Lecture 9 - Optimization over a Convex Set

Throughout this lecture we will consider the constrained optimization problem (P) given by

 $(\mathsf{P}) \quad \begin{array}{l} \min \quad f(\mathbf{x}) \\ \text{s.t.} \quad \mathbf{x} \in C. \end{array}$

- C closed convex subset of \mathbb{R}^n .
- f continuously differentiable¹ over C. Not necessarily convex.

Definition of Stationarity. Let f be a continuously differentiable function over a closed and convex set C. Then \mathbf{x}^* is called a stationary point of (P) if

$$abla f(\mathbf{x}^*)^T(\mathbf{x}-\mathbf{x}^*) \geq 0$$
 for any $\mathbf{x} \in C$

¹We use the convention that a function is differentiable over a given set D if it is differentiable over an open set containing D

Stationarity as a Necessary Optimality Condition

Theorem. Let f be a continuously differentiable function over a nonempty closed convex set C, and let \mathbf{x}^* be a local minimum of (P). Then \mathbf{x}^* is a stationary point of (P).

Proof.

- ▶ Let \mathbf{x}^* be a local minimum of (P), and assume in contradiction that \mathbf{x}^* is not a stationary point of (P) ⇒ there exists $\mathbf{x} \in C$ such that $\nabla f(\mathbf{x}^*)^T (\mathbf{x} \mathbf{x}^*) < 0$.
- Thus, $f'(\mathbf{x}^*; \mathbf{d}) < 0$ where $\mathbf{d} = \mathbf{x} \mathbf{x}^*$.
- ▶ Therefore $\exists \varepsilon \in (0,1)$ s.t. $f(\mathbf{x}^* + t\mathbf{d}) < f(\mathbf{x}^*) \forall t \in (0,\varepsilon)$.
- Since x^{*} + td = (1 − t)x^{*} + tx ∈ C∀t ∈ (0, ε), we conclude that x^{*} is not a local optimum point of (P). Contradiction.

Examples

- $\blacktriangleright C = \mathbb{R}^n.$
 - x* is a stationary point of (P) iff

(*)
$$\nabla f(\mathbf{x}^*)^T(\mathbf{x}-\mathbf{x}^*) \geq 0 \quad \forall \mathbf{x} \in \mathbb{R}^n$$

- We will show that the above condition is equivalent to $\nabla f(\mathbf{x}^*) = \mathbf{0}$. Indeed, if $\nabla f(\mathbf{x}^*) = \mathbf{0}$, then obviously (*) is satisfied.
- Suppose that (*) holds.
- Plugging $\mathbf{x} = \mathbf{x}^* \nabla f(\mathbf{x}^*)$ in the above implies $-\|\nabla f(\mathbf{x}^*)\|^2 \ge 0$.
- Thus, $\nabla f(\mathbf{x}^*) = \mathbf{0}$.
- $\blacktriangleright C = \mathbb{R}^n_+.$
 - $\mathbf{x}^* \in \mathbb{R}^n_+$ is a stationary point iff $\nabla f(\mathbf{x}^*)^T (\mathbf{x} \mathbf{x}^*) \ge 0$ for all $\mathbf{x} \ge \mathbf{0}$.
 - $\blacktriangleright \Leftrightarrow \nabla f(\mathbf{x}^*)^T \mathbf{x} \nabla f(\mathbf{x}^*)^T \mathbf{x}^* \ge 0 \text{ for all } \mathbf{x} \ge \mathbf{0}.$
 - $\Leftrightarrow \nabla f(\mathbf{x}^*) \ge \mathbf{0} \text{ and } \nabla f(\mathbf{x}^*)^T \mathbf{x}^* \le \mathbf{0}.$
 - $\blacktriangleright \Leftrightarrow \nabla f(\mathbf{x}^*) \geq \mathbf{0} \text{ and } x_i^* \frac{\partial f}{\partial x_i}(\mathbf{x}^*) = \mathbf{0}, \quad i = 1, 2, \dots, n.$
 - ►⇔

$$\frac{\partial f}{\partial x_i}(\mathbf{x}^*) \begin{cases} = 0 & x_i^* > 0, \\ \geq 0 & x_i^* = 0. \end{cases}$$

