Lecture 7 - Convex Functions

Definition A function $f: C \rightarrow \mathbb{R}$ defined on a convex set $C \subseteq \mathbb{R}^{n}$ is called convex (or convex over C) if

$$
f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) \leq \lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y}) \text { for any } \mathbf{x}, \mathbf{y} \in C, \lambda \in[0,1] .
$$

Convexity, Strict Convexity and Concavity

- In case where no domain is specified, we naturally assume that f is defined over the entire space \mathbb{R}^{n}.
- A function $f: C \rightarrow \mathbb{R}$ defined on a convex set $C \subseteq \mathbb{R}^{n}$ is called strictly convex if

$$
f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y})<\lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y}) \text { for any } \mathbf{x} \neq \mathbf{y} \in C, \lambda \in(0,1) .
$$

Convexity, Strict Convexity and Concavity

- In case where no domain is specified, we naturally assume that f is defined over the entire space \mathbb{R}^{n}.
- A function $f: C \rightarrow \mathbb{R}$ defined on a convex set $C \subseteq \mathbb{R}^{n}$ is called strictly convex if

$$
f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y})<\lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y}) \text { for any } \mathbf{x} \neq \mathbf{y} \in C, \lambda \in(0,1) .
$$

- A function is called concave if $-f$ is convex. Similarly, f is called strictly concave if $-f$ is strictly convex.
- We can also define concavity directly: a function f is concave if and only if for any $\mathbf{x}, \mathbf{y} \in C$ and $\lambda \in[0,1]$,

$$
f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) \geq \lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y}) .
$$

Examples of Convex Functions

- Affine Functions. $f(\mathbf{x})=\mathbf{a}^{T} \mathbf{x}+b$, where $\mathbf{a} \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$.
- Norms. $g(\mathbf{x})=\|\mathbf{x}\|$.

Examples of Convex Functions

- Affine Functions. $f(\mathbf{x})=\mathbf{a}^{T} \mathbf{x}+b$, where $\mathbf{a} \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$.
- Norms. $g(\mathbf{x})=\|\mathbf{x}\|$.
- Convexity of f : Take $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and $\lambda \in[0,1]$. Then

$$
\begin{aligned}
f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) & =\mathbf{a}^{T}(\lambda \mathbf{x}+(1-\lambda) \mathbf{y})+b \\
& =\lambda\left(\mathbf{a}^{T} \mathbf{x}\right)+(1-\lambda)\left(\mathbf{a}^{T} \mathbf{y}\right)+\lambda b+(1-\lambda) b \\
& =\lambda\left(\mathbf{a}^{T} \mathbf{x}+b\right)+(1-\lambda)\left(\mathbf{a}^{T} \mathbf{y}+b\right) \\
& =\lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y}),
\end{aligned}
$$

Examples of Convex Functions

- Affine Functions. $f(\mathbf{x})=\mathbf{a}^{T} \mathbf{x}+b$, where $\mathbf{a} \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$.
- Norms. $g(\mathbf{x})=\|\mathbf{x}\|$.
- Convexity of f : Take $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and $\lambda \in[0,1]$. Then

$$
\begin{aligned}
f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) & =\mathbf{a}^{T}(\lambda \mathbf{x}+(1-\lambda) \mathbf{y})+b \\
& =\lambda\left(\mathbf{a}^{T} \mathbf{x}\right)+(1-\lambda)\left(\mathbf{a}^{T} \mathbf{y}\right)+\lambda b+(1-\lambda) b \\
& =\lambda\left(\mathbf{a}^{T} \mathbf{x}+b\right)+(1-\lambda)\left(\mathbf{a}^{T} \mathbf{y}+b\right) \\
& =\lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y}),
\end{aligned}
$$

- Convexity of g : Take $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and $\lambda \in[0,1]$. Then

$$
\begin{aligned}
g(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) & =\|\lambda \mathbf{x}+(1-\lambda) \mathbf{y}\| \\
& \leq\|\lambda \mathbf{x}\|+\|(1-\lambda) \mathbf{y}\| \\
& =\lambda\|\mathbf{x}\|+(1-\lambda)\|\mathbf{y}\| \\
& =\lambda g(\mathbf{x})+(1-\lambda) g(\mathbf{y}),
\end{aligned}
$$

Jensen's Inequality

Theorem. Let $f: C \rightarrow \mathbb{R}$ be a convex function where $C \subseteq \mathbb{R}^{n}$ is a convex set. Then for any $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k} \in C$ and $\boldsymbol{\lambda} \in \Delta_{k}$, the following inequality holds:

$$
f\left(\sum_{i=1}^{k} \lambda_{i} \mathbf{x}_{i}\right) \leq \sum_{i=1}^{k} \lambda_{i} f\left(\mathbf{x}_{i}\right) .
$$

Proof very similar to the proof that any convex combination of pts. in a convex sets is in the set - see the proof of Theorem 7.5 on pages $\mathbf{1 1 8 , 1 1 9}$ of the book.

The Gradient Inequality

Theorem. Let $f: C \rightarrow \mathbb{R}$ be a continuously differentiable function defined on a convex set $C \subseteq \mathbb{R}^{n}$. Then f is convex over C if and only if

$$
\begin{equation*}
f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \leq f(\mathbf{y}) \text { for any } \mathbf{x}, \mathbf{y} \in C . \tag{1}
\end{equation*}
$$

The Gradient Inequality

Theorem. Let $f: C \rightarrow \mathbb{R}$ be a continuously differentiable function defined on a convex set $C \subseteq \mathbb{R}^{n}$. Then f is convex over C if and only if

$$
\begin{equation*}
f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \leq f(\mathbf{y}) \text { for any } \mathbf{x}, \mathbf{y} \in C \tag{1}
\end{equation*}
$$

Proof.

- Suppose first that f is convex. Let $\mathbf{x}, \mathbf{y} \in C$ and $\lambda \in(0,1]$. If $\mathbf{x}=\mathbf{y}$, then (1) trivially holds. We will therefore assume that $\mathbf{x} \neq \mathbf{y}$.

The Gradient Inequality

Theorem. Let $f: C \rightarrow \mathbb{R}$ be a continuously differentiable function defined on a convex set $C \subseteq \mathbb{R}^{n}$. Then f is convex over C if and only if

$$
\begin{equation*}
f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \leq f(\mathbf{y}) \text { for any } \mathbf{x}, \mathbf{y} \in C \tag{1}
\end{equation*}
$$

Proof.

- Suppose first that f is convex. Let $\mathbf{x}, \mathbf{y} \in C$ and $\lambda \in(0,1]$. If $\mathbf{x}=\mathbf{y}$, then (1) trivially holds. We will therefore assume that $\mathbf{x} \neq \mathbf{y}$.
- $\frac{f(\mathbf{x}+\lambda(\mathbf{y}-\mathbf{x}))-f(\mathbf{x})}{\lambda} \leq f(\mathbf{y})-f(\mathbf{x})$.

The Gradient Inequality

Theorem. Let $f: C \rightarrow \mathbb{R}$ be a continuously differentiable function defined on a convex set $C \subseteq \mathbb{R}^{n}$. Then f is convex over C if and only if

$$
\begin{equation*}
f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \leq f(\mathbf{y}) \text { for any } \mathbf{x}, \mathbf{y} \in C . \tag{1}
\end{equation*}
$$

Proof.

- Suppose first that f is convex. Let $\mathbf{x}, \mathbf{y} \in C$ and $\lambda \in(0,1]$. If $\mathbf{x}=\mathbf{y}$, then (1) trivially holds. We will therefore assume that $\mathbf{x} \neq \mathbf{y}$.
- $\frac{f(x+\lambda(y-x))-f(x)}{\lambda} \leq f(\mathbf{y})-f(\mathbf{x})$.
- Taking $\lambda \rightarrow 0^{+}$, we obtain

$$
f^{\prime}(\mathbf{x} ; \mathbf{y}-\mathbf{x}) \leq f(\mathbf{y})-f(\mathbf{x}) .
$$

The Gradient Inequality

Theorem. Let $f: C \rightarrow \mathbb{R}$ be a continuously differentiable function defined on a convex set $C \subseteq \mathbb{R}^{n}$. Then f is convex over C if and only if

$$
\begin{equation*}
f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \leq f(\mathbf{y}) \text { for any } \mathbf{x}, \mathbf{y} \in C \tag{1}
\end{equation*}
$$

Proof.

- Suppose first that f is convex. Let $\mathbf{x}, \mathbf{y} \in C$ and $\lambda \in(0,1]$. If $\mathbf{x}=\mathbf{y}$, then (1) trivially holds. We will therefore assume that $\mathbf{x} \neq \mathbf{y}$.
- $\frac{f(x+\lambda(y-x))-f(x)}{\lambda} \leq f(\mathbf{y})-f(\mathbf{x})$.
- Taking $\lambda \rightarrow 0^{+}$, we obtain

$$
f^{\prime}(\mathbf{x} ; \mathbf{y}-\mathbf{x}) \leq f(\mathbf{y})-f(\mathbf{x}) .
$$

- Since f is continuously differentiable, $f^{\prime}(\mathbf{x} ; \mathbf{y}-\mathbf{x})=\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})$, and (1) follows.

Proof Contd.

- To prove the reverse direction, assume that that the gradient inequality holds.

Proof Contd.

- To prove the reverse direction, assume that that the gradient inequality holds.
- Let $\mathbf{z}, \mathbf{w} \in C$, and let $\lambda \in(0,1)$. We will show that $f(\lambda \mathbf{z}+(1-\lambda) \mathbf{w}) \leq \lambda f(\mathbf{z})+(1-\lambda) f(\mathbf{w})$.

Proof Contd.

- To prove the reverse direction, assume that that the gradient inequality holds.
- Let $\mathbf{z}, \mathbf{w} \in C$, and let $\lambda \in(0,1)$. We will show that $f(\lambda \mathbf{z}+(1-\lambda) \mathbf{w}) \leq \lambda f(\mathbf{z})+(1-\lambda) f(\mathbf{w})$.
- Let $\mathbf{u}=\lambda \mathbf{z}+(1-\lambda) \mathbf{w} \in C$. Then

$$
\mathbf{z}-\mathbf{u}=\frac{\mathbf{u}-(1-\lambda) \mathbf{w}}{\lambda}-\mathbf{u}=-\frac{1-\lambda}{\lambda}(\mathbf{w}-\mathbf{u}) .
$$

Proof Contd.

- To prove the reverse direction, assume that that the gradient inequality holds.
- Let $\mathbf{z}, \mathbf{w} \in C$, and let $\lambda \in(0,1)$. We will show that $f(\lambda \mathbf{z}+(1-\lambda) \mathbf{w}) \leq \lambda f(\mathbf{z})+(1-\lambda) f(\mathbf{w})$.
- Let $\mathbf{u}=\lambda \mathbf{z}+(1-\lambda) \mathbf{w} \in C$. Then

$$
\mathbf{z}-\mathbf{u}=\frac{\mathbf{u}-(1-\lambda) \mathbf{w}}{\lambda}-\mathbf{u}=-\frac{1-\lambda}{\lambda}(\mathbf{w}-\mathbf{u}) .
$$

- We have

$$
\begin{aligned}
f(\mathbf{u})+\nabla f(\mathbf{u})^{T}(\mathbf{z}-\mathbf{u}) & \leq f(\mathbf{z}) \\
f(\mathbf{u})-\frac{\lambda}{1-\lambda} \nabla f(\mathbf{u})^{T}(\mathbf{z}-\mathbf{u}) & \leq f(\mathbf{w})
\end{aligned}
$$

Proof Contd.

