Lecture 6 - Convex Sets

Definition A set $C \subseteq \mathbb{R}^{n}$ is called convex if for any $\mathbf{x}, \mathbf{y} \in C$ and $\lambda \in[0,1]$, the point $\lambda \mathbf{x}+(1-\lambda) \mathbf{y}$ belongs to C.

- The above definition is equivalent to saying that for any $\mathbf{x}, \mathbf{y} \in C$, the line segment $[\mathbf{x}, \mathbf{y}]$ is also in C.

nonconvex sets

Examples of Convex Sets

- Lines: A line in \mathbb{R}^{n} is a set of the form

$$
L=\{\mathbf{z}+t \mathbf{d}: t \in \mathbb{R}\},
$$

where $\mathbf{z}, \mathbf{d} \in \mathbb{R}^{n}$ and $\mathbf{d} \neq \mathbf{0}$.

- $[\mathbf{x}, \mathbf{y}],(\mathbf{x}, \mathbf{y})$ for $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}(\mathbf{x} \neq \mathbf{y})$.
- $\emptyset, \mathbb{R}^{n}$.
- A hyperplane is a set of the form

$$
H=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{a}^{T} \mathbf{x}=b\right\} \quad\left(\mathbf{a} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}, b \in \mathbb{R}\right)
$$

The associated half-space is the set

$$
H^{-}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{a}^{T} \mathbf{x} \leq b\right\}
$$

Both hyperplanes and half-spaces are convex sets.

Convexity of Balls

Lemma. Let $\mathbf{c} \in \mathbb{R}^{n}$ and $r>0$. Then the open ball

$$
B(\mathbf{c}, r)=\left\{\mathbf{x} \in \mathbb{R}^{n}:\|\mathbf{x}-\mathbf{c}\|<r\right\}
$$

and the closed ball

$$
B[\mathbf{c}, r]=\left\{\mathbf{x} \in \mathbb{R}^{n}:\|\mathbf{x}-\mathbf{c}\| \leq r\right\}
$$

are convex.
Note that the norm is an arbitrary norm defined over \mathbb{R}^{n}. Proof. In class

I_{1}, I_{2} and I_{∞} balls

Convexity of Ellipsoids

An ellipsoid is a set of the form

$$
E=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{x}^{\top} \mathbf{Q} \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c \leq 0\right\}
$$

where $\mathbf{Q} \in \mathbb{R}^{n \times n}$ is positive semidefinite, $\mathbf{b} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$.
Lemma: E is convex.

Proof.

- Write E as $E=\left\{\mathbf{x} \in \mathbb{R}^{n}: f(\mathbf{x}) \leq 0\right\}$ where $f(\mathbf{x}) \equiv \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c$.
- Take $\mathbf{x}, \mathbf{y} \in E$ and $\lambda \in[0,1]$. Then $f(\mathbf{x}) \leq 0, f(\mathbf{y}) \leq 0$.
- The vector $\mathbf{z}=\lambda \mathbf{x}+(1-\lambda) \mathbf{y}$ satisfies $\mathbf{z}^{T} \mathbf{Q} \mathbf{z}=\lambda^{2} \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+(1-\lambda)^{2} \mathbf{y}^{T} \mathbf{Q} \mathbf{y}+2 \lambda(1-\lambda) \mathbf{x}^{T} \mathbf{Q} \mathbf{y}$.
- $\mathbf{x}^{\top} \mathbf{Q} \mathbf{y} \leq\left\|\mathbf{Q}^{1 / 2} \mathbf{x}\right\| \cdot\left\|\mathbf{Q}^{1 / 2} \mathbf{y}\right\|=\sqrt{\mathbf{x}^{\top} \mathbf{Q} \mathbf{x}} \sqrt{\mathbf{y}^{\top} \mathbf{Q} \mathbf{y}} \leq \frac{1}{2}\left(\mathbf{x}^{\top} \mathbf{Q} \mathbf{x}+\mathbf{y}^{\top} \mathbf{Q} \mathbf{y}\right)$
- $\mathbf{z}^{T} \mathbf{Q} \mathbf{z} \leq \lambda \mathbf{x}^{\top} \mathbf{Q} \mathbf{x}+(1-\lambda) \mathbf{y}^{\top} \mathbf{Q} \mathbf{y}$