Explicit Stationarity Condition

feasible set	explicit stationarity condition
\mathbb{R}^n	$ abla f(\mathbf{x}^*) = 0$
\mathbb{R}^n_+	$rac{\partial f}{\partial x_i}(\mathbf{x}^*) \left\{ egin{array}{cc} = 0 & x_i^* > 0 \ \geq 0 & x_i^* = 0 \end{array} ight.$
$\left\{\mathbf{x} \in \mathbb{R}^n : \mathbf{e}^T \mathbf{x} = 1\right\}$	$rac{\partial f}{\partial x_1}(\mathbf{x}^*) = \ldots = rac{\partial f}{\partial x_n}(\mathbf{x}^*)$
B[0 , 1]	$ abla f(\mathbf{x}^*) = 0 ext{ or } \ \mathbf{x}^*\ = 1 ext{ and } \exists \lambda \leq 0 : abla f(\mathbf{x}^*) = \lambda \mathbf{x}^*$

Stationarity in Convex Optimization

For convex problems, stationarity is a necessary and sufficient condition

Theorem. Let f be a continuously differentiable convex function over a nonempty closed and convex set $C \subseteq \mathbb{R}^n$. Then \mathbf{x}^* is a stationary point of

$$\begin{array}{ll} (\mathsf{P}) & \min & f(\mathbf{x}) \\ & \text{s.t.} & \mathbf{x} \in C. \end{array}$$

iff \mathbf{x}^* is an optimal solution of (P).

Proof.

- If x* is an optimal solution of (P), then we already showed that it is a stationary point of (P).
- Assume that x^{*} is a stationary point of (P).
- Let $\mathbf{x} \in C$. Then

$$f(\mathbf{x}) \geq f(\mathbf{x}^*) + \nabla f(\mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*) \geq f(\mathbf{x}^*),$$

establishing the optimality of x*.

The Second Projection Theorem

Theorem. Let C be a nonempty closed convex set and let $\mathbf{x} \in \mathbb{R}^n$. Then $\mathbf{z} = P_C(\mathbf{x})$ if and only if

 $(\mathbf{x} - \mathbf{z})^T (\mathbf{y} - \mathbf{z}) \leq 0$ for any $\mathbf{y} \in C$.

Proof.

> $z = P_C(x)$ iff it is the optimal solution of the problem

 $\begin{array}{ll} \min & g(\mathbf{y}) \equiv \|\mathbf{y} - \mathbf{x}\|^2 \\ \text{s.t.} & \mathbf{y} \in C. \end{array}$

• By the previous theorem, $\mathbf{z} = P_C(\mathbf{x})$ if and only if

$$\nabla g(\mathbf{z})^T(\mathbf{y}-\mathbf{z}) \geq 0$$
 for all $\mathbf{y} \in C$,

which is the same as (1).

(1)

Properties of the Orthogonal Projection: (Firm) Nonexpansivness

Theorem. Let C be a nonempty closed and convex set. Then

1. For any $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$:

$$(P_{\mathcal{C}}(\mathbf{v}) - P_{\mathcal{C}}(\mathbf{w}))^{\mathsf{T}}(\mathbf{v} - \mathbf{w}) \ge \|P_{\mathcal{C}}(\mathbf{v}) - P_{\mathcal{C}}(\mathbf{w})\|^{2}.$$
 (2)

2. (non-expansiveness) For any $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$:

$$\|P_{\mathcal{C}}(\mathbf{v}) - P_{\mathcal{C}}(\mathbf{w})\| \le \|\mathbf{v} - \mathbf{w}\|.$$
(3)

(4)

(5)

7 / 21

Proof.

