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ABSTRACT  

Convolution and correlation are very basic image processing operations with numerous applications ranging from image 
restoration to target detection to image resampling and geometrical transformation. In real time applications, the crucial 
issue is the processing speed, which implies mandatory use of algorithms with the lowest possible computational 
complexity. Fast image convolution and correlation with large convolution kernels are traditionally carried out in the 
domain of Discrete Fourier Transform computed using Fast Fourier Transform algorithms. However standard DFT based 
convolution implements cyclic convolution rather than linear one and, because of this, suffers from heavy boundary 
effects. We introduce a fast DCT based convolution algorithm, which is virtually free of boundary effects of the cyclic 
convolution. We show that this algorithm have the same or even lower computational complexity as DFT-based 
algorithm and demonstrate its advantages in application examples of image arbitrary translation and scaling with perfect 
discrete sinc-interpolation and for image scaled reconstruction from holograms digitally recorded in near and far 
diffraction zones. In geometrical resampling the scaling by arbitrary factor is implemented using the DFT domain scaling 
algorithm and DCT-based convolution. In scaled hologram reconstruction in far diffraction zones the Fourier 
reconstruction method with simultaneous scaling is implemented using DCT-based convolution. In scaled hologram 
reconstruction in near diffraction zones the convolutional reconstruction algorithm is implemented by the DCT-based 
convolution. 

 

1. INTRODUCTION  
A linear (aperiodic) convolution 
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is a fundamental basic operation in digital image processing. It is implemented by fast algorithms in transform domain, 
usually in DFT domain through FFT algorithms. However, these algorithms compute a cyclic (circular) convolution: 
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rather than a linear one.  

Because in digital processing signals are always given by a finite number of their samples, any digital convolution 
algorithm requires one or another method for determination of signals and convolution kernels outside their boundaries. 

In order to cope with this problem, several DFT domain digital convolution methods were suggested. In particular, in 
Ref. [1] zero padding of both the signal and the kernel is recommended and in Ref. [2] zero padding of the signal and 
mirror reflection of the kernel is suggested. However these methods, widely used in digital signal processing, suffer from 
heavy boundary effects caused by discontinuities in signals due to zero padding. A method of digital convolution that is 
virtually free from such boundary effects was suggested in [3-5]. According to this method, signals are extended to 
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double length by their mirror reflection and the kernel is zero-padded to double length. This results in the following 
convolution algorithm: 
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where , ,  and  are the Discrete Fourier Transform, Discrete Cosine Transform, Inverse 
Discrete Cosine Transform  and Inverse Discrete Cosine-Sine Transform defined by: 
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( )kN h2ZP  denotes a zero-padding of {  to double length and SH  denotes a shift by }kh ⎡ 2N ⎤ , where ⎡ ⎤•  denotes 
integer part of the argument: 

 ( )[ ] ( )[ ]( ) NNkkNkN hh 2mod222 ZPZPSH −≡ , (8) 

ℜ  denotes a real part and  denotes an imaginary part. The algorithm given by Eq. (3) was used to implement a ℑ p -
fractional translation algorithm [6]. 

 

2. BOUNDARY EFFECT SAFE DIGITAL CONVOLUTION IN DCT DOMAIN 
Algorithm given by Eq. (3) requires computing the Inverse Discrete Cosine-Sine Transform IDcST which is not 
commonly available. However IDcST can be easily computed via IDCT [7], and the Eq. (3) can be converted into the 
following form: 
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This equation assumes computing DFT of the zero-padded convolution kernel of double length. 

Furthermore, this equation can be converted into the following form that requires computing over original N samples: 
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where  and  are the type-  Discrete Cosine Transform and type-  Discrete Cosine-Sine Transform 
defined by: 

IDCT IDcST I I
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and  denotes a normalized kernel: kĥ
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Since the algorithm Eq. (10) operates on signals of the original length (and not double one) and fast FFT-type algorithms 
are available for computation of different types of DCT/DcST transforms [8], the DCT convolution Eq. (10) can be 
computed in efficient way suited for real-time applications. 

 

3. APPLICATIONS 
The convolution algorithm Eq. (10) can be applied to various applications including resampling and hologram 
reconstruction. As representative applications, we’ll describe a method of scaling and two methods of scaled holographic 
reconstruction. 

