
Lecture 8 - Convex Optimization

I A convex optimization problem (or just a convex problem) is a problem
consisting of minimizing a convex function over a convex set:

min f (x)
s.t. x ∈ C ,

(1)

I C - convex set.
I f - convex function over C .

I A functional form of a convex problem can written as

min f (x)
s.t. gi (x) ≤ 0, i = 1, 2, . . . ,m

hj(x) = 0, j = 1, 2, . . . , p,

f , g1, . . . , gm : Rn → R are convex functions and h1, h2, . . . , hp : Rm → R are
affine functions.

I Note that the functional form does fit into the general formulation (1).
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“Convex Problems are Easy” - Local Minima are Global
Minima

Theorem. Let f : C → R be a convex function defined on the convex set
C ⊆ Rn. Let x∗ ∈ C be a local minimum of f over C . Then x∗ is a global
minimum of f over C .

Proof.

I x∗ is a local minimum of f over C ⇒ ∃r > 0 such that f (x) ≥ f (x∗) for any
x ∈ C ∩ B[x∗, r ].

I Let x∗ 6= y ∈ C . We will show that f (y) ≥ f (x∗).

I Let λ ∈ (0, 1) be such that x∗ + λ(y − x∗) ∈ B[x∗, r ].

I Since x∗ + λ(y − x∗) ∈ B[x∗, r ], it follows that f (x∗) ≤ f (x∗ + λ(y − x∗))
and hence by Jensen’s inequality:

f (x∗) ≤ f (x∗ + λ(y − x∗)) ≤ (1− λ)f (x∗) + λf (y).

I Thus, the desired inequality f (x∗) ≤ f (y) follows.
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More Results
A small variation of the proof of the last theorem yields the following.

Theorem. Let f : C → R be a strictly convex function defined on the
convex set C . Let x∗ ∈ C be a local minimum of f over C . Then x∗ is a
strict global minimum of f over C .

Another important and easily deduced property of convex problems is that set of
optimal solutions is also convex.

Theorem. Let f : C → R be a convex function defined over the convex set
C ⊆ Rn. Then the set of optimal solutions of the problem

min{f (x) : x ∈ C}

is convex. If, in addition, f is strictly convex over C , then there exists at
most one optimal solution of the problem.

Proof. In class
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Example

I A Convex Problem:
min −2x1 + x2
s.t. x21 + x22 ≤ 3,

I A Nonconvex Problem:
min x21 − x2
s.t. x21 + x22 = 3
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Linear Programming

(LP):
min cTx
s.t. Ax ≤ b,

Bx = g.

I A convex optimization problem (constraints and objective function are
linear/affine and hence convex).

I It is also equivalent to a problem of maximizing a convex (linear) function
subject to a convex constraints set. Hence, if the feasible set is compact ans
nonempty, then there exists at least one optimal solution which is an extreme
point=basic feasible solution.

I A more general result drops the compactness assumption and is often called
the fundamental theorem of linear programming.
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Convex Quadratic Problems

I Convex quadratic problems are problems consisting of minimizing a convex
quadratic function subject to affine constraints.

I The general form is
min xTQx + 2bTx
s.t. Ax ≤ c,

Q ∈ Rn×n is positive semidefinite, b ∈ Rn,A ∈ Rm×n, c ∈ Rm.
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Chebyshev Center of a Set of Points
Chebyshev Center Problem. Given m points a1, a2, . . . , am in Rn. The
objective is to find the center of the minimum radius closed ball containing
all the points.

I This ball is called the Chebyshev ball
and the corresponding center is the
Chebyshev center.

I In mathematical terms, the problem
can be written as (r is the radius and
x is the center):

minx,r r
s.t. ai ∈ B[x, r ], i = 1, 2, . . . ,m.

I or:

minx,r r
s.t. ‖x− ai‖ ≤ r , i = 1, 2, . . . ,m.
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The Portfolio Selection Problem
I We are given n assets numbered as 1, 2, . . . , n. Let Yj(j = 1, 2, . . . , n) be the

RV representing the return from asset j .
I We assume that the expected returns are known:

µj = E (Yj), j = 1, 2, . . . , n,

and that the covariances of all the pairs of variables are also known:

σi,j = COV (Yi ,Yj), i , j = 1, 2, . . . , n.