For any $\mathbf{x} \in \mathbb{R}^n$ and $\mathbf{y} \in C$:

$$(\mathbf{x} - P_C(\mathbf{x}))^T (\mathbf{y} - P_C(\mathbf{x})) \leq 0 \quad \forall \mathbf{x} \in \mathbb{R}^n, \mathbf{y} \in C$$

Substituting $\mathbf{x} = \mathbf{v}, \mathbf{y} = P_C(\mathbf{w})$, we have

$$(\mathbf{v} - P_C(\mathbf{v}))^T (P_C(\mathbf{w}) - P_C(\mathbf{v})) \leq 0.$$

Amir Beck

"Introduction to Nonlinear Optimization" Lecture Slides - Optimization over a Convex Set

Proof Contd.

▶ Now, by substituting $\mathbf{x} = \mathbf{w}, \mathbf{y} = P_C(\mathbf{v})$, we obtain

$$(\mathbf{w} - P_C(\mathbf{w}))^T (P_C(\mathbf{v}) - P_C(\mathbf{w})) \le 0.$$
(6)

Adding the two inequalities (5) and (6),

$$(P_{\mathcal{C}}(\mathbf{w}) - P_{\mathcal{C}}(\mathbf{v}))^{\mathsf{T}}(\mathbf{v} - \mathbf{w} + P_{\mathcal{C}}(\mathbf{w}) - P_{\mathcal{C}}(\mathbf{v})) \leq 0,$$

and hence,

$$(P_C(\mathbf{v}) - P_C(\mathbf{w}))^T (\mathbf{v} - \mathbf{w}) \geq \|P_C(\mathbf{v}) - P_C(\mathbf{w})\|^2.$$

To prove (3), note that if P_C(v) = P_C(w), the inequality is trivial. Assume then that P_C(w) ≠ P_C(w). By the Cauchy-Schwarz inequality we have

 $(P_{\mathcal{C}}(\mathbf{v}) - P_{\mathcal{C}}(\mathbf{w}))^{\mathsf{T}}(\mathbf{v} - \mathbf{w}) \leq \|P_{\mathcal{C}}(\mathbf{v}) - P_{\mathcal{C}}(\mathbf{w})\| \cdot \|\mathbf{v} - \mathbf{w}\|,$

which combined with (2) yields the inequality

$$\|P_C(\mathbf{v}) - P_C(\mathbf{w})\| \cdot \|\mathbf{v} - \mathbf{w}\| \ge \|P_C(\mathbf{w}) - P_C(\mathbf{w})\|^2.$$

Dividing by $||P_C(\mathbf{v}) - P_C(\mathbf{w})||$, implies (3).

Representation of Stationarity via the Orthogonal Projection Operator

Theorem. Let f be a continuously differentiable function over the nonempty closed convex set C, and let s > 0. Then \mathbf{x}^* is a stationary point of

 $(\mathsf{P}) \quad \begin{array}{l} \min \quad f(\mathbf{x}) \\ \text{s.t.} \quad \mathbf{x} \in C. \end{array}$

if and only if

$$\mathbf{x}^* = P_C(\mathbf{x}^* - s\nabla f(\mathbf{x}^*)).$$

Proof.

• By the second projection theorem, $\mathbf{x}^* = P_C(\mathbf{x}^* - s\nabla f(\mathbf{x}^*))$ iff

$$(\mathbf{x}^* - s
abla f(\mathbf{x}^*) - \mathbf{x}^*)^T (\mathbf{x} - \mathbf{x}^*) \leq 0$$
 for any $\mathbf{x} \in C$.

Equivalent to

$$\nabla f(\mathbf{x}^*)^T(\mathbf{x}-\mathbf{x}^*) \ge 0$$
 for any $\mathbf{x} \in C$,

namely to stationarity.