$$
\begin{aligned}
f(\mathbf{z}) & =\mathbf{z}^{T} \mathbf{Q} \mathbf{z}+2 \mathbf{b}^{T} \mathbf{z}+c \\
& \leq \lambda \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+(1-\lambda) \mathbf{y}^{T} \mathbf{Q} \mathbf{y}+2 \lambda \mathbf{b}^{T} \mathbf{x}+2(1-\lambda) \mathbf{b}^{T} \mathbf{y}+\lambda c+(1-\lambda) c \\
& =\lambda f(\mathbf{x})+(1-\lambda) f(\mathbf{y}) \leq 0,
\end{aligned}
$$

Algebraic Operations Preserving Convexity

Lemma. Let $C_{i} \subseteq \mathbb{R}^{n}$ be a convex set for any $i \in I$ where I is an index set (possibly infinite). Then the set $\bigcap_{i \in I} C_{i}$ is convex.

Proof. In class

Example: Consider the set

$$
P=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{A} \mathbf{x} \leq \mathbf{b}\right\}
$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$. P is called a convex polyhedron and it is indeed convex. Why?

Algebraic Operations Preserving Convexity

preservation under addition, cartesian product, forward and inverse linear mappings

Theorem.

1. Let $C_{1}, C_{2}, \ldots, C_{k} \subseteq \mathbb{R}^{n}$ be convex sets and let $\mu_{1}, \mu_{2}, \ldots, \mu_{k} \in \mathbb{R}$. Then the set $\mu_{1} C_{1}+\mu_{2} C_{2}+\ldots+\mu_{k} C_{k}$ is convex.
2. Let $C_{i} \subseteq \mathbb{R}^{k_{i}}, i=1, \ldots, m$ be convex sets. Then the cartesian product

$$
C_{1} \times C_{2} \times \cdots \times C_{m}=\left\{\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m}\right): \mathbf{x}_{i} \in C_{i}, i=1,2, \ldots, m\right\}
$$

is convex.
3. Let $M \subseteq \mathbb{R}^{n}$ be a convex set and let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then the set

$$
\mathbf{A}(M)=\{\mathbf{A} \mathbf{x}: \mathbf{x} \in M\}
$$

is convex.
4. Let $D \subseteq \mathbb{R}^{m}$ be convex and let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then the set

$$
\mathbf{A}^{-1}(D)=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{A} \mathbf{x} \in D\right\}
$$

is convex.

Convex Combinations

Given m points $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m} \in \mathbb{R}^{n}$, a convex combination of these m points is a vector of the form $\lambda_{1} \mathbf{x}_{1}+\lambda_{2} \mathbf{x}_{2}+\cdots+\ldots+\lambda_{m} \mathbf{x}_{m}$, where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ are nonnegative numbers satisfying $\lambda_{1}+\lambda_{2}+\ldots+\lambda_{m}=1$.

- A convex set is defined by the property that any convex combination of two points from the set is also in the set.
- We will now show that a convex combination of any number of points from a convex set is in the set.

Convex Combinations

Theorem. Let $C \subseteq \mathbb{R}^{n}$ be a convex set and let $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m} \in C$. Then for any $\boldsymbol{\lambda} \in \Delta_{m}$, the relation $\sum_{i=1}^{m} \lambda_{i} \mathbf{x}_{i} \in C$ holds.

Proof by induction on m.

- For $m=1$ the result is obvious.
- The induction hypothesis is that for any m vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m} \in C$ and any $\boldsymbol{\lambda} \in \Delta_{m}$, the vector $\sum_{i=1}^{m} \lambda_{i} \mathbf{x}_{i}$ belongs to C. We will now prove the theorem for $m+1$ vectors.
- Suppose that $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m+1} \in C$ and that $\boldsymbol{\lambda} \in \Delta_{m+1}$. We will show that $\mathbf{z} \equiv \sum_{i=1}^{m+1} \lambda_{i} \mathbf{x}_{i} \in C$.
- If $\lambda_{m+1}=1$, then $\mathbf{z}=\mathbf{x}_{m+1} \in C$ and the result obviously follows.
- If $\lambda_{m+1}<1$ then
$\mathbf{z}=\sum_{i=1}^{m} \lambda_{i} \mathbf{x}_{i}+\lambda_{m+1} \mathbf{x}_{m+1}=\left(1-\lambda_{m+1}\right) \underbrace{\sum_{i=1}^{m} \frac{\lambda_{i}}{1-\lambda_{m+1}} \mathbf{x}_{i}}_{\mathbf{v}}+\lambda_{m+1} \mathbf{x}_{m+1}$.
- $\mathbf{v} \in C$ and hence $\mathbf{z}=\left(1-\lambda_{m+1}\right) \mathbf{v}+\lambda_{m+1} \mathbf{x}_{m+1} \in C$.

