.

	Introduction
	DCT-domain scaling and rotation algorithm
	Inverse Scaled Rotated Discrete Cosine Transform (`39`42`"613A``45`47`"603AIScRotDCT)
	Implementation through `39`42`"613A``45`47`"603ADCT-domain convolution

	Computational complexity
	Experimental verification and performance comparison
	Conclusion
	Definitions of DCT-related transforms