Amir Beck

The Gradient Mapping

It is convenient to define the gradient mapping as

$$G_L(\mathbf{x}) = L\left[\mathbf{x} - P_C\left(\mathbf{x} - \frac{1}{L}\nabla f(\mathbf{x})\right)\right],$$

where L > 0.

- In the unconstrained case $G_L(\mathbf{x}) = \nabla f(\mathbf{x})$.
- $G_L(\mathbf{x}) = \mathbf{0}$ if and only if \mathbf{x} is a stationary point of (P). This means that we can consider $||G_L(\mathbf{x})||^2$ to be optimality measure.

The Gradient Projection Method

The Gradient Projection Method

Input: $\varepsilon > 0$ - tolerance parameter.

Initialization: pick $\mathbf{x}_0 \in C$ arbitrarily. **General step:** for any k = 0, 1, 2, ... execute the following steps: (a) pick a stepsize t_k by a line search procedure. (b) set $\mathbf{x}_{k+1} = P_C(\mathbf{x}_k - t_k \nabla f(\mathbf{x}_k))$. (c) if $\|\mathbf{x}_k - \mathbf{x}_{k+1}\| \le \varepsilon$, then STOP and \mathbf{x}_{k+1} is the output.

- There are several strategies for choosing the stepsizes t_k .
- When $f \in C_L^{1,1}$, we can choose t_k to be constant and equal to $\frac{1}{L}$.

The Gradient Projection Method with Constant Stepsize

The Gradient Projection Method with Constant Stepsize Input: $\varepsilon > 0$ - tolerance parameter. L > 0 - an upper bound on the Lipschitz constant of ∇f .

Initialization: pick $\mathbf{x}_0 \in C$ arbitrarily. $\overline{t} > 0$ - constant stepsize. **General step:** for any k = 0, 1, 2, ... execute the following steps: (a) set $\mathbf{x}_{k+1} = P_C (\mathbf{x}_k - \overline{t} \nabla f(\mathbf{x}_k))$. (b) if $\|\mathbf{x}_k - \mathbf{x}_{k+1}\| \le \varepsilon$, then STOP and \mathbf{x}_{k+1} is the output.

GPM with Backtracking

Gradient Projection Method with Backtracking Initialization. Take $x_0 \in C$ and $s > 0, \alpha \in (0, 1), \beta \in (0, 1)$. General Step $(k \ge 1)$

▶ Pick $t_k = s$. Then, while

$$f(\mathbf{x}_k) - f(P_C(\mathbf{x}_k - t_k \nabla f(\mathbf{x}_k))) < \alpha t_k \|G_{\frac{1}{t_i}}(\mathbf{x}_k)\|^2$$

set $t_k := \beta t_k$.

• Set
$$\mathbf{x}_{k+1} = P_C(\mathbf{x}_k - t_k \nabla f(\mathbf{x}_k))$$

Stopping Criteria $\|\mathbf{x}_k - \mathbf{x}_{k+1}\| \leq \varepsilon$.

Convergence of the Gradient Projection Method

Theorem Let $\{\mathbf{x}_k\}$ be the sequence generated by the gradient projection method for solving problem (P) with either a constant stepsize $\overline{t} \in (0, \frac{2}{L})$, where *L* is a Lipschitz constant of ∇f or a backtracking stepsize strategy. Assume that *f* is bounded below. Then

- 1. The sequence $\{f(\mathbf{x}_k)\}$ is nonincreasing.
- 2. $G_d(\mathbf{x}_k) \to 0$ as $k \to \infty$, where

$$d = \left\{ egin{array}{cc} 1/ar{t} & ext{constant stepsize}, \ 1/s & ext{backtracking}. \end{array}
ight.$$

See the proof of Theorem 9.14 in the book

- It is easy to see that this result implies that any limit point of the sequence is a stationary point of the problem.
- When f is convex, it is possible to show that the sequence converges to a global optimal solution.