- To prove the reverse direction, assume that that the gradient inequality holds.
- Let $\mathbf{z}, \mathbf{w} \in C$, and let $\lambda \in(0,1)$. We will show that $f(\lambda \mathbf{z}+(1-\lambda) \mathbf{w}) \leq \lambda f(\mathbf{z})+(1-\lambda) f(\mathbf{w})$.
- Let $\mathbf{u}=\lambda \mathbf{z}+(1-\lambda) \mathbf{w} \in C$. Then

$$
\mathbf{z}-\mathbf{u}=\frac{\mathbf{u}-(1-\lambda) \mathbf{w}}{\lambda}-\mathbf{u}=-\frac{1-\lambda}{\lambda}(\mathbf{w}-\mathbf{u}) .
$$

- We have

$$
\begin{aligned}
f(\mathbf{u})+\nabla f(\mathbf{u})^{T}(\mathbf{z}-\mathbf{u}) & \leq f(\mathbf{z}) \\
f(\mathbf{u})-\frac{\lambda}{1-\lambda} \nabla f(\mathbf{u})^{T}(\mathbf{z}-\mathbf{u}) & \leq f(\mathbf{w})
\end{aligned}
$$

- Thus,

$$
f(\mathbf{u}) \leq \lambda f(\mathbf{z})+(1-\lambda) f(\mathbf{w}) .
$$

The Gradient Inequality for Strictly Convex Functions

Proposition Let $f: C \rightarrow \mathbb{R}$ be a continuously differentiable function defined on a convex set $C \subseteq \mathbb{R}^{n}$. Then f is strictly convex over C if and only if

$$
f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})<f(\mathbf{y}) \text { for any } \mathbf{x}, \mathbf{y} \in C \text { satisfying } \mathbf{x} \neq \mathbf{y}
$$

Stationarity \Rightarrow Global Optimality

A direct result of the gradient inequality is that the first order optimality condition $\nabla f\left(\mathbf{x}^{*}\right)=0$ is sufficient for global optimality.

Proposition Let f be a continuously differentiable function which is convex over a convex set $C \subseteq \mathbb{R}^{n}$. Suppose that $\nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0}$ for some $\mathbf{x}^{*} \in C$. Then \mathbf{x}^{*} is the global minimizer of f over C.

Proof. In class

Convexity of Quadratic Functions with Positive Semidefinite Matrices

Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the quadratic function given by $f(\mathbf{x})=$ $\mathbf{x}^{T} \mathbf{A} \mathbf{x}+\mathbf{2 b}^{T} \mathbf{x}+c$ where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, $\mathbf{b} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$. Then f is (strictly) convex if and only if $\mathbf{A} \succeq \mathbf{0}(\mathbf{A} \succ \mathbf{0})$.

Convexity of Quadratic Functions with Positive Semidefinite Matrices

Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the quadratic function given by $f(\mathbf{x})=$ $\mathbf{x}^{T} \mathbf{A} \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c$ where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, $\mathbf{b} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$. Then f is (strictly) convex if and only if $\mathbf{A} \succeq \mathbf{0}(\mathbf{A} \succ \mathbf{0})$.

Proof.

- The convexity of f is equivalent to

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \text { for any } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

Convexity of Quadratic Functions with Positive Semidefinite Matrices

Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the quadratic function given by $f(\mathbf{x})=$ $\mathbf{x}^{T} \mathbf{A} \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c$ where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, $\mathbf{b} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$. Then f is (strictly) convex if and only if $\mathbf{A} \succeq \mathbf{0}(\mathbf{A} \succ \mathbf{0})$.

Proof.

- The convexity of f is equivalent to

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \text { for any } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

- Same as

$$
\mathbf{y}^{T} \mathbf{A} \mathbf{y}+2 \mathbf{b}^{T} \mathbf{y}+c \geq \mathbf{x}^{T} \mathbf{A} \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c+2(\mathbf{A} \mathbf{x}+\mathbf{b})^{T}(\mathbf{y}-\mathbf{x}) \text { for any } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n} .
$$

Convexity of Quadratic Functions with Positive Semidefinite Matrices

Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the quadratic function given by $f(\mathbf{x})=$ $\mathbf{x}^{T} \mathbf{A} \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c$ where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, $\mathbf{b} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$. Then f is (strictly) convex if and only if $\mathbf{A} \succeq \mathbf{0}(\mathbf{A} \succ \mathbf{0})$.

Proof.

- The convexity of f is equivalent to

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \text { for any } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

- Same as

$$
\mathbf{y}^{\top} \mathbf{A} \mathbf{y}+2 \mathbf{b}^{T} \mathbf{y}+c \geq \mathbf{x}^{\top} \mathbf{A} \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c+2(\mathbf{A} \mathbf{x}+\mathbf{b})^{T}(\mathbf{y}-\mathbf{x}) \text { for any } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n} .
$$

- $(\mathbf{y}-\mathbf{x})^{\top} \mathbf{A}(\mathbf{y}-\mathbf{x}) \geq 0$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.

Convexity of Quadratic Functions with Positive Semidefinite Matrices

Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the quadratic function given by $f(\mathbf{x})=$ $\mathbf{x}^{T} \mathbf{A} \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c$ where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, $\mathbf{b} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$. Then f is (strictly) convex if and only if $\mathbf{A} \succeq \mathbf{0}(\mathbf{A} \succ \mathbf{0})$.

Proof.

- The convexity of f is equivalent to

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \text { for any } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

- Same as

$$
\mathbf{y}^{T} \mathbf{A} \mathbf{y}+2 \mathbf{b}^{T} \mathbf{y}+c \geq \mathbf{x}^{T} \mathbf{A} \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c+2(\mathbf{A} \mathbf{x}+\mathbf{b})^{T}(\mathbf{y}-\mathbf{x}) \text { for any } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n} .
$$

- $(\mathbf{y}-\mathbf{x})^{\top} \mathbf{A}(\mathbf{y}-\mathbf{x}) \geq 0$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.
- Equivalent to the inequality $\mathbf{d}^{T} \mathbf{A d} \geq 0$ for any $\mathbf{d} \in \mathbb{R}^{n}$.

Convexity of Quadratic Functions with Positive Semidefinite Matrices

Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the quadratic function given by $f(\mathbf{x})=$ $\mathbf{x}^{T} \mathbf{A} \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c$ where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, $\mathbf{b} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$. Then f is (strictly) convex if and only if $\mathbf{A} \succeq \mathbf{0}(\mathbf{A} \succ \mathbf{0})$.

Proof.

- The convexity of f is equivalent to

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \text { for any } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

- Same as

$$
\mathbf{y}^{T} \mathbf{A} \mathbf{y}+2 \mathbf{b}^{T} \mathbf{y}+c \geq \mathbf{x}^{T} \mathbf{A} \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c+2(\mathbf{A} \mathbf{x}+\mathbf{b})^{T}(\mathbf{y}-\mathbf{x}) \text { for any } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n} .
$$

- $(\mathbf{y}-\mathbf{x})^{\top} \mathbf{A}(\mathbf{y}-\mathbf{x}) \geq 0$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.
- Equivalent to the inequality $\mathbf{d}^{T} \mathbf{A d} \geq 0$ for any $\mathbf{d} \in \mathbb{R}^{n}$.
- Same as $\mathbf{A} \succeq \mathbf{0}$.

Convexity of Quadratic Functions with Positive Semidefinite Matrices

Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be the quadratic function given by $f(\mathbf{x})=$ $\mathbf{x}^{T} \mathbf{A} \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c$ where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, $\mathbf{b} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$. Then f is (strictly) convex if and only if $\mathbf{A} \succeq \mathbf{0}(\mathbf{A} \succ \mathbf{0})$.

Proof.

- The convexity of f is equivalent to

$$
f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \text { for any } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

- Same as

$$
\mathbf{y}^{\top} \mathbf{A} \mathbf{y}+2 \mathbf{b}^{T} \mathbf{y}+c \geq \mathbf{x}^{\top} \mathbf{A} \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c+2(\mathbf{A} \mathbf{x}+\mathbf{b})^{T}(\mathbf{y}-\mathbf{x}) \text { for any } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n} .
$$

- $(\mathbf{y}-\mathbf{x})^{\top} \mathbf{A}(\mathbf{y}-\mathbf{x}) \geq 0$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.
- Equivalent to the inequality $\mathbf{d}^{T} \mathbf{A d} \geq 0$ for any $\mathbf{d} \in \mathbb{R}^{n}$.
- Same as $\mathbf{A} \succeq \mathbf{0}$.
- Similar arguments show that strict convexity is equivalent to

$$
\mathbf{d}^{T} \mathbf{A d}>0 \text { for any } \mathbf{0} \neq \mathbf{d} \in \mathbb{R}^{n},
$$

namely to $\mathbf{A} \succ \mathbf{0}$.

Illustration

Monotonicity of the Gradient

Theorem. Suppose that f is a continuously differentiable function over a convex set $C \subseteq \mathbb{R}^{n}$. Then f is convex over C if and only if

$$
(\nabla f(\mathbf{x})-\nabla f(\mathbf{y}))^{T}(\mathbf{x}-\mathbf{y}) \geq 0 \text { for any } \mathbf{x}, \mathbf{y} \in C
$$

See the proof of Theorem 8.11 on pages $\mathbf{1 2 2 , 1 2 3}$ of the book.

Second-Order Characterization of Convexity

Theorem. Let f be a twice continuously differentiable function over an open convex set $C \subseteq \mathbb{R}^{n}$. Then f is convex over C if and only if $\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0}$ for any $\mathbf{x} \in C$.

Proof.

- Suppose that $\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0} \forall \mathbf{x} \in C$. Let $\mathbf{x}, \mathbf{y} \in C$, then $\exists \mathbf{z} \in[\mathbf{x}, \mathbf{y}] \in C$:

$$
f(\mathbf{y})=f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})+\frac{1}{2}(\mathbf{y}-\mathbf{x})^{T} \nabla^{2} f(\mathbf{z})(\mathbf{y}-\mathbf{x}) .
$$

Second-Order Characterization of Convexity

Theorem. Let f be a twice continuously differentiable function over an open convex set $C \subseteq \mathbb{R}^{n}$. Then f is convex over C if and only if $\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0}$ for any $\mathbf{x} \in C$.

Proof.

- Suppose that $\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0} \forall \mathbf{x} \in C$. Let $\mathbf{x}, \mathbf{y} \in C$, then $\exists \mathbf{z} \in[\mathbf{x}, \mathbf{y}] \in C$:

$$
f(\mathbf{y})=f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})+\frac{1}{2}(\mathbf{y}-\mathbf{x})^{T} \nabla^{2} f(\mathbf{z})(\mathbf{y}-\mathbf{x}) .
$$

- $(\mathbf{y}-\mathbf{x})^{T} \nabla^{2} f(\mathbf{z})(\mathbf{y}-\mathbf{x}) \geq 0 \Rightarrow f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \Rightarrow f$ convex.

Second-Order Characterization of Convexity

Theorem. Let f be a twice continuously differentiable function over an open convex set $C \subseteq \mathbb{R}^{n}$. Then f is convex over C if and only if $\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0}$ for any $\mathbf{x} \in C$.

Proof.

- Suppose that $\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0} \forall \mathbf{x} \in C$. Let $\mathbf{x}, \mathbf{y} \in C$, then $\exists \mathbf{z} \in[\mathbf{x}, \mathbf{y}] \in C$:

$$
f(\mathbf{y})=f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})+\frac{1}{2}(\mathbf{y}-\mathbf{x})^{T} \nabla^{2} f(\mathbf{z})(\mathbf{y}-\mathbf{x}) .
$$

- $(\mathbf{y}-\mathbf{x})^{T} \nabla^{2} f(\mathbf{z})(\mathbf{y}-\mathbf{x}) \geq 0 \Rightarrow f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \Rightarrow f$ convex.
- Suppose that f is convex over C. Let $\mathbf{x} \in C$ and let $\mathbf{y} \in \mathbb{R}^{n}$.

Second-Order Characterization of Convexity

Theorem. Let f be a twice continuously differentiable function over an open convex set $C \subseteq \mathbb{R}^{n}$. Then f is convex over C if and only if $\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0}$ for any $\mathbf{x} \in C$.

Proof.