I xj(j = 1, 2, . . . , n) - the proportion of budget invested in asset j . The decision
variables are constrained to satisfy x ∈ ∆n.

I The overall return is the random variable:

R =
n∑

j=1

xjYj ,

whose expectation and variance are given by:

E(R) = µTx,V(R) = xTCx,

µ = (µ1, µ2, . . . , µn)T and C is the covariance matrix: Ci,j = σi,j
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The Markowitz Model
I There are several formulations of the portfolio optimization problem, which

are all referred to as the “Markowitz model” after Harry Markowitz (1952).
I Minimizing the risk under the constraint that a minimal return level is

guaranteed:
min xTCx
s.t µTx ≥ α,

eTx = 1,
x ≥ 0,

I Maximize the expected return subject to a bounded risk constraint:

max µTx
s.t xTCx ≤ β,

eTx = 1,
x ≥ 0,

I A penalty approach:
min −µTx + γ(xTCx)
s.t eTx = 1,

x ≥ 0,

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Convex Optimization 9 / 19



QCQP Problems

Quadratically Constrained Quadratic Problems:

(QCQP)
min xTA0x + 2bT

0 x + c0
s.t. xTAix + 2bT

i x + ci ≤ 0, i = 1, 2, . . . ,m,
xTAjx + 2bT

j x + cj = 0, j = m + 1,m + 2, . . . ,m + p.

A0, . . . ,Am+p- n × n symmetric, b0, . . . ,bm+p ∈ Rn, c0, . . . , cm+p ∈ R.

I QCQPs are not necessarily convex problems.

I When there are no equality constrainers (p = 0) and all the matrices are
positive semidefinite: Ai � 0, i = 0, 1, . . . ,m, the problem is convex, and is
therefore called a convex QCQP.
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The Orthogonal Projection Operator
I Definition. Given a nonempty closed convex set C , the orthogonal projection

operator PC : Rn → C is defined by

PC (x) = argmin{‖y − x‖2 : y ∈ C}.

The first important result is that the orthogonal projection exists and is unique.

The First Projection Theorem. Let C ⊆ Rn be a nonempty closed and
convex set. Then for any x ∈ Rn, the orthogonal projection PC (x) exists
and is unique.

Proof. In class
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Examples

I C = Rn
+.

PRn
+

(x) = [x]+,

where [v]+ = (max{v1, 0},max{v2, 0}, . . . ,max{vn, 0})T .

I A box is a subset of Rn of the form

B = [`1, u1]× [`2, u2]× · · · × [`n, un] = {x ∈ Rn : `i ≤ xi ≤ ui},

where `i ≤ ui for all i = 1, 2, . . . , n.

[PB(x)]i =

 ui xi ≥ ui
xi `i < xi < ui ,
`i xi ≤ `i .

I C = B[0, r ].

PB[0,r ] =

{
x ‖x‖ ≤ r ,
r x
‖x‖ ‖x‖ > r .
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Linear Classification

I Suppose that we are given two types
of points in Rn: type A and type B
points.

I x1, x2, . . . , xm ∈ Rn - type A.

I xm+1, xm+2, . . . , xm+p ∈ Rn - type B.
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The objective is to find a linear separator, which is a hyperplane of the form

H(w, β) = {x ∈ Rn : wTx + β = 0}

for which the type A and type B points are in its opposite sides:

wTxi + β < 0, i = 1, 2, . . . ,m,

wTxi + β > 0, i = m + 1,m + 2, . . . ,m + p.

Underlying Assumption: the two sets of points are linearly separable, meaning
that the set of inequalities has a solution.
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Maximizing the Margin

The margin of the separator is the distance
of the hyperplane to the closest point.
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margin

The separation problem will thus consist of finding the separator with the
largest margin.

Lemma. Let H(a, b) = {x ∈ Rn : aTx = b}, where 0 6= a ∈ Rn and b ∈ R.
Let y ∈ Rn. Then the distance between y and the set H is given by

d(y,H(a, b)) =
|aTy − b|
‖a‖

.

Proof. Later on in lecture 10.
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Mathematical Formulation
I

max
{

mini=1,2,...,m+p
|wT xi+β|
‖w‖

}
s.t. wTxi + β < 0, i = 1, 2, . . . ,m,

wTxi + β > 0, i = m + 1,m + 2, . . . ,m + p.