The Convex Hull

Definition. Let $S \subseteq \mathbb{R}^{n}$. The convex hull of S, denoted by $\operatorname{conv}(S)$, is the set comprising all the convex combinations of vectors from S :

$$
\operatorname{conv}(S) \equiv\left\{\sum_{i=1}^{k} \lambda_{i} \mathbf{x}_{i}: \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k} \in S, \boldsymbol{\lambda} \in \Delta_{k}\right\}
$$

Figure: A nonconvex set and its convex hull

The Convex Hull

The convex hull $\operatorname{conv}(S)$ is "smallest" convex set containing S.
Lemma. Let $S \subseteq \mathbb{R}^{n}$. If $S \subseteq T$ for some convex set T, then $\operatorname{conv}(S) \subseteq T$.

Proof.

- Suppose that indeed $S \subseteq T$ for some convex set T.
- To prove that $\operatorname{conv}(S) \subseteq T$, take $\mathbf{z} \in \operatorname{conv}(S)$.
- There exist $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k} \in S \subseteq T$ (where k is a positive integer), and $\boldsymbol{\lambda} \in \Delta_{k}$ such that $\mathbf{z}=\sum_{i=1}^{k} \lambda_{i} \mathbf{x}_{i}$.
- Since $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k} \in T$, it follows that $\mathbf{z} \in T$, showing the desired result.

Carathéodory theorem

Theorem. Let $S \subseteq \mathbb{R}^{n}$ and let $\mathbf{x} \in \operatorname{conv}(S)$. Then there exist $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n+1} \in S$ such that $\mathbf{x} \in \operatorname{conv}\left(\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n+1}\right\}\right)$, that is, there exist $\boldsymbol{\lambda} \in \Delta_{n+1}$ such that

$$
\mathbf{x}=\sum_{i=1}^{n+1} \lambda_{i} \mathbf{x}_{i} .
$$

Proof.

- Let $\mathbf{x} \in \operatorname{conv}(S)$. Then $\exists \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k} \in S$ and $\boldsymbol{\lambda} \in \Delta_{k}$ s.t.

$$
\mathbf{x}=\sum_{i=1}^{k} \lambda_{i} \mathbf{x}_{i}
$$

- We can assume that $\lambda_{i}>0$ for all $i=1,2, \ldots, k$.
- If $k \leq n+1$, the result is proven.
- Otherwise, if $k \geq n+2$, then the vectors $\mathbf{x}_{2}-\mathbf{x}_{1}, \mathbf{x}_{3}-\mathbf{x}_{1}, \ldots, \mathbf{x}_{k}-\mathbf{x}_{1}$, being more than n vectors in \mathbb{R}^{n}, are necessarily linearly dependent \Rightarrow $\exists \mu_{2}, \mu_{3}, \ldots, \mu_{k}$ not all zeros s.t.

Proof of Carathéodory Theorem Contd.

- Defining $\mu_{1}=-\sum_{i=2}^{k} \mu_{i}$, we obtain that

$$
\sum_{i=1}^{k} \mu_{i} \mathbf{x}_{i}=\mathbf{0}
$$

- Not all of the coefficients $\mu_{1}, \mu_{2}, \ldots, \mu_{k}$ are zeros and $\sum_{i=1}^{k} \mu_{i}=0$.
- There exists an index i for which $\mu_{i}<0$. Let $\alpha \in \mathbb{R}_{+}$. Then

$$
\begin{equation*}
\mathbf{x}=\sum_{i=1}^{k} \lambda_{i} \mathbf{x}_{i}=\sum_{i=1}^{k} \lambda_{i} \mathbf{x}_{i}+\alpha \sum_{i=1}^{k} \mu_{i} \mathbf{x}_{i}=\sum_{i=1}^{k}\left(\lambda_{i}+\alpha \mu_{i}\right) \mathbf{x}_{i} . \tag{1}
\end{equation*}
$$

