
Lecture 5 - Newton’s Method

Objective: find an optimal solution of the problem

min{f (x) : x ∈ Rn}.

• f is twice continuously differentiable over Rn.

I Given xk , the next iterate xk+1 is chosen to minimize the quadratic
approximation of the function around xk :

xk+1 = argmin
x∈Rn

{
f (xk) +∇f (xk)T (x− xk) +

1

2
(x− xk)T∇2f (xk)(x− xk)

}
.

This formula is not well-defined in general.

I If ∇2f (xk) � 0,
xk+1 = xk − (∇2f (xk))−1∇f (xk).

I The vector −(∇2f (xk))−1∇f (xk) is called Newton’s direction
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Pure Newton’s Method

Pure Newton’s Method

Input: ε > 0 - tolerance parameter.

Initialization: pick x0 ∈ Rn arbitrarily.
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) Compute the Newton direction dk , which is the solution to the linear
system ∇2f (xk)dk = −∇f (xk).

(b) Set xk+1 = xk + dk .

(c) if ‖∇f (xk+1)‖ ≤ ε, then STOP and xk+1 is the output.
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(non)Convergence of Newton’s method

I At the very least, Newton’s method requires that ∇2f (x) � 0 for every
x ∈ Rn, which in particular implies that there exists a unique optimal solution
x∗. However, this is not enough to guarantee convergence.

Example: f (x) =
√

1 + x2. The minimizer of f over R is of course x = 0. The
first and second derivatives of f are:

f ′(x) =
x√

1 + x2
, f ′′(x) =

1

(1 + x2)3/2
.

Therefore, (pure) Newton’s method has the form

xk+1 = xk −
f ′(xk)

f ′′(xk)
= xk − xk(1 + x2k ) = −x3k .

Divergence when |x0| ≥ 1, fast convergence when |x0| < 1.
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convergence of Newton’s method

I A lot of assumptions are required to be made in order to guarantee
convergence of the method.

I However, Newton’s method does have one very attractive feature – under
certain assumptions one can prove local quadratic rate of convergence, which
means that near the optimal solution the errors ek = ‖xk − x∗‖ satisfy an
inequality ek+1 ≤ Me2k for some positive M > 0.

I This property essentially means that the number of accuracy digits is doubled
at each iteration.

I This is in contrast to the gradient method in which the convergence theorems
are rather independent in the starting point, but only ”relatively” slow linear
convergence is assured.
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Thm: Quadratic Convergence of Newton’s Method

Theorem. Let f be a twice continuously differentiable function defined over
Rn. Assume that

I There exists m > 0 for which ∇2f (x) � mI for any x ∈ Rn.

I There exists L > 0 for which ‖∇2f (x)−∇2f (y)‖ ≤ L‖x− y‖ for any
x, y ∈ Rn.

Let {xk}k≥0 be the sequence generated by Newton’s method and let x∗ be
the unique minimizer of f over Rn. Then for any k = 0, 1, . . . the inequality

‖xk+1 − x∗‖ ≤ L

2m
‖xk+1 − x∗‖2

holds. In addition, if ‖x0 − x∗‖ ≤ m
L , then:

‖xk − x∗‖ ≤ 2m

L

(
1

4

)2k

, k = 0, 1, 2, . . .

See proof of Theorem 5.2 on page 85 of the book.
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Numerical Example

Consider the minimization problem

min 100x4 + 0.01y4,

I optimal solution: (x , y) = (0, 0).

I poorly scaled problem

>> f=@(x)100*x(1)^4+0.01*x(2)^4;

>> g=@(x)[400*x(1)^3;0.04*x(2)^3];

>> [x,fun_val]=gradient_method_backtracking(f,g,[1;1],1,0.5,0.5,1e-6)

iter_number = 1 norm_grad = 90.513620 fun_val = 13.799181

iter_number = 2 norm_grad = 32.381098 fun_val = 3.511932

iter_number = 3 norm_grad = 11.472585 fun_val = 0.887929

: : :

iter_number = 14611 norm_grad = 0.000001 fun_val = 0.000000

iter_number = 14612 norm_grad = 0.000001 fun_val = 0.000000
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Numerical Example Contd.

Invoking pure Newton’s method we obtain convergence after only 17 iterations.