3.1 Scaling 

The input signal  has to be scaled by arbitrary scaling factor ka σ . In order to map the center of the input image into the 

center of the scaled image, we have to introduce the translational “centering factor” ∆ : 

 ⎡ ⎤( ) ( )σσ 11 −−−≡∆ NN  (14) 

(the distance between the center of the input image and the center of the scaled image is equal to 2∆ ). The scaled 
signal is computed in the following way [2, 9]: 
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where SDFT  is the Shifted Discrete Fourier Transform [4] defined by: 
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In the scaling method Eq. (15) the problem of computation of scaled signal boils down to computation of convolution 
that is implemented in DCT domain using Eq. (10). The peculiar choice of phase factors in the Eq. (15) ensures that for 
the real input image the computed scaled image is real and centered correctly. For the case of zoom-out ( 1<σ ) the 
method Eq. (15) does not require the low-pass pre-filtering of the input signal (because this pre-filtering is built-in in the 
DCT convolution Eq. (10). The interpolation formula of the scaling algorithm Eq. (15) is given by: 
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where  is a discrete sinc function defined by: sincd
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Examples of images obtained by the scaling method Eq. (15) with scaling factor 2=σ  implemented by the DFT 
convolution [2] and by the DCT convolution Eq. (10) are shown in Figure 1. As one can see, boundary effect in form of 
heavy oscillations at the image borders are present in the result of DFT convolution and are absent in the result of DCT 
convolution. 

 

 
Figure 1. Comparison of image scaling algorithms. Left: the original image. Middle: the scaled image computed using 

DFT-domain convolution ( 2=σ ). Right: the scaled image computed using DCT-domain convolution ( 2=σ ). 
 

3.2 Hologram reconstruction with scaling 

In numerical reconstruction of holograms it is frequently required to reconstruct images with different scale factor 
commensurable with illumination wave length. The two most important methods of numerical reconstruction of Fresnel 
holograms are the Fourier reconstruction algorithm (for far diffraction zones) and the convolutional reconstruction 
algorithm (for near diffraction zones) [5, 10]. The suggested above digital convolution algorithm can naturally be 
employed for solving this task. For the Fourier reconstruction algorithm, the reconstruction and scaling can be performed 
simultaneously in one step while for the convolutional reconstruction algorithm the reconstruction and scaling have to be 
performed in two steps. 

 

Fourier reconstruction algorithm with scaling 

For Fourier reconstruction algorithm, σ -scaled reconstructed samples of the object wave front are computed from the 
input hologram samples { }rα  by the following formula [5, 10]: 
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Therefore the problem of computation of scaled hologram reconstruction boils down to the problem of computation of 
convolution that can be implemented in DCT domain using Eq. (10). Examples of Fourier hologram reconstruction 

algorithm without scaling ( 1=σ ) and with scaling ( 2=σ ) are shown in Figure 2. 

 

 

Figure 2. Fourier reconstruction algorithm with scaling. Left: hologram reconstruction without scaling ( 1=σ ). Right: 

scaled hologram reconstruction ( 2=σ ). 
 

 

Convolutional reconstruction algorithm with scaling 

For the convolutional algorithm, reconstructed samples of the object wave are computed from the input hologram 
samples { }rα  by the following formula [5, 10]: 
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In this case, the problem of hologram reconstruction boils down to the problem of computation of convolution that can 
be implemented in DCT domain using Eq. (10). The function frincd  is computed from Eq. (21) using IDFT. The scaled 
hologram reconstruction ( )σ

ka~  is computed from the hologram reconstruction  using scaling algorithm Eq. (15). 

Examples of convolutional hologram reconstruction algorithm without scaling (

ka

1=σ ) and with scaling ( 2=σ ) are 
shown in Figure 3. 

 

 

Figure 3. Convolution reconstruction algorithm with scaling. Left: hologram reconstruction without scaling ( 1=σ ). 

Right: scaled hologram reconstruction ( 2=σ ). 

 

4. CONCLUSIONS 
The boundary effect safe DCT-domain convolution algorithm is presented and applications of this algorithm to image re-
scaling and scaled holographic reconstruction are provided. Thanks to the availability of fast FFT-type algorithms for 
computing transforms involved in the algorithm, the suggested DCT-domain convolution represents a valuable 
alternative to DFT-domain convolution in real-time video processing applications. 
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