- We have $\sum_{i=1}^{k}\left(\lambda_{i}+\alpha \mu_{i}\right)=1$, so (1) is a convex combination representation iff

$$
\begin{equation*}
\lambda_{i}+\alpha \mu_{i} \geq 0 \text { for all } i=1, \ldots, k . \tag{2}
\end{equation*}
$$

- Since $\lambda_{i}>0$ for all i, it follows that (2) is satisfied for all $\alpha \in[0, \varepsilon]$ where $\varepsilon=\min _{i: \mu_{i}<0}\left\{-\frac{\lambda_{i}}{\mu_{i}}\right\}$.

Proof of Carathéodory Theorem Contd.

- If we substitute $\alpha=\varepsilon$, then (2) still holds, but $\lambda_{j}+\varepsilon \mu_{j}=0$ for $j \in \underset{i: \mu_{i}<0}{\operatorname{argmin}}\left\{-\frac{\mu_{i}}{\lambda_{i}}\right\}$.
- This means that we found a representation of \mathbf{x} as a convex combination of $k-1$ (or less) vectors.
- This process can be carried on until a representation of \mathbf{x} as a convex combination of no more than $n+1$ vectors is derived.

Example

For $n=2$, consider the four vectors

$$
x_{1}=\binom{1}{1}, x_{2}=\binom{1}{2}, x_{3}=\binom{2}{1}, x_{4}=\binom{2}{2},
$$

and let $\mathbf{x} \in \operatorname{conv}\left(\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{4}\right\}\right)$ be given by

$$
\mathbf{x}=\frac{1}{8} \mathbf{x}_{1}+\frac{1}{4} \mathbf{x}_{2}+\frac{1}{2} \mathbf{x}_{3}+\frac{1}{8} \mathbf{x}_{4}=\binom{\frac{13}{8}}{\frac{11}{8}} .
$$

Find a representation of \mathbf{x} as a convex combination of no more than 3 vectors. In class

Convex Cones

- A set S is called a cone if it satisfies the following property: for any $\mathbf{x} \in S$ and $\lambda \geq 0$, the inclusion $\lambda \mathbf{x} \in S$ is satisfied.
- The following lemma shows that there is a very simple and elegant characterization of convex cones.

Lemma. A set S is a convex cone if and only if the following properties hold:

$$
\begin{aligned}
& \text { A. } \mathbf{x}, \mathbf{y} \in S \Rightarrow \mathbf{x}+\mathbf{y} \in S . \\
& \text { B. } \mathbf{x} \in S, \lambda \geq 0 \Rightarrow \lambda \mathbf{x} \in S .
\end{aligned}
$$

Simple exercise

Examples of Convex Cones

- The convex polytope

$$
C=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{A} \mathbf{x} \leq \mathbf{0}\right\},
$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$.

- Lorentz Cone The Lorenz cone, or ice cream cone is given by

$$
L^{n}=\left\{\binom{\mathbf{x}}{t} \in \mathbb{R}^{n+1}:\|\mathbf{x}\| \leq t, \mathbf{x} \in \mathbb{R}^{n}, t \in \mathbb{R}\right\} .
$$

- nonnegative polynomials. set consisting of all possible coefficients of polynomials of degree $n-1$ which are nonnegative over \mathbb{R} :

$$
K^{n}=\left\{\mathbf{x} \in \mathbb{R}^{n}: x_{1} t^{n-1}+x_{2} t^{n-2}+\ldots+x_{n-1} t+x_{n} \geq 0 \forall t \in \mathbb{R}\right\}
$$

The Conic Hull

Definition. Given m points $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m} \in \mathbb{R}^{n}$, a conic combination of these m points is a vector of the form $\lambda_{1} \mathbf{x}_{1}+\lambda_{2} \mathbf{x}_{2}+\cdots+\lambda_{m} \mathbf{x}_{m}$, where $\lambda \in \mathbb{R}_{+}^{m}$.