>>h=@(x)[1200*x(1)^2,0;0,0.12*x(2)^2];

>>pure_newton(f,g,h,[1;1],1e-6)

iter= 1 f(x)=19.7550617284

iter= 2 f(x)=3.9022344155

iter= 3 f(x)=0.7708117364

: :

iter= 15 f(x)=0.0000000027

iter= 16 f(x)=0.0000000005

iter= 17 f(x)=0.0000000001
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Numerical Example 2
Consider the minimization problem

min
√
x21 + 1 +

√
x22 + 1,

I Optimal solution x = 0.
I The Hessian of the function is

∇2f (x) =

(
1

(x2
1+1)3/2

0

0 1
(x2

2+1)3/2

)
� 0,

but there does not exists an m > 0 for which ∇2f (x) � mI.
>>f=@(x)sqrt(1+x(1)^2)+sqrt(1+x(2)^2)

>>g=@(x)[x(1)/sqrt(x(1)^2+1);x(2)/sqrt(x(2)^2+1)];

>>h=@(x)diag([1/(x(1)^2+1)^1.5,1/(x(2)^2+1)^1.5]);

>>pure_newton(f,g,h,[1;1],1e-8)

iter= 1 f(x)=2.8284271247

iter= 2 f(x)=2.8284271247

: :

iter= 30 f(x)=2.8105247315

iter= 31 f(x)=2.7757389625

iter= 32 f(x)=2.6791717153

iter= 33 f(x)=2.4507092918

iter= 34 f(x)=2.1223796622

iter= 35 f(x)=2.0020052756

iter= 36 f(x)=2.0000000081

iter= 37 f(x)=2.0000000000
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Numerical Example 2 Contd.

Gradient method with backtracking and parameters (s, α, β) = (1, 0.5, 0.5)
converges after only 7 iterations.

>>[x,fun_val]=gradient_method_backtracking(f,g,[1;1],1,0.5,0.5,1e-8);

iter_number = 1 norm_grad = 0.397514 fun_val = 2.084022

iter_number = 2 norm_grad = 0.016699 fun_val = 2.000139

iter_number = 3 norm_grad = 0.000001 fun_val = 2.000000

iter_number = 4 norm_grad = 0.000001 fun_val = 2.000000

iter_number = 5 norm_grad = 0.000000 fun_val = 2.000000

iter_number = 6 norm_grad = 0.000000 fun_val = 2.000000

iter_number = 7 norm_grad = 0.000000 fun_val = 2.000000
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Numerical Example 2 Contd. Starting from (10; 10)

>>[x,fun_val]=gradient_method_backtracking(f,g,[10;10],1,0.5,0.5,1e-8);

iter_number = 1 norm_grad = 1.405573 fun_val = 18.120635

iter_number = 2 norm_grad = 1.403323 fun_val = 16.146490

: : :

iter_number = 12 norm_grad = 0.000049 fun_val = 2.000000

iter_number = 13 norm_grad = 0.000000 fun_val = 2.000000

>>pure_newton(f,g,h,[10;10],1e-8);

iter= 1 f(x)=2000.0009999997

iter= 2 f(x)=1999999999.9999990000

iter= 3 f(x)=1999999999999997300000000000.0000000

iter= 4 f(x)=199999999999999230000000000000000000....

iter= 5 f(x)= Inf

I Newton’s method seem to be unreliable – partly since no stepsize was defined.
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Damped Newton’s Method

Damped Newton’s Method

Input: (α, β) - parameters for the backtracking procedure
(α ∈ (0, 1), β ∈ (0, 1))
ε > 0 - tolerance parameter.

Initialization: pick x0 ∈ Rn arbitrarily.
General step: for any k = 0, 1, 2, . . . execute the following steps:

(a) compute the Newton direction dk , which is the solution to the linear
system ∇2f (xk)dk = −∇f (xk).

(b) set tk = 1. While

f (xk)− f (xk + tkdk) < −αtk∇f (xk)Tdk .

set tk := βtk

(c) xk+1 = xk + tkdk .

(c) if ‖∇f (xk+1)‖ ≤ ε, then STOP and xk+1 is the output.
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Numerical Example 2 Contd. Starting from (10; 10)

Using damped Newton’s method:

>>newton_backtracking(f,g,h,[10;10],0.5,0.5,1e-8);

iter= 1 f(x)=4.6688169339

iter= 2 f(x)=2.4101973721

iter= 3 f(x)=2.0336386321

: :

iter= 16 f(x)=2.0000000005

iter= 17 f(x)=2.0000000000
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