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ABSTRACT 

Image scaling is a frequent operation in video processing for optical metrology. In the paper, results of comparative 

study of computational complexity of different algorithms for scaling digital images with arbitrary scaling factors are 

presented and discussed. The following algorithms were compared: different types of spatial domain processing 

algorithms (linear, cubic, cubic spline interpolation) and a new DCT-based algorithm, which implements perfect 

(interpolation error free) scaling through discrete sinc-interpolation and is virtually free of boundary effects 

(characteristic for the DFT-based scaling algorithms). The comparison results enable evaluation of the feasibility of real-

time implementation of the algorithms for arbitrary image scaling. 
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1 INTRODUCTION 

Scaling is one of basic image processing tasks with a wide range of applications. Conventional approaches to scaling 

utilize low order spline interpolation (linear/cubic/spline), which does not secure interpolation error free scaling. Discrete 

sinc interpolation methods in DFT domain
1
 do secure interpolation error free scaling but suffer for boundary effects 

associated with the cyclicity property of the discrete sinc-function. The DCT-based scaling algorithm introduced in this 

paper also secures perfect interpolation error free image arbitrary scaling and is, in addition, virtually free of boundary 

effects. 

In video processing, a crucial issue is its computational complexity. Generally, there is a trade-off between the accuracy 

and computational complexity. In this paper, we, along with introducing a new improved DCT-based method of image 

arbitrary scaling, compare its computational complexity with the complexity of spatial domain interpolation methods. 

 

2 SIGNAL DOMAIN CONVOLUTION BASED INTERPOLATION METHODS  

  
The most commonly used signal domain convolution based interpolation methods are described by the equation: 

 














1

0

~
N

n

nk n
k

haa


, (1) 

where na  are signal samples, ka~  is interpolated signal and  nh  is interpolation kernel. One of the simplest methods is 

linear interpolation, for which 
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The more accurate interpolation method is cubic interpolation
2
, for which 
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and 5.0q . 

Even more accurate interpolation method is cubic spline interpolation
3-5

 defined as: 
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where 
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The coefficients 
 m
nb  are determined as follows: 
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where nnn aaa  1  and  'na  are found by solving the following tridiagonal system of linear equations: 
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3 DCT-BASED SCALING METHOD 

The DFT-based image scaling
6,7

 suffers from border effects caused by the periodic nature of the DFT. In order to 

eliminate these border effects, we suggest replacing DFT by DCT. Signal scaling by means of the Inverse Scaled DCT is 

given by the following formula: 
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where ka~  is a  -times scaled signal,    is a rounding-off operator: 
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,21  is the zero-padded or truncated DCT spectrum C

r : 

  

 

 
 

 








































1if2

,2,,1if

,0if2

1,,if0

,1if2

,2,,1if

,0if2

11

,21,21

Nr

Nr

r

NNr

Nr

Nr

r

C

r

C

r

C

r

ZPC

rC

r

C

r

C

r

ZPC

r

























  (10) 

and C

r  is the DCT spectrum of the input signal na : 
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For efficient computation, Eq. (8) can be converted into four convolutions: 
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In order to avoid boundary effects which are characteristic for cyclic convolution performed using FFT, one can perform 

convolution in DCT domain (rather than in DFT domain)
8
. The convolutions in Eq. (12) can be computed in DCT 

domain using the formula: 
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where C

p  is the DCT (Discrete Cosine Transform) of r : 
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S

p  is the DcST (Discrete Sine Transform) of r : 

  
 

 

 

 













 


1

0

21
sin

2
DcST

N

r

rr

S

p
N

pr

N







 , (15) 

CI

p  is the so called Discrete Cosine Transform – type I (DCT
I
 ) of rh  (assuming that 

 
0Nh  ): 
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IDCT is the Inverse Discrete Cosine Transform: 
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and IDcST is the Inverse Discrete Sine Transform: 
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This convolution (Eq. (13)) can be converted into the “all-DCT” form containing only – DCT (Eq. (14)) and IDCT (Eq. 

(17)): 
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where 
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The suggested DCT-based scaling method produces perfectly sharp images and is virtually free of boundary effects, 

demonstrating perfect accuracy of resampling. 

 

 

4 COMPUTATIONAL COMPLEXITY 

We assume that both the input signal na  and the output signal ka~  are 1D real vectors. In order to compute a scaled 

signal by the DCT-based scaling method, one needs to generate the cos / sin  factors, perform multiplications and 

compute DCT transforms. 

The “numerically stable” DCT algorithm needs NNN
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Computational complexity of discussed image scaling methods is listed in Table 1. 



 

 
 

 

 

     Table 1. Comparison of computational algorithms of scaling methods. 

Type of the scaling 

method 

Number of flops per one output sample 

Linear interpolation 3  

Cubic interpolation 17  

Cubic spline interpolation 
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From Table 1 it is clear that the computational complexity of the DCT-based scaling method is higher than that of the 

low-order splines. From the other hand, the DCT-based scaling method is equivalent to very high-order spline and 

provides very accurate scaling results that outperform those of low-order splines. In order to provide very high quality 

scaling using spline interpolation, one has to use a high-order spline, e.g., B-spline of order p  with computational 

complexity 24 p  flops per one output sample
10

. In this case the complexity increases with the order of spline and 

becomes comparable and even higher that the complexity of the DCT-based scaling. So the DCT-based scaling method 

is a natural choice for very accurate image scaling with reasonable computational complexity. 

5 CONCLUSION 

Novel boundary effect free scaling method of perfect image scaling is introduced. Computational complexity of different 

known and new image scaling algorithms is compared. It is shown that DCT-domain scaling algorithm presents a 

valuable alternative to other image scaling methods, certainly in terms of the accuracy but also in terms of the 

computational complexity. This makes it an attractive solution in real-time image and video processing applications. 
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