- Suppose that $\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0} \forall \mathbf{x} \in C$. Let $\mathbf{x}, \mathbf{y} \in C$, then $\exists \mathbf{z} \in[\mathbf{x}, \mathbf{y}] \in C$:

$$
f(\mathbf{y})=f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})+\frac{1}{2}(\mathbf{y}-\mathbf{x})^{T} \nabla^{2} f(\mathbf{z})(\mathbf{y}-\mathbf{x}) .
$$

- $(\mathbf{y}-\mathbf{x})^{T} \nabla^{2} f(\mathbf{z})(\mathbf{y}-\mathbf{x}) \geq 0 \Rightarrow f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \Rightarrow f$ convex.
- Suppose that f is convex over C. Let $\mathbf{x} \in C$ and let $\mathbf{y} \in \mathbb{R}^{n}$.
- C is open $\Rightarrow \exists \varepsilon>0$ such that $\mathbf{x}+\lambda \mathbf{y} \in C \forall \lambda \in(0, \varepsilon)$.

$$
f(\mathbf{x}+\lambda \mathbf{y}) \geq f(\mathbf{x})+\lambda \nabla f(\mathbf{x})^{T} \mathbf{y} .
$$

Second-Order Characterization of Convexity

Theorem. Let f be a twice continuously differentiable function over an open convex set $C \subseteq \mathbb{R}^{n}$. Then f is convex over C if and only if $\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0}$ for any $\mathbf{x} \in C$.

Proof.

- Suppose that $\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0} \forall \mathbf{x} \in C$. Let $\mathbf{x}, \mathbf{y} \in C$, then $\exists \mathbf{z} \in[\mathbf{x}, \mathbf{y}] \in C$:

$$
f(\mathbf{y})=f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})+\frac{1}{2}(\mathbf{y}-\mathbf{x})^{T} \nabla^{2} f(\mathbf{z})(\mathbf{y}-\mathbf{x}) .
$$

- $(\mathbf{y}-\mathbf{x})^{T} \nabla^{2} f(\mathbf{z})(\mathbf{y}-\mathbf{x}) \geq 0 \Rightarrow f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \Rightarrow f$ convex.
- Suppose that f is convex over C. Let $\mathbf{x} \in C$ and let $\mathbf{y} \in \mathbb{R}^{n}$.
- C is open $\Rightarrow \exists \varepsilon>0$ such that $\mathbf{x}+\lambda \mathbf{y} \in C \forall \lambda \in(0, \varepsilon)$.

$$
f(\mathbf{x}+\lambda \mathbf{y}) \geq f(\mathbf{x})+\lambda \nabla f(\mathbf{x})^{T} \mathbf{y} .
$$

- $f(\mathbf{x}+\lambda \mathbf{y})=f(\mathbf{x})+\lambda \nabla f(\mathbf{x})^{T} \mathbf{y}+\frac{\lambda^{2}}{2} \mathbf{y}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{y}+o\left(\lambda^{2}\|\mathbf{y}\|^{2}\right)$.

Second-Order Characterization of Convexity

Theorem. Let f be a twice continuously differentiable function over an open convex set $C \subseteq \mathbb{R}^{n}$. Then f is convex over C if and only if $\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0}$ for any $\mathbf{x} \in C$.

Proof.

- Suppose that $\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0} \forall \mathbf{x} \in C$. Let $\mathbf{x}, \mathbf{y} \in C$, then $\exists \mathbf{z} \in[\mathbf{x}, \mathbf{y}] \in C$:

$$
f(\mathbf{y})=f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})+\frac{1}{2}(\mathbf{y}-\mathbf{x})^{T} \nabla^{2} f(\mathbf{z})(\mathbf{y}-\mathbf{x}) .
$$

- $(\mathbf{y}-\mathbf{x})^{T} \nabla^{2} f(\mathbf{z})(\mathbf{y}-\mathbf{x}) \geq 0 \Rightarrow f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \Rightarrow f$ convex.
- Suppose that f is convex over C. Let $\mathbf{x} \in C$ and let $\mathbf{y} \in \mathbb{R}^{n}$.
- C is open $\Rightarrow \exists \varepsilon>0$ such that $\mathbf{x}+\lambda \mathbf{y} \in C \forall \lambda \in(0, \varepsilon)$.

$$
f(\mathbf{x}+\lambda \mathbf{y}) \geq f(\mathbf{x})+\lambda \nabla f(\mathbf{x})^{T} \mathbf{y} .
$$

- $f(\mathbf{x}+\lambda \mathbf{y})=f(\mathbf{x})+\lambda \nabla f(\mathbf{x})^{T} \mathbf{y}+\frac{\lambda^{2}}{2} \mathbf{y}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{y}+o\left(\lambda^{2}\|\mathbf{y}\|^{2}\right)$.
- Thus, $\frac{\lambda^{2}}{2} \mathbf{y}^{\top} \nabla^{2} f(\mathbf{x}) \mathbf{y}+o\left(\lambda^{2}\|\mathbf{y}\|^{2}\right) \geq 0$ for any $\lambda \in(0, \varepsilon)$.

Second-Order Characterization of Convexity

Theorem. Let f be a twice continuously differentiable function over an open convex set $C \subseteq \mathbb{R}^{n}$. Then f is convex over C if and only if $\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0}$ for any $\mathbf{x} \in C$.

Proof.

- Suppose that $\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0} \forall \mathbf{x} \in C$. Let $\mathbf{x}, \mathbf{y} \in C$, then $\exists \mathbf{z} \in[\mathbf{x}, \mathbf{y}] \in C$:

$$
f(\mathbf{y})=f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})+\frac{1}{2}(\mathbf{y}-\mathbf{x})^{T} \nabla^{2} f(\mathbf{z})(\mathbf{y}-\mathbf{x}) .
$$

- $(\mathbf{y}-\mathbf{x})^{T} \nabla^{2} f(\mathbf{z})(\mathbf{y}-\mathbf{x}) \geq 0 \Rightarrow f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \Rightarrow f$ convex.
- Suppose that f is convex over C. Let $\mathbf{x} \in C$ and let $\mathbf{y} \in \mathbb{R}^{n}$.
- C is open $\Rightarrow \exists \varepsilon>0$ such that $\mathbf{x}+\lambda \mathbf{y} \in C \forall \lambda \in(0, \varepsilon)$.

$$
f(\mathbf{x}+\lambda \mathbf{y}) \geq f(\mathbf{x})+\lambda \nabla f(\mathbf{x})^{T} \mathbf{y} .
$$

- $f(\mathbf{x}+\lambda \mathbf{y})=f(\mathbf{x})+\lambda \nabla f(\mathbf{x})^{T} \mathbf{y}+\frac{\lambda^{2}}{2} \mathbf{y}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{y}+o\left(\lambda^{2}\|\mathbf{y}\|^{2}\right)$.
- Thus, $\frac{\lambda^{2}}{2} \mathbf{y}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{y}+o\left(\lambda^{2}\|\mathbf{y}\|^{2}\right) \geq 0$ for any $\lambda \in(0, \varepsilon)$.
- Dividing by $\lambda^{2}, \frac{1}{2} \mathbf{y}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{y}+\frac{o\left(\lambda^{2}\|\mathbf{y}\|^{2}\right)}{\lambda^{2}} \geq 0$.

Second-Order Characterization of Convexity

Theorem. Let f be a twice continuously differentiable function over an open convex set $C \subseteq \mathbb{R}^{n}$. Then f is convex over C if and only if $\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0}$ for any $\mathbf{x} \in C$.

Proof.

- Suppose that $\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0} \forall \mathbf{x} \in C$. Let $\mathbf{x}, \mathbf{y} \in C$, then $\exists \mathbf{z} \in[\mathbf{x}, \mathbf{y}] \in C$:

$$
f(\mathbf{y})=f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})+\frac{1}{2}(\mathbf{y}-\mathbf{x})^{T} \nabla^{2} f(\mathbf{z})(\mathbf{y}-\mathbf{x}) .
$$

- $(\mathbf{y}-\mathbf{x})^{T} \nabla^{2} f(\mathbf{z})(\mathbf{y}-\mathbf{x}) \geq 0 \Rightarrow f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \Rightarrow f$ convex.
- Suppose that f is convex over C. Let $\mathbf{x} \in C$ and let $\mathbf{y} \in \mathbb{R}^{n}$.
- C is open $\Rightarrow \exists \varepsilon>0$ such that $\mathbf{x}+\lambda \mathbf{y} \in C \forall \lambda \in(0, \varepsilon)$.

$$
f(\mathbf{x}+\lambda \mathbf{y}) \geq f(\mathbf{x})+\lambda \nabla f(\mathbf{x})^{T} \mathbf{y} .
$$

- $f(\mathbf{x}+\lambda \mathbf{y})=f(\mathbf{x})+\lambda \nabla f(\mathbf{x})^{T} \mathbf{y}+\frac{\lambda^{2}}{2} \mathbf{y}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{y}+o\left(\lambda^{2}\|\mathbf{y}\|^{2}\right)$.
- Thus, $\frac{\lambda^{2}}{2} \mathbf{y}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{y}+o\left(\lambda^{2}\|\mathbf{y}\|^{2}\right) \geq 0$ for any $\lambda \in(0, \varepsilon)$.
- Dividing by $\lambda^{2}, \frac{1}{2} \mathbf{y}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{y}+\frac{o\left(\lambda^{2}\|y\|^{2}\right)}{\lambda^{2}} \geq 0$.
- Taking $\lambda \rightarrow 0^{+}$, we have $\mathbf{y}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{y} \geq 0 \forall \mathbf{y} \in \mathbb{R}^{n}$.

Second-Order Characterization of Convexity

Theorem. Let f be a twice continuously differentiable function over an open convex set $C \subseteq \mathbb{R}^{n}$. Then f is convex over C if and only if $\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0}$ for any $\mathbf{x} \in C$.

Proof.

- Suppose that $\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0} \forall \mathbf{x} \in C$. Let $\mathbf{x}, \mathbf{y} \in C$, then $\exists \mathbf{z} \in[\mathbf{x}, \mathbf{y}] \in C$:

$$
f(\mathbf{y})=f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})+\frac{1}{2}(\mathbf{y}-\mathbf{x})^{T} \nabla^{2} f(\mathbf{z})(\mathbf{y}-\mathbf{x}) .
$$

- $(\mathbf{y}-\mathbf{x})^{T} \nabla^{2} f(\mathbf{z})(\mathbf{y}-\mathbf{x}) \geq 0 \Rightarrow f(\mathbf{y}) \geq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x}) \Rightarrow f$ convex.
- Suppose that f is convex over C. Let $\mathbf{x} \in C$ and let $\mathbf{y} \in \mathbb{R}^{n}$.
- C is open $\Rightarrow \exists \varepsilon>0$ such that $\mathbf{x}+\lambda \mathbf{y} \in C \forall \lambda \in(0, \varepsilon)$.

$$
f(\mathbf{x}+\lambda \mathbf{y}) \geq f(\mathbf{x})+\lambda \nabla f(\mathbf{x})^{T} \mathbf{y} .
$$

- $f(\mathbf{x}+\lambda \mathbf{y})=f(\mathbf{x})+\lambda \nabla f(\mathbf{x})^{T} \mathbf{y}+\frac{\lambda^{2}}{2} \mathbf{y}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{y}+o\left(\lambda^{2}\|\mathbf{y}\|^{2}\right)$.
- Thus, $\frac{\lambda^{2}}{2} \mathbf{y}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{y}+o\left(\lambda^{2}\|\mathbf{y}\|^{2}\right) \geq 0$ for any $\lambda \in(0, \varepsilon)$.
- Dividing by $\lambda^{2}, \frac{1}{2} \mathbf{y}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{y}+\frac{o\left(\lambda^{2}\|y\|^{2}\right)}{\lambda^{2}} \geq 0$.
- Taking $\lambda \rightarrow 0^{+}$, we have $\mathbf{y}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{y} \geq 0 \forall \mathbf{y} \in \mathbb{R}^{n}$.
- Hence $\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0}$ for any $\mathbf{x} \in C$.