Sparsity Constrained Problems

The sparsity constrained problem is given by

(S): $\min_{\text{s.t.}} f(\mathbf{x})$ s.t. $\|\mathbf{x}\|_0 \leq s$,

- $f : \mathbb{R}^n \to \mathbb{R}$ is a lower-bounded continuously differentiable function.
- s > 0 is an integer smaller than n.
- $\blacktriangleright \| {\bm x} \|_0$ is the ℓ_0 norm of ${\bm x},$ which counts the number of nonzero components in ${\bm x}.$
- ▶ We do not assume that *f* is a convex function. The constraint set is of course not convex.

Notation.

- $I_1(\mathbf{x}) \equiv \{i : x_i \neq 0\}$ the support set.
- $I_0(\mathbf{x}) \equiv \{i : x_i = 0\}$ the off-support set.
- $\bullet \ C_s = \{\mathbf{x} : \|\mathbf{x}\|_0 \le s\}.$
- For a vector x ∈ ℝⁿ and i ∈ {1,2,...,n}, the ith largest absolute value component in x is denoted by M_i(x).

A Fundamental Necessary Optimality Condition - Basic Feasibility

Definition. A vector $\mathbf{x}^* \in C_s$ is called a basic feasible (BF) vector of (P) if:

1. when
$$\|\mathbf{x}^*\|_0 < s$$
, $\nabla f(\mathbf{x}^*) = 0$;

2. when
$$\|\mathbf{x}^*\|_0 = s$$
, $\frac{\partial f}{\partial x_i}(\mathbf{x}^*) = 0$ for all $i \in I_1(\mathbf{x}^*)$.

Theorem (BF is a necessary optimality condition) Let \mathbf{x}^* be an optimal solution of (P). Then \mathbf{x}^* is a BF vector.

Proof.

• If
$$\|\mathbf{x}^*\|_0 < s$$
, then for any $i \in \{1, 2, \dots, n\}$

 $0 \in \operatorname{argmin}\{g(t) \equiv f(\mathbf{x}^* + t\mathbf{e}_i)\}.$

Otherwise there would exist a t_0 for which $f(\mathbf{x}^* + t_0 \mathbf{e}_i) < f(\mathbf{x}^*)$, which is a contradiction to the optimality of \mathbf{x}^* .

- Therefore, we have $\frac{\partial f}{\partial x_i}(\mathbf{x}^*) = g'(0) = 0$.
- If $\|\mathbf{x}^*\|_0 = s$, then the same argument holds for any $i \in I_1(\mathbf{x}^*)$.

L-stationarity

Definition. A vector $\mathbf{x}^* \in C_s$ is called an *L*-stationary point of (S) if it satisfies the relation

$$[\mathrm{NC}_L] \quad \mathbf{x}^* \in P_{C_s}\left(\mathbf{x}^* - \frac{1}{L}\nabla f(\mathbf{x}^*)\right).$$

- ▶ Note that since C_s is not a convex set, the orthogonal projection operator $P_{C_s}(\cdot)$ is not single-valued.
- Specifically, the members of P_{Cs}(x) are vector consisting of the s components of x with the largest absolute value and zeros elsewhere.
- In general, there could be more than one choice to the s largest components. For example:

 $P_{C_2}((2,1,1)^T) = \{(2,1,0)^T, (2,0,1)^T\}.$

Explicit Reformulation of L-stationarity

Lemma. For any L > 0, \mathbf{x}^* satisfies $[NC_L]$ if and only if $\|\mathbf{x}^*\|_0 \le s$ and $\left|\frac{\partial f}{\partial x_i}(\mathbf{x}^*)\right| \begin{cases} \le LM_s(\mathbf{x}^*) & \text{if } i \in I_0(\mathbf{x}^*), \\ = 0 & \text{if } i \in I_1(\mathbf{x}^*). \end{cases}$ (7)

Proof.($[NC_L] \Rightarrow (7)$).