The definition of the conic hull is now quite natural.
Definition. Let $S \subseteq \mathbb{R}^{n}$. Then the conic hull of S, denoted by cone (S) is the set comprising all the conic combinations of vectors from S :

$$
\operatorname{cone}(S) \equiv\left\{\sum_{i=1}^{k} \lambda_{i} \mathbf{x}_{i}: \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k} \in S, \boldsymbol{\lambda} \in \mathbb{R}_{+}^{k}\right\}
$$

Similarly to the convex hull, the conic hull of a set S is the smallest cone containing S.

Lemma. Let $S \subseteq \mathbb{R}^{n}$. If $S \subseteq T$ for some convex cone T, then cone $(S) \subseteq$ T.

Representation Theorem for Conic Hulls

a similar result to Carathéodory theorem
Conic Representation Theorem. Let $S \subseteq \mathbb{R}^{n}$ and let $\mathbf{x} \in \operatorname{cone}(S)$. Then there exist k linearly independent vector $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k} \in S$ such that $\mathbf{x} \in$ cone $\left(\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}\right\}\right)$, that is, there exist $\boldsymbol{\lambda} \in \mathbb{R}_{+}^{k}$ such that

$$
\mathbf{x}=\sum_{i=1}^{k} \lambda_{i} \mathbf{x}_{i}
$$

In particular, $k \leq n$.
Proof very similar to the proof of Carathéodory theorem. See page 107 of the book for the proof.

Basic Feasible Solutions

- Consider the convex polyhedron.

$$
P=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{A} \mathbf{x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}\right\}, \quad\left(\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}\right)
$$

- the rows of \mathbf{A} are assumed to be linearly independent.
- The above is a standard formulation of the constraints of a linear programming problem.

Definition. $\overline{\mathbf{x}}$ is a basic feasible solution (abbreviated bfs) of P if the columns of \mathbf{A} corresponding to the indices of the positive values of $\overline{\mathbf{x}}$ are linearly independent.

Example.Consider the linear system:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =6 \\
x_{2}+x_{4} & =3 \\
x_{1}, x_{2}, x_{3}, x_{4} & \geq 0
\end{aligned}
$$

Find all the basic feasible solutions. In class

Existence of bfs's

Theorem. Let $P=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{A x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}\right\}$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$. If $P \neq \emptyset$, then it contains at least one bfs.

Proof.

- $P \neq \emptyset \Rightarrow \mathbf{b} \in \operatorname{cone}\left(\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{n}\right\}\right)$ where \mathbf{a}_{i} denotes the i-th column of \mathbf{A}.
- By the conic representation theorem, there exist indices $i_{1}<i_{2}<\ldots<i_{k}$ and k numbers $y_{i_{1}}, y_{i_{2}}, \ldots, y_{i_{k}} \geq 0$ such that $\mathbf{b}=\sum_{j=1}^{k} y_{i_{j}} \mathbf{a}_{i_{j}}$ and $\mathbf{a}_{i_{1}}, \mathbf{a}_{i_{2}}, \ldots, \mathbf{a}_{i_{k}}$ are linearly independent.
- Denote $\overline{\mathbf{x}}=\sum_{j=1}^{k} y_{i_{j}} \mathbf{e}_{\mathrm{e}_{j}}$. Then obviously $\overline{\mathbf{x}} \geq \mathbf{0}$ and in addition

$$
\mathbf{A} \overline{\mathbf{x}}=\sum_{j=1}^{k} y_{i_{j}} \mathbf{A} \mathbf{e}_{i_{j}}=\sum_{j=1}^{k} y_{i j} \mathbf{a}_{i j}=\mathbf{b} .
$$

- Therefore, $\overline{\mathbf{x}}$ is contained in P and the columns of \mathbf{A} corresponding to the indices of the positive components of $\overline{\mathbf{x}}$ are linearly independent, meaning that P contains a bfs.

Topological Properties of Convex Sets

Theorem. Let $C \subseteq \mathbb{R}^{n}$ be a convex set. Then $\operatorname{cl}(C)$ is a convex set.

Proof.