Nonconvex formulation ⇒ difficult to handle.

I the problem has a degree of freedom in the sense that if (w, β) is an optimal
solution, then so is any nonzero multiplier of it, that is, (αw, αβ) for α 6= 0.
We can therefore decide that

min
i=1,2,...,m+p

|wTxi + β| = 1,

I Thus, the problem can be written as

max
{

1
‖w‖

}
s.t. mini=1,2,...,m+p |wTxi + β| = 1,

wTxi + β < 0, i = 1, 2, . . . ,m,
wTxi + β > 0, i = m + 1, 2, . . . ,m + p.
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Mathematical Formulation Contd.

I

min 1
2‖w‖

2

s.t. mini=1,2,...,m+p |wTxi + β| = 1,
wTxi + β ≤ −1, i = 1, 2, . . . ,m,
wTxi + β ≥ 1, i = m + 1, 2, . . . ,m + p,

I The first constraint can be dropped (why?)

min 1
2‖w‖

2

s.t. wTxi + β ≤ −1, i = 1, 2, . . . ,m,
wTxi + β ≥ 1, i = m + 1,m + 2, . . . ,m + p.

Convex Formulation.
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Hidden Convexity in Trust Region Subproblems
I

(TRS): min{xTAx + 2bTx + c : ‖x‖2 ≤ 1}.
where b ∈ Rn, c ∈ R and A is an n × n symmetric matrix. In general, this

is a nonconvex problem

I By the spectral decomposition theorem, there exist an orthogonal matrix U
and a diagonal matrix D = diag(d1, d2, . . . , dn) such that A = UDUT , and
hence (TRS) can be rewritten as

min{xTUDUTx + 2bTUUTx + c : ‖UTx‖2 ≤ 1}.

I Making the linear change of variables y = UTx, the problem reduces to

min{yTDy + 2bTUy + c : ‖y‖2 ≤ 1}.

I Denoting f = UTb, we obtain

min
∑n

i=1 diy
2
i + 2

∑n
i=1 fiyi + c

s.t.
∑n

i=1 y
2
i ≤ 1.

(2)
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min{xTUDUTx + 2bTUUTx + c : ‖UTx‖2 ≤ 1}.

I Making the linear change of variables y = UTx, the problem reduces to

min{yTDy + 2bTUy + c : ‖y‖2 ≤ 1}.

I Denoting f = UTb, we obtain

min
∑n

i=1 diy
2
i + 2

∑n
i=1 fiyi + c

s.t.
∑n

i=1 y
2
i ≤ 1.

(2)
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Hidden Convexity in Trust Region Subproblems Contd.

Lemma. Let y∗ be an optimal solution of (2). Then fiy
∗
i ≤ 0 for all

i = 1, 2, . . . , n.

Proof.

I Denote the objective function of (2) by g(y) ≡
∑n

i=1 diy
2
i + 2

∑n
i=1 fiyi + c .

I Let i ∈ {1, 2, . . . , n}. Define ỹ as

ỹj =

{
y∗j j 6= i ,
−y∗i j = i .

I ỹ is feasible and g(y∗) ≤ g(ỹ).

I
∑n

i=1 di (y
∗
i )2 + 2

∑n
i=1 fiy

∗
i + c ≤

∑n
i=1 di (ỹi )

2 + 2
∑n

i=1 fi ỹi + c .

I After cancelleation of terms, 2fiy
∗
i ≤ 2fi (−y∗i ),

I implying the desired inequality fiy
∗
i ≤ 0.
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ỹj =

{
y∗j j 6= i ,
−y∗i j = i .

I ỹ is feasible and g(y∗) ≤ g(ỹ).
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Hidden Convexity in Trust Region Subproblems Contd.

Back to the TRS problem –

I Make the change of variable yi = −sgn(fi )
√
zi (zi ≥ 0).

I problem (2) becomes

min
∑n

i=1 dizi − 2
∑n

i=1 |fi |
√
zi + c

s.t.
∑n

i=1 zi ≤ 1,
z1, z2, . . . , zn ≥ 0.

I convex optimization problem.
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