Convexity of the log-sum-exp function

- $f(\mathbf{x})=\log \left(e^{x_{1}}+e^{x_{2}}+\ldots+e^{x_{n}}\right), \quad \mathbf{x} \in \mathbb{R}^{n}$

Convexity of the log-sum-exp function

- $f(\mathbf{x})=\log \left(e^{x_{1}}+e^{x_{2}}+\ldots+e^{x_{n}}\right), \quad \mathbf{x} \in \mathbb{R}^{n}$
- $\frac{\partial f}{\partial x_{i}}(\mathbf{x})=\frac{e^{x_{i}}}{\sum_{j=1}^{n} e^{x_{j}}}, \quad i=1,2, \ldots, n$,

Convexity of the log-sum-exp function

- $f(\mathbf{x})=\log \left(e^{x_{1}}+e^{x_{2}}+\ldots+e^{x_{n}}\right), \quad \mathbf{x} \in \mathbb{R}^{n}$
- $\frac{\partial f}{\partial x_{i}}(\mathbf{x})=\frac{e^{e^{x_{i}}}}{\sum_{j=1}^{e^{x_{j}}}}, \quad i=1,2, \ldots, n$,

Convexity of the log-sum-exp function

- $f(\mathbf{x})=\log \left(e^{x_{1}}+e^{x_{2}}+\ldots+e^{x_{n}}\right), \quad \mathbf{x} \in \mathbb{R}^{n}$
- $\frac{\partial f}{\partial x_{i}}(\mathbf{x})=\frac{e^{e^{x_{i}}}}{\sum_{j=1}^{e^{x_{j}}}}, \quad i=1,2, \ldots, n$,
$-\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{x})= \begin{cases}-\frac{e^{x_{i}} e^{x_{j}}}{\left(\sum_{j=1}^{n} e^{x_{j}}\right.}{ }^{e_{j}}, & i \neq j, \\ \left.-\frac{e^{x_{i}} e^{2}}{\left(\sum_{j=1}^{n} e^{2} e^{2}\right.}\right)^{2}+\frac{e^{x_{i}}}{\sum_{j=1}^{n} e^{x_{j}}}, & i=j\end{cases}$
- We can thus write the Hessian matrix as

$$
\nabla^{2} f(\mathbf{x})=\operatorname{diag}(\mathbf{w})-\mathbf{w} \mathbf{w}^{T}, \quad \mathbf{w}=\left(\frac{e^{x_{i}}}{\sum_{j=1}^{n} e^{x_{j}}}\right)_{i=1}^{n} \in \Delta_{n} .
$$

Convexity of the log-sum-exp function

- $f(\mathbf{x})=\log \left(e^{x_{1}}+e^{x_{2}}+\ldots+e^{x_{n}}\right), \quad \mathbf{x} \in \mathbb{R}^{n}$
- $\frac{\partial f}{\partial x_{i}}(\mathbf{x})=\frac{e^{e^{x_{i}}}}{\sum_{j=1}^{e^{x_{j}}}}, \quad i=1,2, \ldots, n$,
$-\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{x})= \begin{cases}\left.-\frac{e^{x_{i}} e^{x_{j}}}{\left(\sum_{j=1}^{n} e^{x_{j}}\right.}\right)^{2}, & i \neq j, \\ -\frac{e^{x_{i}} e^{2}}{\left(\sum_{j=1}^{n} e^{x_{j}}\right)^{2}}+\frac{e^{x_{i}}}{\sum_{j=1}^{n} e^{x_{j}}}, & i=j\end{cases}$
- We can thus write the Hessian matrix as

$$
\nabla^{2} f(\mathbf{x})=\operatorname{diag}(\mathbf{w})-\mathbf{w} \mathbf{w}^{T}, \quad \mathbf{w}=\left(\frac{e^{x_{i}}}{\sum_{j=1}^{n} e^{x_{j}}}\right)_{i=1}^{n} \in \Delta_{n} .
$$

- For any $\mathbf{v} \in \mathbb{R}^{n}: \mathbf{v}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{v}=\sum_{i=1}^{n} w_{i} v_{i}^{2}-\left(\mathbf{v}^{\top} \mathbf{w}\right)^{2} \geq 0$ since defining $s_{i}=\sqrt{w_{i}} v_{i}, t_{i}=\sqrt{w_{i}}$, we have

$$
\left(\mathbf{v}^{\top} \mathbf{w}\right)^{2}=\left(\mathbf{s}^{\top} \mathbf{t}\right)^{2} \leq\|\mathbf{s}\|^{2}\|\mathbf{t}\|^{2}=\left(\sum_{i=1}^{n} w_{i} v_{i}^{2}\right)\left(\sum_{i=1}^{n} w_{i}\right)=\sum_{i=1}^{n} w_{i} v_{i}^{2} .
$$

Convexity of the log-sum-exp function

- $f(\mathbf{x})=\log \left(e^{x_{1}}+e^{x_{2}}+\ldots+e^{x_{n}}\right), \quad \mathbf{x} \in \mathbb{R}^{n}$
- $\frac{\partial f}{\partial x_{i}}(\mathbf{x})=\frac{e^{\mathrm{e}^{x_{i}}}}{\sum_{j=1}^{\mathrm{j}^{x_{j}}}}, \quad i=1,2, \ldots, n$,

- We can thus write the Hessian matrix as

$$
\nabla^{2} f(\mathbf{x})=\operatorname{diag}(\mathbf{w})-\mathbf{w} \mathbf{w}^{T}, \quad \mathbf{w}=\left(\frac{e^{x_{i}}}{\sum_{j=1}^{n} e^{x_{j}}}\right)_{i=1}^{n} \in \Delta_{n} .
$$

- For any $\mathbf{v} \in \mathbb{R}^{n}: \mathbf{v}^{T} \nabla^{2} f(\mathbf{x}) \mathbf{v}=\sum_{i=1}^{n} w_{i} v_{i}^{2}-\left(\mathbf{v}^{\top} \mathbf{w}\right)^{2} \geq 0$ since defining $s_{i}=\sqrt{w_{i}} v_{i}, t_{i}=\sqrt{w_{i}}$, we have

$$
\left(\mathbf{v}^{\top} \mathbf{w}\right)^{2}=\left(\mathbf{s}^{\top} \mathbf{t}\right)^{2} \leq\|\mathbf{s}\|^{2}\|\mathbf{t}\|^{2}=\left(\sum_{i=1}^{n} w_{i} v_{i}^{2}\right)\left(\sum_{i=1}^{n} w_{i}\right)=\sum_{i=1}^{n} w_{i} v_{i}^{2} .
$$

- Thus, $\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0}$ and hence f is convex over \mathbb{R}^{n}.

Convexity of quad-over-lin

$$
f\left(x_{1}, x_{2}\right)=\frac{x_{1}^{2}}{x_{2}}
$$

defined over $\mathbb{R} \times \mathbb{R}_{+}=\left\{\left(x_{1}, x_{2}\right): x_{2}>0\right\}$.
In class

Operations Preserving Convexity

- Convexity is preserved under several operations such as summation, multiplication by positive scalars and affine change of variables.

Theorem.

- Let f be a convex function defined over a convex set $C \subseteq \mathbb{R}^{n}$ and let $\alpha \geq 0$. Then αf is a convex function over C.
- Let $f_{1}, f_{2}, \ldots, f_{p}$ be convex functions over a convex set $C \subseteq \mathbb{R}^{n}$. Then the sum function $f_{1}+f_{2}+\ldots+f_{p}$ is convex over C.
- Let f be a convex function defined on a convex set $C \subseteq \mathbb{R}^{n}$. Let $\mathbf{A} \in \mathbb{R}^{n \times m}$ and $\mathbf{b} \in \mathbb{R}^{n}$. Then the function g defined by

$$
g(\mathbf{y})=f(\mathbf{A} \mathbf{y}+\mathbf{b}) .
$$

is convex over the convex set $D=\left\{\mathbf{y} \in \mathbb{R}^{m}: \mathbf{A y}+\mathbf{b} \in C\right\}$.
See the proofs of Theorems 7.16 and 7.17 of the book.

Example: Generalized quadratic-over-linear

The generalized quad-over-lin function

$$
g(\mathbf{x})=\frac{\|\mathbf{A} \mathbf{x}+\mathbf{b}\|^{2}}{\mathbf{c}^{T} \mathbf{x}+d} \quad\left(\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}, \mathbf{c} \in \mathbb{R}^{n}, d \in \mathbb{R}\right)
$$

is convex over $D=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{c}^{T} \mathbf{x}+d>0\right\}$.
In class

Examples of Convex Functions

$$
\begin{gathered}
f\left(x_{1}, x_{2}\right)=x_{1}^{2}+2 x_{1} x_{2}+3 x_{2}^{2}+2 x_{1}-3 x_{2}+e^{x_{1}} . \\
f\left(x_{1}, x_{2}, x_{3}\right)=e^{x_{1}-x_{2}+x_{3}}+e^{2 x_{2}}+x_{1} \\
f\left(x_{1}, x_{2}\right)=-\log \left(x_{1} x_{2}\right)
\end{gathered}
$$

over \mathbb{R}_{++}^{2}
In class

Preservation of Convexity under Composition

Theorem. Let $f: C \rightarrow \mathbb{R}$ be a convex function defined over the convex set $C \subseteq \mathbb{R}^{n}$. Let $g: I \rightarrow \mathbb{R}$ be a one-dimensional nondecreasing convex function over the interval $I \subseteq \mathbb{R}$. Assume that the image of C under f is contained in $I: f(C) \subseteq I$. Then the composition of g with f defined by

$$
h(\mathbf{x}) \equiv g(f(\mathbf{x}))
$$

is convex over C.
Proof Outline. Let $\mathbf{x}, \mathbf{y} \in C$ and let $\lambda \in[0,1]$. Then

$$
\begin{aligned}
h(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) & =g(f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y})) \\
& \leq g(\lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y})) \\
& \leq \lambda g(f(\mathbf{x}))+(1-\lambda) g(f(\mathbf{y})) \\
& =\lambda h(\mathbf{x})+(1-\lambda) h(\mathbf{y})
\end{aligned}
$$

thus establishing the convexity of h.

Examples

- $h(\mathbf{x})=e^{\|\mathbf{x}\|^{2}}$
- $h(\mathbf{x})=\left(\|\mathbf{x}\|^{2}+1\right)^{2}$

In class

Point-Wise Maximum of Convex Functions

Theorem. Let $f_{1}, f_{2}, \ldots, f_{p}: C \rightarrow \mathbb{R}$ be p convex functions over the convex set $C \subseteq \mathbb{R}^{n}$. Then the maximum function

$$
f(\mathbf{x}) \equiv \max _{i=1,2, \ldots, p}\left\{f_{i}(\mathbf{x})\right\}
$$

is convex over C.
Proof Outline Let $\mathbf{x}, \mathbf{y} \in C$ and $\lambda \in[0,1]$. Then

$$
\begin{aligned}
f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) & =\max _{i=1,2, \ldots, p} f_{i}(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) \\
& \leq \max _{i=1,2, \ldots, p}\left\{\lambda f_{i}(\mathbf{x})+(1-\lambda) f_{i}(\mathbf{y})\right\} \\
& \leq \lambda \max _{i=1,2, \ldots, p} f_{i}(\mathbf{x})+(1-\lambda) \max _{i=1,2, \ldots, p} f_{i}(\mathbf{y}) \\
& =\lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y}) .
\end{aligned}
$$

Point-Wise Maximum of Convex Functions

Theorem. Let $f_{1}, f_{2}, \ldots, f_{p}: C \rightarrow \mathbb{R}$ be p convex functions over the convex set $C \subseteq \mathbb{R}^{n}$. Then the maximum function

$$
f(\mathbf{x}) \equiv \max _{i=1,2, \ldots, p}\left\{f_{i}(\mathbf{x})\right\}
$$

is convex over C.
Proof Outline Let $\mathbf{x}, \mathbf{y} \in C$ and $\lambda \in[0,1]$. Then

$$
\begin{aligned}
f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) & =\max _{i=1,2, \ldots, p} f_{i}(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) \\
& \leq \max _{i=1,2, \ldots, p}\left\{\lambda f_{i}(\mathbf{x})+(1-\lambda) f_{i}(\mathbf{y})\right\} \\
& \leq \lambda \max _{i=1,2, \ldots, p} f_{i}(\mathbf{x})+(1-\lambda) \max _{i=1,2, \ldots, p} f_{i}(\mathbf{y}) \\
& =\lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y}) .
\end{aligned}
$$

Examples.

- $f(\mathbf{x})=\max \left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is convex.
- For a given vector $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T} \in \mathbb{R}^{n}$, let $x_{[i]}$ denote the i-th largest value in \mathbf{x}. For any $k \in\{1,2, \ldots, n\}$ the function

$$
h_{k}(\mathbf{x})=x_{[1]}+x_{[2]}+\ldots+x_{[k]},
$$

is convex. why?