- Let $\mathbf{x}, \mathbf{y} \in \operatorname{cl}(C)$ and let $\lambda \in[0,1]$.
- There exist sequences $\left\{\mathbf{x}_{k}\right\}_{k \geq 0} \subseteq C$ and $\left\{\mathbf{y}_{k}\right\}_{k \geq 0} \subseteq C$ for which $\mathbf{x}_{k} \rightarrow \mathbf{x}$ and $\mathbf{y}_{k} \rightarrow \mathbf{y}$ as $k \rightarrow \infty$.
- (*) $\lambda \mathbf{x}_{k}+(1-\lambda) \mathbf{y}_{k} \in C$ for any $k \geq 0$.
- $\left.{ }^{* *}\right) \lambda \mathbf{x}_{k}+(1-\lambda) \mathbf{y}_{k} \rightarrow \lambda \mathbf{x}+(1-\lambda) \mathbf{y}$.
- $\left({ }^{*}\right)+\left({ }^{* *}\right) \Rightarrow \lambda \mathbf{x}+(1-\lambda) \mathbf{y} \in \operatorname{cl}(C)$.

The Line Segment Principle

Theorem. Let C be a convex set and assume that $\operatorname{int}(C) \neq \emptyset$. Suppose that $\mathbf{x} \in \operatorname{int}(C)$ and $\mathbf{y} \in \operatorname{cl}(C)$. Then $(1-\lambda) \mathbf{x}+\lambda \mathbf{y} \in \operatorname{int}(C)$ for any $\lambda \in[0,1)$.

Proof.

- There exists $\varepsilon>0$ such that $B(\mathbf{x}, \varepsilon) \subseteq C$.
- Let $\mathbf{z}=(1-\lambda) \mathbf{x}+\lambda \mathbf{y}$. We will show that $B(\mathbf{z},(1-\lambda) \varepsilon) \subseteq C$.
- Let $\mathbf{w} \in B(\mathbf{z},(1-\lambda) \varepsilon)$. Since $\mathbf{y} \in \operatorname{cl}(C), \exists \mathbf{w}_{1} \in C$ s.t.

$$
\begin{equation*}
\left\|\mathbf{w}_{1}-\mathbf{y}\right\|<\frac{(1-\lambda) \varepsilon-\|\mathbf{w}-\mathbf{z}\|}{\lambda} . \tag{3}
\end{equation*}
$$

- Set $\mathbf{w}_{2}=\frac{1}{1-\lambda}\left(\mathbf{w}-\lambda \mathbf{w}_{1}\right)$. Then

$$
\begin{aligned}
\left\|\mathbf{w}_{2}-\mathbf{x}\right\| & =\left\|\frac{\mathbf{w}-\lambda \mathbf{w}_{1}}{1-\lambda}-\mathbf{x}\right\|=\frac{1}{1-\lambda}\left\|(\mathbf{w}-\mathbf{z})+\lambda\left(\mathbf{y}-\mathbf{w}_{1}\right)\right\| \\
& \leq \frac{1}{1-\lambda}\left(\|\mathbf{w}-\mathbf{z}\|+\lambda\left\|\mathbf{w}_{1}-\mathbf{y}\right\|\right) \stackrel{(3)}{<} \varepsilon
\end{aligned}
$$

- Hence, since $B(\mathbf{x}, \varepsilon) \subseteq C$, it follows that $\mathbf{w}_{2} \in C$. Finally, since $\mathbf{w}=\lambda \mathbf{w}_{1}+(1-\lambda) \mathbf{w}_{2}$ with $\mathbf{w}_{1}, \mathbf{w}_{2} \in C$, we have that $\mathbf{w} \in C$.

Convexity of the Interior

Theorem. Let $C \subseteq \mathbb{R}^{n}$ be a convex set. Then $\operatorname{int}(C)$ is convex.

Proof.

- If $\operatorname{int}(C)=\emptyset$, then the theorem is obviously true.
- Otherwise, let $\mathbf{x}_{1}, \mathbf{x}_{2} \in \operatorname{int}(C)$, and let $\lambda \in(0,1)$.
- By the LSP, $\lambda \mathbf{x}_{1}+(1-\lambda) \mathbf{x}_{2} \in \operatorname{int}(C)$, establishing the convexity of $\operatorname{int}(C)$.