- Suppose that x* satisfies [NC_L]. Note that for any index j ∈ {1,2,...,n}, the j-th component of P_{Cs}(x* ¹/_L∇f(x*)) is either zero or equal to x^{*}_j ¹/_L∇_jf(x*).
- ▶ Since $\mathbf{x}^* \in P_{C_s}(\mathbf{x}^* \frac{1}{L}\nabla f(\mathbf{x}^*))$, it follows that if $i \in I_1(\mathbf{x}^*)$, then $x_i^* = x_i^* \frac{1}{L}\frac{\partial f}{\partial x_i}(\mathbf{x}^*)$, so that $\frac{\partial f}{\partial x_i}(\mathbf{x}^*) = 0$.
- If $i \in I_0(\mathbf{x}^*)$, then $\left|x_i^* \frac{1}{L}\frac{\partial f}{\partial x_i}(\mathbf{x}^*)\right| \leq M_s(\mathbf{x}^*)$, which combined with the fact that $x_i^* = 0$ implies that $\left|\frac{\partial f}{\partial x_i}(\mathbf{x}^*)\right| \leq LM_s(\mathbf{x}^*)$, and consequently (7) holds true.

Proof Contd.

 $((7) \Rightarrow [NC_L]).$

- ▶ Suppose that \mathbf{x}^* satisfies (7). If $\|\mathbf{x}^*\|_0 < s$, then $M_s(\mathbf{x}^*) = 0$ and by (7) it follows that $\nabla f(\mathbf{x}^*) = 0$. Therefore, $P_{C_s}(\mathbf{x}^* \frac{1}{L}\nabla f(\mathbf{x}^*)) = P_{C_s}(\mathbf{x}^*) = {\mathbf{x}^*}$.
- ► If $\|\mathbf{x}^*\|_0 = s$, then $M_s(\mathbf{x}^*) \neq 0$ and $|I_1(\mathbf{x}^*)| = s$. By (7) $\left|x_i^* - 1/L\frac{\partial f}{\partial x_i}(\mathbf{x}^*)\right| \begin{cases} = |x_i^*| & i \in I_1(\mathbf{x}^*) \\ \leq M_s(\mathbf{x}^*) & i \in I_0(\mathbf{x}^*). \end{cases}$
- ► Therefore, the vector x^{*} ¹/_L∇f(x^{*}) contains the s components of x^{*} with the largest absolute value and all other components are smaller or equal to them, so that [NC_L] holds.

Remark: Note that the condition $[NC_L]$ depends on *L* in contrast to the stationarity condition over convex sets.

L-Stationarity as a Necessary Optimality Condition

When $f \in C_{L(f)}^{1,1}$, it is possible to show that an optimal solution of (S) is an *L*-stationary point for any L > L(f).

Theorem. Suppose that $f \in C_{L(f)}^{1,1} \in \mathbb{R}^n$, and that L > L(f). Let \mathbf{x}^* be an optimal solution of (S). Then \mathbf{x}^* is an *L*-stationary point.

See the proof of Theorem 9.22 in the book.

The Iterative Hard-Thresholding (IHT) Method

The IHT method Input: a constant $L \ge L(f)$.

- Initialization: Choose $\mathbf{x}_0 \in C_s$. • General step : $\mathbf{x}^{k+1} \in P_{C_s} (\mathbf{x}^k - \frac{1}{L} \nabla f(\mathbf{x}^k))$, (k = 0, 1, 2, ...)
- Theorem (convergence of IHT) Suppose that $f \in C_{L(f)}^{1,1}$ and let $\{\mathbf{x}^k\}_{k\geq 0}$ be the sequence generated by the IHT method with stepsize $\frac{1}{t}$ where L > L(f).

Then any accumulation point of $\{\mathbf{x}^k\}_{k\geq 0}$ is an *L*-stationary point.

See the proof of Theorem 9.24 in the book