Preservation of Convexity Under Partial Minimization

Theorem. Let $f: C \times D \rightarrow \mathbb{R}$ be a convex function defined over the set $C \times D$ where $C \subseteq \mathbb{R}^{m}$ and $D \subseteq \mathbb{R}^{n}$ are convex sets. Let

$$
g(\mathbf{x})=\min _{\mathbf{y} \in D} f(\mathbf{x}, \mathbf{y}), \quad \mathbf{x} \in C
$$

where we assume that the minimum is finite. Then g is convex over C.
Proof. Let $\mathbf{x}_{1}, \mathbf{x}_{2} \in C$ and $\lambda \in[0,1]$. Take $\varepsilon>0$. Then $\exists \mathbf{y}_{1}, \mathbf{y}_{2} \in D$:

$$
f\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right) \leq g\left(\mathbf{x}_{1}\right)+\varepsilon, f\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right) \leq g\left(\mathbf{x}_{2}\right)+\varepsilon .
$$

Preservation of Convexity Under Partial Minimization

Theorem. Let $f: C \times D \rightarrow \mathbb{R}$ be a convex function defined over the set $C \times D$ where $C \subseteq \mathbb{R}^{m}$ and $D \subseteq \mathbb{R}^{n}$ are convex sets. Let

$$
g(\mathbf{x})=\min _{\mathbf{y} \in D} f(\mathbf{x}, \mathbf{y}), \quad \mathbf{x} \in C
$$

where we assume that the minimum is finite. Then g is convex over C.
Proof. Let $\mathbf{x}_{1}, \mathbf{x}_{2} \in C$ and $\lambda \in[0,1]$. Take $\varepsilon>0$. Then $\exists \mathbf{y}_{1}, \mathbf{y}_{2} \in D$:

$$
f\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right) \leq g\left(\mathbf{x}_{1}\right)+\varepsilon, f\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right) \leq g\left(\mathbf{x}_{2}\right)+\varepsilon
$$

By the convexity of f we have

$$
\begin{aligned}
f\left(\lambda \mathbf{x}_{1}+(1-\lambda) \mathbf{x}_{2}, \lambda \mathbf{y}_{1}+(1-\lambda) \mathbf{y}_{2}\right) & \leq \lambda f\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)+(1-\lambda) f\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right) \\
& \leq \lambda\left(g\left(\mathbf{x}_{1}\right)+\varepsilon\right)+(1-\lambda)\left(g\left(\mathbf{x}_{2}\right)+\varepsilon\right) \\
& =\lambda g\left(\mathbf{x}_{1}\right)+(1-\lambda) g\left(\mathbf{x}_{2}\right)+\varepsilon
\end{aligned}
$$

Since the above inequality holds for any $\varepsilon>0$, it follows that $g\left(\lambda \mathbf{x}_{1}+(1-\lambda) \mathbf{x}_{2}\right) \leq \lambda g\left(\mathbf{x}_{1}\right)+(1-\lambda) g\left(\mathbf{x}_{2}\right)$.

Preservation of Convexity Under Partial Minimization

Theorem. Let $f: C \times D \rightarrow \mathbb{R}$ be a convex function defined over the set $C \times D$ where $C \subseteq \mathbb{R}^{m}$ and $D \subseteq \mathbb{R}^{n}$ are convex sets. Let

$$
g(\mathbf{x})=\min _{\mathbf{y} \in D} f(\mathbf{x}, \mathbf{y}), \quad \mathbf{x} \in C
$$

where we assume that the minimum is finite. Then g is convex over C.
Proof. Let $\mathbf{x}_{1}, \mathbf{x}_{2} \in C$ and $\lambda \in[0,1]$. Take $\varepsilon>0$. Then $\exists \mathbf{y}_{1}, \mathbf{y}_{2} \in D$:

$$
f\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right) \leq g\left(\mathbf{x}_{1}\right)+\varepsilon, f\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right) \leq g\left(\mathbf{x}_{2}\right)+\varepsilon
$$

By the convexity of f we have

$$
\begin{aligned}
f\left(\lambda \mathbf{x}_{1}+(1-\lambda) \mathbf{x}_{2}, \lambda \mathbf{y}_{1}+(1-\lambda) \mathbf{y}_{2}\right) & \leq \lambda f\left(\mathbf{x}_{1}, \mathbf{y}_{1}\right)+(1-\lambda) f\left(\mathbf{x}_{2}, \mathbf{y}_{2}\right) \\
& \leq \lambda\left(g\left(\mathbf{x}_{1}\right)+\varepsilon\right)+(1-\lambda)\left(g\left(\mathbf{x}_{2}\right)+\varepsilon\right) \\
& =\lambda g\left(\mathbf{x}_{1}\right)+(1-\lambda) g\left(\mathbf{x}_{2}\right)+\varepsilon
\end{aligned}
$$

Since the above inequality holds for any $\varepsilon>0$, it follows that $g\left(\lambda \mathbf{x}_{1}+(1-\lambda) \mathbf{x}_{2}\right) \leq \lambda g\left(\mathbf{x}_{1}\right)+(1-\lambda) g\left(\mathbf{x}_{2}\right)$.
Example: The distance function from a convex set $d_{C}(\mathbf{x}) \equiv \inf _{\mathbf{y} \in C}\|\mathbf{x}-\mathbf{y}\|$ is convex.

Level Sets

Definition. Let $f: S \rightarrow \mathbb{R}$ be a function defined over a set $S \subseteq \mathbb{R}^{n}$. Then the level set of f with level α is given by

$$
\operatorname{Lev}(f, \alpha)=\{\mathbf{x} \in S: f(\mathbf{x}) \leq \alpha\}
$$

Level Sets

Definition. Let $f: S \rightarrow \mathbb{R}$ be a function defined over a set $S \subseteq \mathbb{R}^{n}$. Then the level set of f with level α is given by

$$
\operatorname{Lev}(f, \alpha)=\{\mathbf{x} \in S: f(\mathbf{x}) \leq \alpha\}
$$

Theorem. Let $f: C \rightarrow \mathbb{R}$ be a convex function over the convex set $C \subseteq \mathbb{R}^{n}$. Then for any $\alpha \in \mathbb{R}$ the level set $\operatorname{Lev}(f, \alpha)$ is convex.

Proof.

- Let $\mathbf{x}, \mathbf{y} \in \operatorname{Lev}(f, \alpha)$ and $\lambda \in[0,1]$.

Level Sets

Definition. Let $f: S \rightarrow \mathbb{R}$ be a function defined over a set $S \subseteq \mathbb{R}^{n}$. Then the level set of f with level α is given by

$$
\operatorname{Lev}(f, \alpha)=\{\mathbf{x} \in S: f(\mathbf{x}) \leq \alpha\}
$$

Theorem. Let $f: C \rightarrow \mathbb{R}$ be a convex function over the convex set $C \subseteq \mathbb{R}^{n}$. Then for any $\alpha \in \mathbb{R}$ the level set $\operatorname{Lev}(f, \alpha)$ is convex.

Proof.

- Let $\mathbf{x}, \mathbf{y} \in \operatorname{Lev}(f, \alpha)$ and $\lambda \in[0,1]$.
- Then $f(\mathbf{x}), f(\mathbf{y}) \leq \alpha$. Hence,

$$
f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) \leq \lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y}) \leq \lambda \alpha+(1-\lambda) \alpha=\alpha,
$$

Level Sets

Definition. Let $f: S \rightarrow \mathbb{R}$ be a function defined over a set $S \subseteq \mathbb{R}^{n}$. Then the level set of f with level α is given by

$$
\operatorname{Lev}(f, \alpha)=\{\mathbf{x} \in S: f(\mathbf{x}) \leq \alpha\}
$$

Theorem. Let $f: C \rightarrow \mathbb{R}$ be a convex function over the convex set $C \subseteq \mathbb{R}^{n}$. Then for any $\alpha \in \mathbb{R}$ the level set $\operatorname{Lev}(f, \alpha)$ is convex.

Proof.

- Let $\mathbf{x}, \mathbf{y} \in \operatorname{Lev}(f, \alpha)$ and $\lambda \in[0,1]$.
- Then $f(\mathbf{x}), f(\mathbf{y}) \leq \alpha$. Hence,

$$
f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) \leq \lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y}) \leq \lambda \alpha+(1-\lambda) \alpha=\alpha,
$$

- $\lambda \mathbf{x}+(1-\lambda) \mathbf{y} \in \operatorname{Lev}(f, \alpha)$, and we have established the convexity of $\operatorname{Lev}(f, \alpha)$.

Quasi-Convex Functions

- Definition. A function $f: C \rightarrow \mathbb{R}$ defined over the convex set $C \subseteq \mathbb{R}^{n}$ is called quasi-convex if for any $\alpha \in \mathbb{R}$ the set $\operatorname{Lev}(f, \alpha)$ is convex.

Examples:

- $f(x)=\sqrt{|x|}$.
- $f(\mathbf{x})=\frac{\mathbf{a}^{T} \mathbf{x}+b}{\mathbf{c}^{T} \mathbf{x}+d}$, over $C=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{c}^{T} \mathbf{x}+d>0\right\}$. where $\mathbf{a}, \mathbf{c} \in \mathbb{R}^{n}$ and $b, d \in \mathbb{R}$.

Continuity of Convex Functions

Theorem. Let $f: C \rightarrow \mathbb{R}$ be a convex function defined over a convex set $C \subseteq \mathbb{R}^{n}$. Let $\mathbf{x}_{0} \in \operatorname{int}(C)$. Then there exist $\varepsilon>0$ and $L>0$ such that $B\left[\mathrm{x}_{0}, \varepsilon\right] \subseteq C$ and

$$
\left|f(\mathbf{x})-f\left(\mathbf{x}_{0}\right)\right| \leq L\left\|\mathbf{x}-\mathbf{x}_{0}\right\| \text { for any } \mathbf{x} \in B\left[\mathbf{x}_{0}, \varepsilon\right]
$$

Proof.

Continuity of Convex Functions

Theorem. Let $f: C \rightarrow \mathbb{R}$ be a convex function defined over a convex set $C \subseteq \mathbb{R}^{n}$. Let $\mathbf{x}_{0} \in \operatorname{int}(C)$. Then there exist $\varepsilon>0$ and $L>0$ such that $B\left[\mathrm{x}_{0}, \varepsilon\right] \subseteq C$ and

$$
\left|f(\mathbf{x})-f\left(\mathbf{x}_{0}\right)\right| \leq L\left\|\mathbf{x}-\mathbf{x}_{0}\right\| \text { for any } \mathbf{x} \in B\left[\mathbf{x}_{0}, \varepsilon\right]
$$

Proof.

- Take $\varepsilon>0$ such that $B_{\infty}\left[\mathbf{x}_{0}, \varepsilon\right] \equiv\left\{\mathbf{x} \in \mathbb{R}^{n}:\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{\infty} \leq \varepsilon\right\} \subseteq C$.

Continuity of Convex Functions

Theorem. Let $f: C \rightarrow \mathbb{R}$ be a convex function defined over a convex set $C \subseteq \mathbb{R}^{n}$. Let $\mathbf{x}_{0} \in \operatorname{int}(C)$. Then there exist $\varepsilon>0$ and $L>0$ such that $B\left[\mathrm{x}_{0}, \varepsilon\right] \subseteq C$ and

$$
\left|f(\mathbf{x})-f\left(\mathbf{x}_{0}\right)\right| \leq L\left\|\mathbf{x}-\mathbf{x}_{0}\right\| \text { for any } \mathbf{x} \in B\left[\mathbf{x}_{0}, \varepsilon\right]
$$

Proof.

- Take $\varepsilon>0$ such that $B_{\infty}\left[\mathbf{x}_{0}, \varepsilon\right] \equiv\left\{\mathbf{x} \in \mathbb{R}^{n}:\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{\infty} \leq \varepsilon\right\} \subseteq C$.
- Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{2^{n}}$ be the 2^{n} extreme points of $B_{\infty}\left[\mathbf{x}_{0}, \varepsilon\right]$.