Combination of Closure and Interior

Lemma. Let C be a convex set with a nonempty interior. Then

$$
\begin{aligned}
& \text { 1. } \operatorname{cl}(\operatorname{int}(C))=\operatorname{cl}(C) . \\
& \text { 2. } \operatorname{int}(\operatorname{cl}(C))=\operatorname{int}(C) .
\end{aligned}
$$

Proof of 1.

- Obviously, $\operatorname{cl}(\operatorname{int}(C)) \subseteq \operatorname{cl}(C)$ holds.
- To prove that opposite, let $\mathbf{x} \in \operatorname{cl}(C), \mathbf{y} \in \operatorname{int}(C)$.
- Then $\mathbf{x}_{k}=\frac{1}{k} \mathbf{y}+\left(1-\frac{1}{k}\right) \mathbf{x} \in \operatorname{int}(C)$ for any $k \geq 1$.
- Since \mathbf{x} is the limit (as $k \rightarrow \infty$) of the sequence $\left\{\mathbf{x}_{k}\right\}_{k \geq 1} \subseteq \operatorname{int}(C)$, it follows that $\mathbf{x} \in \operatorname{cl}(\operatorname{int}(C))$.
For the proof of 2 , see pages 109,110 of the book for the proof of Lemma 6.30(b).

Compactness of the Convex Hull of Convex Sets

Theorem. Let $S \subseteq \mathbb{R}^{n}$ be a compact set. Then $\operatorname{conv}(S)$ is compact.

Proof.

- $\exists M>0$ such that $\|\mathbf{x}\| \leq M$ for any $\mathbf{x} \in S$.
- Let $\mathbf{y} \in \operatorname{conv}(S)$. Then there exist $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n+1} \in S$ and $\boldsymbol{\lambda} \in \Delta_{n+1}$ for which $\mathbf{y}=\sum_{i=1}^{n+1} \lambda_{i} \mathbf{x}_{i}$ and therefore

$$
\|\mathbf{y}\|=\left\|\sum_{i=1}^{n+1} \lambda_{i} \mathbf{x}_{i}\right\| \leq \sum_{i=1}^{n+1} \lambda_{i}\left\|\mathbf{x}_{i}\right\| \leq M \sum_{i=1}^{n+1} \lambda_{i}=M
$$

establishing the boundedness of $\operatorname{conv}(S)$.

- To prove the closedness of $\operatorname{conv}(S)$, let $\left\{\mathbf{y}_{k}\right\}_{k \geq 1} \subseteq \operatorname{conv}(S)$ be a sequence converging to $\mathbf{y} \in \mathbb{R}^{n}$.
- There exist $\mathbf{x}_{1}^{k}, \mathbf{x}_{2}^{k}, \ldots, \mathbf{x}_{n+1}^{k} \in S$ and $\lambda^{k} \in \Delta_{n+1}$ such that

$$
\begin{equation*}
\mathbf{y}_{k}=\sum_{i=1}^{n+1} \lambda_{i}^{k} \mathbf{x}_{i}^{k} . \tag{4}
\end{equation*}
$$

Proof Contd.

- By the compactness of S and Δ_{n+1}, it follows that $\left\{\left(\lambda^{k}, \mathbf{x}_{1}^{k}, \mathbf{x}_{2}^{k}, \ldots, \mathbf{x}_{n+1}^{k}\right)\right\}_{k \geq 1}$ has a convergent subsequence $\left\{\left(\boldsymbol{\lambda}^{k_{j}}, \mathbf{x}_{1}^{k_{j}}, \mathbf{x}_{2}^{k_{j}}, \ldots, \mathbf{x}_{n+1}^{k_{j}}\right)\right\}_{j \geq 1}$ whose limit will be denoted by

$$
\left(\boldsymbol{\lambda}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n+1}\right)
$$

with $\boldsymbol{\lambda} \in \Delta_{n+1}, \mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n+1} \in S$

- Taking the limit $j \rightarrow \infty$ in

$$
\mathbf{y}_{k_{j}}=\sum_{i=1}^{n+1} \lambda_{i}^{k_{j}} \mathbf{x}_{i}^{k_{j}}
$$

we obtain that $\mathbf{y}=\sum_{i=1}^{n+1} \lambda_{i} \mathbf{x}_{i} \in \operatorname{conv}(S)$ as required.