Continuity of Convex Functions

Theorem. Let $f: C \rightarrow \mathbb{R}$ be a convex function defined over a convex set $C \subseteq \mathbb{R}^{n}$. Let $\mathbf{x}_{0} \in \operatorname{int}(C)$. Then there exist $\varepsilon>0$ and $L>0$ such that $B\left[\mathrm{x}_{0}, \varepsilon\right] \subseteq C$ and

$$
\left|f(\mathbf{x})-f\left(\mathbf{x}_{0}\right)\right| \leq L\left\|\mathbf{x}-\mathbf{x}_{0}\right\| \text { for any } \mathbf{x} \in B\left[\mathbf{x}_{0}, \varepsilon\right]
$$

Proof.

- Take $\varepsilon>0$ such that $B_{\infty}\left[\mathbf{x}_{0}, \varepsilon\right] \equiv\left\{\mathbf{x} \in \mathbb{R}^{n}:\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{\infty} \leq \varepsilon\right\} \subseteq C$.
- Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{2^{n}}$ be the 2^{n} extreme points of $B_{\infty}\left[\mathbf{x}_{0}, \varepsilon\right]$.
- For any $\mathbf{x} \in B_{\infty}\left[\mathbf{x}_{0}, \varepsilon\right]$ there exists $\boldsymbol{\lambda} \in \Delta_{2^{n}}$ such that $\mathbf{x}=\sum_{i=1}^{2^{n}} \lambda_{i} \mathbf{v}_{i}$.

Continuity of Convex Functions

Theorem. Let $f: C \rightarrow \mathbb{R}$ be a convex function defined over a convex set $C \subseteq \mathbb{R}^{n}$. Let $\mathbf{x}_{0} \in \operatorname{int}(C)$. Then there exist $\varepsilon>0$ and $L>0$ such that $B\left[\mathrm{x}_{0}, \varepsilon\right] \subseteq C$ and

$$
\left|f(\mathbf{x})-f\left(\mathbf{x}_{0}\right)\right| \leq L\left\|\mathbf{x}-\mathbf{x}_{0}\right\| \text { for any } \mathbf{x} \in B\left[\mathbf{x}_{0}, \varepsilon\right]
$$

Proof.

- Take $\varepsilon>0$ such that $B_{\infty}\left[\mathbf{x}_{0}, \varepsilon\right] \equiv\left\{\mathbf{x} \in \mathbb{R}^{n}:\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{\infty} \leq \varepsilon\right\} \subseteq C$.
- Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{2^{n}}$ be the 2^{n} extreme points of $B_{\infty}\left[\mathbf{x}_{0}, \varepsilon\right]$.
- For any $\mathbf{x} \in B_{\infty}\left[\mathbf{x}_{0}, \varepsilon\right]$ there exists $\boldsymbol{\lambda} \in \Delta_{2^{n}}$ such that $\mathbf{x}=\sum_{i=1}^{2^{n}} \lambda_{i} \mathbf{v}_{i}$. By Jensen's inequality,

$$
f(\mathbf{x})=f\left(\sum_{i=1}^{2^{n}} \lambda_{i} \mathbf{v}_{i}\right) \leq \sum_{i=1}^{2^{n}} \lambda_{i} f\left(\mathbf{v}_{i}\right) \leq M,
$$

where $M=\max _{i=1,2, \ldots, 2^{n}} f\left(\mathbf{v}_{i}\right)$.

Continuity of Convex Functions

Theorem. Let $f: C \rightarrow \mathbb{R}$ be a convex function defined over a convex set $C \subseteq \mathbb{R}^{n}$. Let $\mathbf{x}_{0} \in \operatorname{int}(C)$. Then there exist $\varepsilon>0$ and $L>0$ such that $B\left[\mathrm{x}_{0}, \varepsilon\right] \subseteq C$ and

$$
\left|f(\mathbf{x})-f\left(\mathbf{x}_{0}\right)\right| \leq L\left\|\mathbf{x}-\mathbf{x}_{0}\right\| \text { for any } \mathbf{x} \in B\left[\mathbf{x}_{0}, \varepsilon\right]
$$

Proof.

- Take $\varepsilon>0$ such that $B_{\infty}\left[\mathbf{x}_{0}, \varepsilon\right] \equiv\left\{\mathbf{x} \in \mathbb{R}^{n}:\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{\infty} \leq \varepsilon\right\} \subseteq C$.
- Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{2^{n}}$ be the 2^{n} extreme points of $B_{\infty}\left[\mathbf{x}_{0}, \varepsilon\right]$.
- For any $\mathbf{x} \in B_{\infty}\left[\mathbf{x}_{0}, \varepsilon\right]$ there exists $\boldsymbol{\lambda} \in \Delta_{2^{n}}$ such that $\mathbf{x}=\sum_{i=1}^{2^{n}} \lambda_{i} \mathbf{v}_{j}$. By Jensen's inequality,

$$
f(\mathbf{x})=f\left(\sum_{i=1}^{2^{n}} \lambda_{i} \mathbf{v}_{i}\right) \leq \sum_{i=1}^{2^{n}} \lambda_{i} f\left(\mathbf{v}_{i}\right) \leq M,
$$

where $M=\max _{i=1,2, \ldots, 2^{n}} f\left(\mathbf{v}_{i}\right)$.

- $B_{2}\left[\mathbf{x}_{0}, \varepsilon\right]=B\left[\mathbf{x}_{0}, \varepsilon\right]=\left\{\mathbf{x} \in \mathbb{R}^{n}:\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{2} \leq \varepsilon\right\} \subseteq B_{\infty}\left[\mathbf{x}_{0}, \varepsilon\right]$.

Continuity of Convex Functions

Theorem. Let $f: C \rightarrow \mathbb{R}$ be a convex function defined over a convex set $C \subseteq \mathbb{R}^{n}$. Let $\mathbf{x}_{0} \in \operatorname{int}(C)$. Then there exist $\varepsilon>0$ and $L>0$ such that $B\left[\mathrm{x}_{0}, \varepsilon\right] \subseteq C$ and

$$
\left|f(\mathbf{x})-f\left(\mathbf{x}_{0}\right)\right| \leq L\left\|\mathbf{x}-\mathbf{x}_{0}\right\| \text { for any } \mathbf{x} \in B\left[\mathbf{x}_{0}, \varepsilon\right]
$$

Proof.

- Take $\varepsilon>0$ such that $B_{\infty}\left[\mathbf{x}_{0}, \varepsilon\right] \equiv\left\{\mathbf{x} \in \mathbb{R}^{n}:\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{\infty} \leq \varepsilon\right\} \subseteq C$.
- Let $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{2^{n}}$ be the 2^{n} extreme points of $B_{\infty}\left[\mathbf{x}_{0}, \varepsilon\right]$.
- For any $\mathbf{x} \in B_{\infty}\left[\mathbf{x}_{0}, \varepsilon\right]$ there exists $\boldsymbol{\lambda} \in \Delta_{2^{n}}$ such that $\mathbf{x}=\sum_{i=1}^{2^{n}} \lambda_{i} \mathbf{v}_{j}$. By Jensen's inequality,

$$
f(\mathbf{x})=f\left(\sum_{i=1}^{2^{n}} \lambda_{i} \mathbf{v}_{i}\right) \leq \sum_{i=1}^{2^{n}} \lambda_{i} f\left(\mathbf{v}_{i}\right) \leq M,
$$

where $M=\max _{i=1,2, \ldots, 2^{n}} f\left(\mathbf{v}_{i}\right)$.

- $B_{2}\left[\mathbf{x}_{0}, \varepsilon\right]=B\left[\mathbf{x}_{0}, \varepsilon\right]=\left\{\mathbf{x} \in \mathbb{R}^{n}:\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{2} \leq \varepsilon\right\} \subseteq B_{\infty}\left[\mathbf{x}_{0}, \varepsilon\right]$.
- We therefore conclude that $f(\mathbf{x}) \leq M$ for any $\mathbf{x} \in B\left[\mathbf{x}_{0}, \varepsilon\right]$.

Continuity of Convex Functions Contd.

- Let $\mathbf{x} \in B\left[\mathbf{x}_{0}, \varepsilon\right]$ be such that $\mathbf{x} \neq \mathbf{x}_{0}$. Define

$$
\mathbf{z}=\mathbf{x}_{0}+\frac{1}{\alpha}\left(\mathbf{x}-\mathbf{x}_{0}\right), \quad \alpha=\frac{1}{\varepsilon}\left\|\mathbf{x}-\mathbf{x}_{0}\right\|
$$

Continuity of Convex Functions Contd.

- Let $\mathbf{x} \in B\left[\mathbf{x}_{0}, \varepsilon\right]$ be such that $\mathbf{x} \neq \mathbf{x}_{0}$. Define

$$
\mathbf{z}=\mathbf{x}_{0}+\frac{1}{\alpha}\left(\mathbf{x}-\mathbf{x}_{0}\right), \quad \alpha=\frac{1}{\varepsilon}\left\|\mathbf{x}-\mathbf{x}_{0}\right\|
$$

- Then obviously $\alpha \leq 1$ and $\mathbf{z} \in B\left[\mathbf{x}_{0}, \varepsilon\right]$, and in particular $f(\mathbf{z}) \leq M$.

Continuity of Convex Functions Contd.

- Let $\mathbf{x} \in B\left[\mathbf{x}_{0}, \varepsilon\right]$ be such that $\mathbf{x} \neq \mathbf{x}_{0}$. Define

$$
\mathbf{z}=\mathbf{x}_{0}+\frac{1}{\alpha}\left(\mathbf{x}-\mathbf{x}_{0}\right), \quad \alpha=\frac{1}{\varepsilon}\left\|\mathbf{x}-\mathbf{x}_{0}\right\|
$$

- Then obviously $\alpha \leq 1$ and $\mathbf{z} \in B\left[\mathbf{x}_{0}, \varepsilon\right]$, and in particular $f(\mathbf{z}) \leq M$.
- $\mathbf{x}=\alpha \mathbf{z}+(1-\alpha) \mathbf{x}_{0}$.

Continuity of Convex Functions Contd.

- Let $\mathbf{x} \in B\left[\mathbf{x}_{0}, \varepsilon\right]$ be such that $\mathbf{x} \neq \mathbf{x}_{0}$. Define

$$
\mathbf{z}=\mathbf{x}_{0}+\frac{1}{\alpha}\left(\mathbf{x}-\mathbf{x}_{0}\right), \quad \alpha=\frac{1}{\varepsilon}\left\|\mathbf{x}-\mathbf{x}_{0}\right\|
$$

- Then obviously $\alpha \leq 1$ and $\mathbf{z} \in B\left[\mathbf{x}_{0}, \varepsilon\right]$, and in particular $f(\mathbf{z}) \leq M$.
- $\mathbf{x}=\alpha \mathbf{z}+(1-\alpha) \mathbf{x}_{0}$.
- Consequently,

$$
f(\mathbf{x}) \leq \alpha f(\mathbf{z})+(1-\alpha) f\left(\mathbf{x}_{0}\right) \leq f\left(\mathbf{x}_{0}\right)+\alpha\left(M-f\left(\mathbf{x}_{0}\right)\right)=f\left(\mathbf{x}_{0}\right)+\frac{M-f\left(\mathbf{x}_{0}\right)}{\varepsilon}\left\|\mathbf{x}-\mathbf{x}_{0}\right\|
$$

Continuity of Convex Functions Contd.

- Let $\mathbf{x} \in B\left[\mathbf{x}_{0}, \varepsilon\right]$ be such that $\mathbf{x} \neq \mathbf{x}_{0}$. Define

$$
\mathbf{z}=\mathbf{x}_{0}+\frac{1}{\alpha}\left(\mathbf{x}-\mathbf{x}_{0}\right), \quad \alpha=\frac{1}{\varepsilon}\left\|\mathbf{x}-\mathbf{x}_{0}\right\|
$$

- Then obviously $\alpha \leq 1$ and $\mathbf{z} \in B\left[\mathbf{x}_{0}, \varepsilon\right]$, and in particular $f(\mathbf{z}) \leq M$.
- $\mathbf{x}=\alpha \mathbf{z}+(1-\alpha) \mathbf{x}_{0}$.
- Consequently,

$$
f(\mathbf{x}) \leq \alpha f(\mathbf{z})+(1-\alpha) f\left(\mathbf{x}_{0}\right) \leq f\left(\mathbf{x}_{0}\right)+\alpha\left(M-f\left(\mathbf{x}_{0}\right)\right)=f\left(\mathbf{x}_{0}\right)+\frac{M-f\left(\mathbf{x}_{0}\right)}{\varepsilon}\left\|\mathbf{x}-\mathbf{x}_{0}\right\|
$$

- Thus, $f(\mathbf{x})-f\left(\mathbf{x}_{0}\right) \leq L\left\|\mathbf{x}-\mathbf{x}_{0}\right\|$, where $L=\frac{M-f\left(\mathrm{x}_{0}\right)}{\varepsilon}$.

Continuity of Convex Functions Contd.

- Let $\mathbf{x} \in B\left[\mathbf{x}_{0}, \varepsilon\right]$ be such that $\mathbf{x} \neq \mathbf{x}_{0}$. Define

$$
\mathbf{z}=\mathbf{x}_{0}+\frac{1}{\alpha}\left(\mathbf{x}-\mathbf{x}_{0}\right), \quad \alpha=\frac{1}{\varepsilon}\left\|\mathbf{x}-\mathbf{x}_{0}\right\|
$$

- Then obviously $\alpha \leq 1$ and $\mathbf{z} \in B\left[\mathbf{x}_{0}, \varepsilon\right]$, and in particular $f(\mathbf{z}) \leq M$.
- $\mathbf{x}=\alpha \mathbf{z}+(1-\alpha) \mathbf{x}_{0}$.
- Consequently,

$$
f(\mathbf{x}) \leq \alpha f(\mathbf{z})+(1-\alpha) f\left(\mathbf{x}_{0}\right) \leq f\left(\mathbf{x}_{0}\right)+\alpha\left(M-f\left(\mathbf{x}_{0}\right)\right)=f\left(\mathbf{x}_{0}\right)+\frac{M-f\left(\mathbf{x}_{0}\right)}{\varepsilon}\left\|\mathbf{x}-\mathbf{x}_{0}\right\|
$$

- Thus, $f(\mathbf{x})-f\left(\mathbf{x}_{0}\right) \leq L\left\|\mathbf{x}-\mathbf{x}_{0}\right\|$, where $L=\frac{M-f\left(x_{0}\right)}{\varepsilon}$.
- We need to show that $f(\mathbf{x})-f\left(\mathbf{x}_{0}\right) \geq-L\left\|\mathbf{x}-\mathbf{x}_{0}\right\|$.

Continuity of Convex Functions Contd.

- Let $\mathbf{x} \in B\left[\mathbf{x}_{0}, \varepsilon\right]$ be such that $\mathbf{x} \neq \mathbf{x}_{0}$. Define

$$
\mathbf{z}=\mathbf{x}_{0}+\frac{1}{\alpha}\left(\mathbf{x}-\mathbf{x}_{0}\right), \quad \alpha=\frac{1}{\varepsilon}\left\|\mathbf{x}-\mathbf{x}_{0}\right\|
$$

- Then obviously $\alpha \leq 1$ and $\mathbf{z} \in B\left[\mathbf{x}_{0}, \varepsilon\right]$, and in particular $f(\mathbf{z}) \leq M$.
- $\mathbf{x}=\alpha \mathbf{z}+(1-\alpha) \mathbf{x}_{0}$.
- Consequently,

$$
f(\mathbf{x}) \leq \alpha f(\mathbf{z})+(1-\alpha) f\left(\mathbf{x}_{0}\right) \leq f\left(\mathbf{x}_{0}\right)+\alpha\left(M-f\left(\mathbf{x}_{0}\right)\right)=f\left(\mathbf{x}_{0}\right)+\frac{M-f\left(\mathbf{x}_{0}\right)}{\varepsilon}\left\|\mathbf{x}-\mathbf{x}_{0}\right\|
$$

- Thus, $f(\mathbf{x})-f\left(\mathbf{x}_{0}\right) \leq L\left\|\mathbf{x}-\mathbf{x}_{0}\right\|$, where $L=\frac{M-f\left(x_{0}\right)}{\varepsilon}$.
- We need to show that $f(\mathbf{x})-f\left(\mathbf{x}_{0}\right) \geq-L\left\|\mathbf{x}-\mathbf{x}_{0}\right\|$.
- Define $\mathbf{u}=\mathbf{x}_{0}+\frac{1}{\alpha}\left(\mathbf{x}_{0}-\mathbf{x}\right)$. Since $\mathbf{u} \in B\left[\mathbf{x}_{0}, \varepsilon\right]$, then $f(\mathbf{u}) \leq M$.
- $\mathbf{x}=\mathbf{x}_{0}+\alpha\left(\mathbf{x}_{0}-\mathbf{u}\right)$. Therefore,

$$
\begin{aligned}
f(\mathbf{x}) & =f\left(\mathbf{x}_{0}+\alpha\left(\mathbf{x}_{0}-\mathbf{u}\right)\right) \geq f\left(\mathbf{x}_{0}\right)+\alpha\left(f\left(\mathbf{x}_{0}\right)-f(\mathbf{u})\right) \\
& =f\left(\mathbf{x}_{0}\right)-\frac{M-f\left(\mathbf{x}_{0}\right)}{\varepsilon}\left\|\mathbf{x}-\mathbf{x}_{0}\right\| \\
& =f\left(\mathbf{x}_{0}\right)-L\left\|\mathbf{x}-\mathbf{x}_{0}\right\|
\end{aligned}
$$

Existence of Directional Derivatives of Convex Functions

Theorem. Let $f: C \rightarrow \mathbb{R}$ be a convex function over the convex set $C \subseteq \mathbb{R}^{n}$. Let $\mathbf{x} \in \operatorname{int}(C)$. Then for any $\mathbf{d} \neq \mathbf{0}$, the directional derivative $f^{\prime}(\mathbf{x} ; \mathbf{d})$ exists.

Proof.

Existence of Directional Derivatives of Convex Functions

Theorem. Let $f: C \rightarrow \mathbb{R}$ be a convex function over the convex set $C \subseteq \mathbb{R}^{n}$. Let $\mathbf{x} \in \operatorname{int}(C)$. Then for any $\mathbf{d} \neq \mathbf{0}$, the directional derivative $f^{\prime}(\mathbf{x} ; \mathbf{d})$ exists.

Proof.

- Let $\mathbf{x} \in \operatorname{int}(C)$ and let $\mathbf{d} \neq \mathbf{0}$. Then the directional derivative (if exists) is the limit

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \frac{g(t)-g(0)}{t} \quad(g(t)=f(\mathbf{x}+t \mathbf{d})) \tag{2}
\end{equation*}
$$

Existence of Directional Derivatives of Convex Functions

Theorem. Let $f: C \rightarrow \mathbb{R}$ be a convex function over the convex set $C \subseteq \mathbb{R}^{n}$. Let $\mathbf{x} \in \operatorname{int}(C)$. Then for any $\mathbf{d} \neq \mathbf{0}$, the directional derivative $f^{\prime}(\mathbf{x} ; \mathbf{d})$ exists.

Proof.

- Let $\mathbf{x} \in \operatorname{int}(C)$ and let $\mathbf{d} \neq \mathbf{0}$. Then the directional derivative (if exists) is the limit

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \frac{g(t)-g(0)}{t} \quad(g(t)=f(\mathbf{x}+t \mathbf{d})) \tag{2}
\end{equation*}
$$

- Defining $h(t)=\frac{g(t)-g(0)}{t},(2)$ is the same as $\lim _{t \rightarrow 0^{+}} h(t)$.

Existence of Directional Derivatives of Convex Functions

Theorem. Let $f: C \rightarrow \mathbb{R}$ be a convex function over the convex set $C \subseteq \mathbb{R}^{n}$. Let $\mathbf{x} \in \operatorname{int}(C)$. Then for any $\mathbf{d} \neq \mathbf{0}$, the directional derivative $f^{\prime}(\mathbf{x} ; \mathbf{d})$ exists.

Proof.

- Let $\mathbf{x} \in \operatorname{int}(C)$ and let $\mathbf{d} \neq \mathbf{0}$. Then the directional derivative (if exists) is the limit

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \frac{g(t)-g(0)}{t} \quad(g(t)=f(\mathbf{x}+t \mathbf{d})) \tag{2}
\end{equation*}
$$

- Defining $h(t)=\frac{g(t)-g(0)}{t},(2)$ is the same as $\lim _{t \rightarrow 0^{+}} h(t)$.
- We will take an $\varepsilon>0$ for which $\mathbf{x}+t \mathbf{d}, \mathbf{x}-t \mathbf{d} \in C$ for all $t \in[0, \varepsilon]$.

Existence of Directional Derivatives of Convex Functions

Theorem. Let $f: C \rightarrow \mathbb{R}$ be a convex function over the convex set $C \subseteq \mathbb{R}^{n}$. Let $\mathbf{x} \in \operatorname{int}(C)$. Then for any $\mathbf{d} \neq \mathbf{0}$, the directional derivative $f^{\prime}(\mathbf{x} ; \mathbf{d})$ exists.

Proof.

- Let $\mathbf{x} \in \operatorname{int}(C)$ and let $\mathbf{d} \neq \mathbf{0}$. Then the directional derivative (if exists) is the limit

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \frac{g(t)-g(0)}{t} \quad(g(t)=f(\mathbf{x}+t \mathbf{d})) \tag{2}
\end{equation*}
$$

- Defining $h(t)=\frac{g(t)-g(0)}{t},(2)$ is the same as $\lim _{t \rightarrow 0^{+}} h(t)$.
- We will take an $\varepsilon>0$ for which $\mathbf{x}+t \mathbf{d}, \mathbf{x}-t \mathbf{d} \in C$ for all $t \in[0, \varepsilon]$.
- Let $0<t_{1}<t_{2} \leq \varepsilon$. Then $f\left(\mathbf{x}+t_{1} \mathbf{d}\right) \leq\left(1-\frac{t_{1}}{t_{2}}\right) f(\mathbf{x})+\frac{t_{1}}{t_{2}} f\left(\mathbf{x}+t_{2} \mathbf{d}\right)$.

Existence of Directional Derivatives of Convex Functions

Theorem. Let $f: C \rightarrow \mathbb{R}$ be a convex function over the convex set $C \subseteq \mathbb{R}^{n}$. Let $\mathbf{x} \in \operatorname{int}(C)$. Then for any $\mathbf{d} \neq \mathbf{0}$, the directional derivative $f^{\prime}(\mathbf{x} ; \mathbf{d})$ exists.

Proof.

- Let $\mathbf{x} \in \operatorname{int}(C)$ and let $\mathbf{d} \neq \mathbf{0}$. Then the directional derivative (if exists) is the limit

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \frac{g(t)-g(0)}{t} \quad(g(t)=f(\mathbf{x}+t \mathbf{d})) \tag{2}
\end{equation*}
$$

- Defining $h(t)=\frac{g(t)-g(0)}{t},(2)$ is the same as $\lim _{t \rightarrow 0^{+}} h(t)$.
- We will take an $\varepsilon>0$ for which $\mathbf{x}+t \mathbf{d}, \mathbf{x}-t \mathbf{d} \in C$ for all $t \in[0, \varepsilon]$.
- Let $0<t_{1}<t_{2} \leq \varepsilon$. Then $f\left(\mathbf{x}+t_{1} \mathbf{d}\right) \leq\left(1-\frac{t_{1}}{t_{2}}\right) f(\mathbf{x})+\frac{t_{1}}{t_{2}} f\left(\mathbf{x}+t_{2} \mathbf{d}\right)$.
- Consequently, $\frac{f\left(\mathbf{x}+t_{1} \mathbf{d}\right)-f(\mathbf{x})}{t_{1}} \leq \frac{f\left(\mathbf{x}+t_{2} \mathbf{d}\right)-f(\mathbf{x})}{t_{2}}$.

Existence of Directional Derivatives of Convex Functions

Theorem. Let $f: C \rightarrow \mathbb{R}$ be a convex function over the convex set $C \subseteq \mathbb{R}^{n}$. Let $\mathbf{x} \in \operatorname{int}(C)$. Then for any $\mathbf{d} \neq \mathbf{0}$, the directional derivative $f^{\prime}(\mathbf{x} ; \mathbf{d})$ exists.

Proof.