Example: $S=\left\{(0,0)^{T}\right\} \cup\left\{(x, y)^{T}: x y \geq 1\right\}$

Closedness of the Conic Hull of a Finite Set

Theorem. Let $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{k} \in \mathbb{R}^{n}$. Then $\operatorname{cone}\left(\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{k}\right\}\right)$ is closed.

Proof.

- By the conic representation theorem, each element of cone($\left.\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{k}\right\}\right)$ can be represented as a conic combination of a linearly independent subset of $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{k}\right\}$.
- Therefore, if $S_{1}, S_{2}, \ldots, S_{N}$ are all the subsets of $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{k}\right\}$ comprising linearly independent vectors, then

$$
\operatorname{cone}\left(\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{k}\right\}\right)=\bigcup_{i=1}^{N} \operatorname{cone}\left(S_{i}\right) .
$$

- It is enough to show that cone $\left(S_{i}\right)$ is closed for any $i \in\{1,2, \ldots, N\}$. Indeed, let $i \in\{1,2, \ldots, N\}$. Then

$$
S_{i}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{m}\right\},
$$

where $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{m}$ are linearly independent.

- cone $\left(S_{i}\right)=\left\{\mathbf{B y}: \mathbf{y} \in \mathbb{R}_{+}^{m}\right\}$, where \mathbf{B} is the matrix whose columns are $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{m}$.

Proof Contd.

- Suppose that $\mathbf{x}_{k} \in \operatorname{cone}\left(S_{i}\right)$ for all $k \geq 1$ and that $\mathbf{x}_{k} \rightarrow \overline{\mathbf{x}}$.
- $\exists \mathbf{y}_{k} \in \mathbb{R}_{+}^{m}$ such that

$$
\begin{equation*}
\mathbf{x}_{k}=\mathbf{B y}_{k} . \tag{5}
\end{equation*}
$$

$$
\mathbf{y}_{k}=\left(\mathbf{B}^{T} \mathbf{B}\right)^{-1} \mathbf{B}^{T} \mathbf{x}_{k} .
$$

- Taking the limit as $k \rightarrow \infty$ in the last equation, we obtain that $\mathbf{y}_{k} \rightarrow \overline{\mathbf{y}}$ where $\overline{\mathbf{y}}=\left(\mathbf{B}^{\top} \mathbf{B}\right)^{-1} \mathbf{B}^{\top} \overline{\mathbf{x}}$.
- $\overline{\mathbf{y}} \in \mathbb{R}_{+}^{m}$.
- Thus, taking the limit in (5), we conclude that $\overline{\mathbf{x}}=\mathbf{B} \overline{\mathbf{y}}$ with $\overline{\mathbf{y}} \in \mathbb{R}_{+}^{m}$, and hence $\overline{\mathbf{x}} \in \operatorname{cone}\left(S_{i}\right)$.

Extreme Points

Definition. Let $S \subseteq \mathbb{R}^{n}$ be a convex set. A point $\mathbf{x} \in S$ is called an extreme point of S if there do not exist $\mathbf{x}_{1}, \mathbf{x}_{2} \in S\left(\mathbf{x}_{1} \neq \mathbf{x}_{2}\right)$ and $\lambda \in(0,1)$, such that $\mathbf{x}=\lambda \mathbf{x}_{1}+(1-\lambda) \mathbf{x}_{2}$.

- The set of extreme point is denoted by ext(S).
- For example, the set of extreme points of a convex polytope consists of all its vertices.

Equivalence Between bfs's and Extreme Points

Theorem. Let $P=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{A x}=\mathbf{b}, \mathbf{x} \geq \mathbf{0}\right\}$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$ has linearly independent rows and $\mathbf{b} \in \mathbb{R}^{m}$. The $\overline{\mathbf{x}}$ is a basic feasible solution of P if and only if it is an extreme point of P.

Theorem 6.34 in the book.

Krein-Milman Theorem

Theorem. Let $S \subseteq \mathbb{R}^{n}$ be a compact convex set. Then

$$
S=\operatorname{conv}(\operatorname{ext}(S))
$$