- Let $\mathbf{x} \in \operatorname{int}(C)$ and let $\mathbf{d} \neq \mathbf{0}$. Then the directional derivative (if exists) is the limit

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \frac{g(t)-g(0)}{t} \quad(g(t)=f(\mathbf{x}+t \mathbf{d})) \tag{2}
\end{equation*}
$$

- Defining $h(t)=\frac{g(t)-g(0)}{t},(2)$ is the same as $\lim _{t \rightarrow 0^{+}} h(t)$.
- We will take an $\varepsilon>0$ for which $\mathbf{x}+t \mathbf{d}, \mathbf{x}-t \mathbf{d} \in C$ for all $t \in[0, \varepsilon]$.
- Let $0<t_{1}<t_{2} \leq \varepsilon$. Then $f\left(\mathbf{x}+t_{1} \mathbf{d}\right) \leq\left(1-\frac{t_{1}}{t_{2}}\right) f(\mathbf{x})+\frac{t_{1}}{t_{2}} f\left(\mathbf{x}+t_{2} \mathbf{d}\right)$.
- Consequently, $\frac{f\left(x+t_{1} \mathrm{~d}\right)-f(\mathrm{x})}{t_{1}} \leq \frac{f\left(\mathrm{x}+t_{2} \mathrm{~d}\right)-f(\mathrm{x})}{t_{2}}$.
- Thus, $h\left(t_{1}\right) \leq h\left(t_{2}\right) \Rightarrow h$ is monotone nondecreasing over \mathbb{R}_{++}. All that is left is to show that it is bounded below over $(0, \varepsilon]$.

Proof Contd.

- Take $0<t \leq \varepsilon$. Note that

$$
\mathbf{x}=\frac{\varepsilon}{\varepsilon+t}(\mathbf{x}+t \mathbf{d})+\frac{t}{\varepsilon+t}(\mathbf{x}-\varepsilon \mathbf{d})
$$

- Hence,

$$
f(\mathbf{x}) \leq \frac{\varepsilon}{\varepsilon+t} f(\mathbf{x}+t \mathbf{d})+\frac{t}{\varepsilon+t} f(\mathbf{x}-\varepsilon \mathbf{d})
$$

Proof Contd.

- Take $0<t \leq \varepsilon$. Note that

$$
\mathbf{x}=\frac{\varepsilon}{\varepsilon+t}(\mathbf{x}+t \mathbf{d})+\frac{t}{\varepsilon+t}(\mathbf{x}-\varepsilon \mathbf{d})
$$

- Hence,

$$
f(\mathbf{x}) \leq \frac{\varepsilon}{\varepsilon+t} f(\mathbf{x}+t \mathbf{d})+\frac{t}{\varepsilon+t} f(\mathbf{x}-\varepsilon \mathbf{d}) .
$$

- After some rearrangement of terms,

$$
h(t)=\frac{f(\mathbf{x}+t \mathbf{d})-f(\mathbf{x})}{t} \geq \frac{f(\mathbf{x})-f(\mathbf{x}-\varepsilon \mathbf{d})}{\varepsilon}
$$

Proof Contd.

- Take $0<t \leq \varepsilon$. Note that

$$
\mathbf{x}=\frac{\varepsilon}{\varepsilon+t}(\mathbf{x}+t \mathbf{d})+\frac{t}{\varepsilon+t}(\mathbf{x}-\varepsilon \mathbf{d})
$$

- Hence,

$$
f(\mathbf{x}) \leq \frac{\varepsilon}{\varepsilon+t} f(\mathbf{x}+t \mathbf{d})+\frac{t}{\varepsilon+t} f(\mathbf{x}-\varepsilon \mathbf{d})
$$

- After some rearrangement of terms,

$$
h(t)=\frac{f(\mathbf{x}+t \mathbf{d})-f(\mathbf{x})}{t} \geq \frac{f(\mathbf{x})-f(\mathbf{x}-\varepsilon \mathbf{d})}{\varepsilon}
$$

- h is bounded below over $(0, \varepsilon]$.

Proof Contd.

- Take $0<t \leq \varepsilon$. Note that

$$
\mathbf{x}=\frac{\varepsilon}{\varepsilon+t}(\mathbf{x}+t \mathbf{d})+\frac{t}{\varepsilon+t}(\mathbf{x}-\varepsilon \mathbf{d})
$$

- Hence,

$$
f(\mathbf{x}) \leq \frac{\varepsilon}{\varepsilon+t} f(\mathbf{x}+t \mathbf{d})+\frac{t}{\varepsilon+t} f(\mathbf{x}-\varepsilon \mathbf{d})
$$

- After some rearrangement of terms,

$$
h(t)=\frac{f(\mathbf{x}+t \mathbf{d})-f(\mathbf{x})}{t} \geq \frac{f(\mathbf{x})-f(\mathbf{x}-\varepsilon \mathbf{d})}{\varepsilon}
$$

- h is bounded below over $(0, \varepsilon]$.
- Since h is nondecreasing and bounded below over $(0, \varepsilon]$, the limit $\lim _{t \rightarrow 0^{+}} h(t)$ exists \Rightarrow the directional derivative $f^{\prime}(\mathbf{x} ; \mathbf{d})$ exists.

Extended Real-Valued Functions

- Until now we have discussed functions that are real-valued, meaning that they take their values in $\mathbb{R}=(-\infty, \infty)$.
- We will now consider functions that take their values in $\mathbb{R} \cup\{\infty\}=(-\infty, \infty]$. Such functions are called extended real-valued functions.
- Example: the indicator function: given a set $S \subseteq \mathbb{R}^{n}$, the indicator function $\delta_{S}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is given by

$$
\delta_{S}(\mathbf{x})= \begin{cases}0 & \text { if } \mathbf{x} \in S \\ \infty & \text { if } \mathbf{x} \notin S\end{cases}
$$

- The effective domain of an extended real-valued function is the set of vectors for which the function takes a real value:

$$
\operatorname{dom}(f)=\left\{\mathbf{x} \in \mathbb{R}^{n}: f(\mathbf{x})<\infty\right\}
$$

- An extended real-valued function $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is called proper if is not always equal to infinity, meaning that there exists $x_{0} \in \mathbb{R}^{n}$ such that $f\left(\mathbf{x}_{0}\right)<\infty$.

Extended Real-Valued Functions Contd.

- An extended real-valued function is convex if for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and $\lambda \in[0,1]$ the following inequality holds:

$$
f(\lambda \mathbf{x}+(1-\lambda) \mathbf{y}) \leq \lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y}),
$$

where we use the usual arithmetic rules with ∞ such as

$$
\begin{aligned}
a+\infty & =\infty \text { for any } a \in \mathbb{R} \\
a \cdot \infty & =\infty \text { for any } a \in \mathbb{R}_{++} .
\end{aligned}
$$

In addition, we have the much less obvious rule that $0 \cdot \infty=0$.

- It is easy to show that an extended real-valued function is convex iff $\operatorname{dom}(f)$ is a convex set and the restriction of f to its effective domain is a convex real-valued function over $\operatorname{dom}(f)$.
- As an example, the indicator function $\delta_{C}(\cdot)$ of a set $C \subseteq \mathbb{R}^{n}$ is convex if and only if C is a convex set.

The Epigraph

- Definition. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$. Then its epigraph epi $(f) \in \mathbb{R}^{n+1}$ is defined to be the set

$$
\operatorname{epi}(f)=\{(\mathbf{x} ; t): f(\mathbf{x}) \leq t\}
$$

It is not difficult to show that an extended real-valued function f is convex if and only if its epigraph set epi (f) is convex.

Preservation of Convexity Under Supremum

Theorem. Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ be an extended real-valued convex functions for any $i \in I$ (I being an arbitrary index set). Then the function $f(\mathbf{x})=\sup _{i \in I} f_{i}(\mathbf{x})$ is an extended real-valued convex function.

Proof. f_{i} convex for all $i \Rightarrow \operatorname{epi}\left(f_{i}\right)$ convex $\Rightarrow \operatorname{epi}(f)=\cap_{i \in I} \operatorname{epi}\left(f_{i}\right)$ convex \Rightarrow $f(\mathbf{x})=\sup _{i \in I} f_{i}(\mathbf{x})$ is convex.

- Support Functions. Let $S \subseteq \mathbb{R}^{n}$. The support function of S is the function

$$
\sigma_{S}(\mathbf{x})=\sup _{\mathbf{y} \in S} \mathbf{x}^{T} \mathbf{y}
$$

The support function is a convex function (regardless of whether S is convex or not).

Maximum of a Convex Fun. over a Compact Convex Set

Theorem. Let $f: C \rightarrow \mathbb{R}$ be convex over the nonempty convex and compact set $C \subseteq \mathbb{R}^{n}$. Then there exists at least one maximizer of f over C that is an extreme point of C.

Proof.

Maximum of a Convex Fun. over a Compact Convex Set

Theorem. Let $f: C \rightarrow \mathbb{R}$ be convex over the nonempty convex and compact set $C \subseteq \mathbb{R}^{n}$. Then there exists at least one maximizer of f over C that is an extreme point of C.

Proof.

- Let \mathbf{x}^{*} be a maximizer of f over C. If \mathbf{x}^{*} is an extreme point of C, then the result is established. Otherwise,

Maximum of a Convex Fun. over a Compact Convex Set

Theorem. Let $f: C \rightarrow \mathbb{R}$ be convex over the nonempty convex and compact set $C \subseteq \mathbb{R}^{n}$. Then there exists at least one maximizer of f over C that is an extreme point of C.

Proof.

- Let \mathbf{x}^{*} be a maximizer of f over C. If \mathbf{x}^{*} is an extreme point of C, then the result is established. Otherwise,
- By Krein-Milman, $C=\operatorname{conv}(\operatorname{ext}(C)) \Rightarrow \exists \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k} \in \operatorname{ext}(C)$ and $\boldsymbol{\lambda} \in \Delta_{k}$ s.t.

$$
\mathbf{x}^{*}=\sum_{i=1}^{k} \lambda_{i} \mathbf{x}_{i}
$$

Maximum of a Convex Fun. over a Compact Convex Set

Theorem. Let $f: C \rightarrow \mathbb{R}$ be convex over the nonempty convex and compact set $C \subseteq \mathbb{R}^{n}$. Then there exists at least one maximizer of f over C that is an extreme point of C.

Proof.

- Let \mathbf{x}^{*} be a maximizer of f over C. If \mathbf{x}^{*} is an extreme point of C, then the result is established. Otherwise,
- By Krein-Milman, $C=\operatorname{conv}(\operatorname{ext}(C)) \Rightarrow \exists \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k} \in \operatorname{ext}(C)$ and $\boldsymbol{\lambda} \in \Delta_{k}$ s.t.

$$
\mathbf{x}^{*}=\sum_{i=1}^{k} \lambda_{i} \mathbf{x}_{i}
$$

- By convexity of f,

$$
f\left(\mathbf{x}^{*}\right) \leq \sum_{i=1}^{k} \lambda_{i} f\left(\mathbf{x}_{i}\right),
$$

Maximum of a Convex Fun. over a Compact Convex Set

Theorem. Let $f: C \rightarrow \mathbb{R}$ be convex over the nonempty convex and compact set $C \subseteq \mathbb{R}^{n}$. Then there exists at least one maximizer of f over C that is an extreme point of C.

Proof.

- Let \mathbf{x}^{*} be a maximizer of f over C. If \mathbf{x}^{*} is an extreme point of C, then the result is established. Otherwise,
- By Krein-Milman, $C=\operatorname{conv}(\operatorname{ext}(C)) \Rightarrow \exists \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k} \in \operatorname{ext}(C)$ and $\boldsymbol{\lambda} \in \Delta_{k}$ s.t.

$$
\mathbf{x}^{*}=\sum_{i=1}^{k} \lambda_{i} \mathbf{x}_{i} .
$$

- By convexity of f,

$$
f\left(\mathbf{x}^{*}\right) \leq \sum_{i=1}^{k} \lambda_{i} f\left(\mathbf{x}_{i}\right),
$$

- $\sum_{i=1}^{k} \lambda_{i}\left(f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}^{*}\right)\right) \geq 0 \Rightarrow f\left(\mathbf{x}_{i}\right)=f\left(\mathbf{x}^{*}\right)(w h y ?)$

