## Lecture 5 - Newton's Method

Objective: find an optimal solution of the problem

$$
\min \left\{f(\mathbf{x}): \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

- $f$ is twice continuously differentiable over $\mathbb{R}^{n}$.


## Lecture 5 - Newton's Method

Objective: find an optimal solution of the problem

$$
\min \left\{f(\mathbf{x}): \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

- $f$ is twice continuously differentiable over $\mathbb{R}^{n}$.
- Given $\mathbf{x}_{k}$, the next iterate $\mathbf{x}_{k+1}$ is chosen to minimize the quadratic approximation of the function around $\mathbf{x}_{k}$ :

$$
\mathbf{x}_{k+1}=\underset{\mathbf{x} \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{f\left(\mathbf{x}_{k}\right)+\nabla f\left(\mathbf{x}_{k}\right)^{T}\left(\mathbf{x}-\mathbf{x}_{k}\right)+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{k}\right)^{T} \nabla^{2} f\left(\mathbf{x}_{k}\right)\left(\mathbf{x}-\mathbf{x}_{k}\right)\right\} .
$$

This formula is not well-defined in general.

## Lecture 5 - Newton's Method

Objective: find an optimal solution of the problem

$$
\min \left\{f(\mathbf{x}): \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

- $f$ is twice continuously differentiable over $\mathbb{R}^{n}$.
- Given $\mathbf{x}_{k}$, the next iterate $\mathbf{x}_{k+1}$ is chosen to minimize the quadratic approximation of the function around $\mathbf{x}_{k}$ :

$$
\mathbf{x}_{k+1}=\underset{\mathbf{x} \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{f\left(\mathbf{x}_{k}\right)+\nabla f\left(\mathbf{x}_{k}\right)^{T}\left(\mathbf{x}-\mathbf{x}_{k}\right)+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{k}\right)^{T} \nabla^{2} f\left(\mathbf{x}_{k}\right)\left(\mathbf{x}-\mathbf{x}_{k}\right)\right\} .
$$

This formula is not well-defined in general.

- If $\nabla^{2} f\left(\mathbf{x}_{k}\right) \succ \mathbf{0}$,

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\left(\nabla^{2} f\left(\mathbf{x}_{k}\right)\right)^{-1} \nabla f\left(\mathbf{x}_{k}\right)
$$

## Lecture 5 - Newton's Method

Objective: find an optimal solution of the problem

$$
\min \left\{f(\mathbf{x}): \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

- $f$ is twice continuously differentiable over $\mathbb{R}^{n}$.
- Given $\mathbf{x}_{k}$, the next iterate $\mathbf{x}_{k+1}$ is chosen to minimize the quadratic approximation of the function around $\mathbf{x}_{k}$ :

$$
\mathbf{x}_{k+1}=\underset{\mathbf{x} \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{f\left(\mathbf{x}_{k}\right)+\nabla f\left(\mathbf{x}_{k}\right)^{T}\left(\mathbf{x}-\mathbf{x}_{k}\right)+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{k}\right)^{T} \nabla^{2} f\left(\mathbf{x}_{k}\right)\left(\mathbf{x}-\mathbf{x}_{k}\right)\right\} .
$$

This formula is not well-defined in general.

- If $\nabla^{2} f\left(\mathbf{x}_{k}\right) \succ \mathbf{0}$,

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\left(\nabla^{2} f\left(\mathbf{x}_{k}\right)\right)^{-1} \nabla f\left(\mathbf{x}_{k}\right)
$$

- The vector $-\left(\nabla^{2} f\left(\mathbf{x}_{k}\right)\right)^{-1} \nabla f\left(\mathbf{x}_{k}\right)$ is called Newton's direction


## Pure Newton's Method

## Pure Newton's Method

Input: $\varepsilon>0$ - tolerance parameter.
Initialization: pick $\mathbf{x}_{0} \in \mathbb{R}^{n}$ arbitrarily.
General step: for any $k=0,1,2, \ldots$ execute the following steps:
(a) Compute the Newton direction $\mathbf{d}_{k}$, which is the solution to the linear system $\nabla^{2} f\left(\mathbf{x}_{k}\right) \mathbf{d}_{k}=-\nabla f\left(\mathbf{x}_{k}\right)$.
(b) Set $\mathbf{x}_{k+1}=\mathbf{x}_{k}+\mathbf{d}_{k}$.
(c) if $\left\|\nabla f\left(\mathbf{x}_{k+1}\right)\right\| \leq \varepsilon$, then STOP and $\mathbf{x}_{k+1}$ is the output.

## (non)Convergence of Newton's method

- At the very least, Newton's method requires that $\nabla^{2} f(\mathbf{x}) \succ \mathbf{0}$ for every $\mathbf{x} \in \mathbb{R}^{n}$, which in particular implies that there exists a unique optimal solution $\mathbf{x}^{*}$. However, this is not enough to guarantee convergence.


## (non)Convergence of Newton's method

- At the very least, Newton's method requires that $\nabla^{2} f(\mathbf{x}) \succ \mathbf{0}$ for every $\mathbf{x} \in \mathbb{R}^{n}$, which in particular implies that there exists a unique optimal solution $\mathbf{x}^{*}$. However, this is not enough to guarantee convergence.
Example: $f(x)=\sqrt{1+x^{2}}$. The minimizer of $f$ over $\mathbb{R}$ is of course $x=0$. The first and second derivatives of $f$ are:

$$
f^{\prime}(x)=\frac{x}{\sqrt{1+x^{2}}}, f^{\prime \prime}(x)=\frac{1}{\left(1+x^{2}\right)^{3 / 2}} .
$$

Therefore, (pure) Newton's method has the form

$$
x_{k+1}=x_{k}-\frac{f^{\prime}\left(x_{k}\right)}{f^{\prime \prime}\left(x_{k}\right)}=x_{k}-x_{k}\left(1+x_{k}^{2}\right)=-x_{k}^{3} .
$$

## (non)Convergence of Newton's method

- At the very least, Newton's method requires that $\nabla^{2} f(\mathbf{x}) \succ \mathbf{0}$ for every $\mathbf{x} \in \mathbb{R}^{n}$, which in particular implies that there exists a unique optimal solution $\mathbf{x}^{*}$. However, this is not enough to guarantee convergence.
Example: $f(x)=\sqrt{1+x^{2}}$. The minimizer of $f$ over $\mathbb{R}$ is of course $x=0$. The first and second derivatives of $f$ are:

$$
f^{\prime}(x)=\frac{x}{\sqrt{1+x^{2}}}, f^{\prime \prime}(x)=\frac{1}{\left(1+x^{2}\right)^{3 / 2}} .
$$

Therefore, (pure) Newton's method has the form

$$
x_{k+1}=x_{k}-\frac{f^{\prime}\left(x_{k}\right)}{f^{\prime \prime}\left(x_{k}\right)}=x_{k}-x_{k}\left(1+x_{k}^{2}\right)=-x_{k}^{3} .
$$

Divergence when $\left|x_{0}\right| \geq 1$, fast convergence when $\left|x_{0}\right|<1$.

## convergence of Newton's method

- A lot of assumptions are required to be made in order to guarantee convergence of the method.
- However, Newton's method does have one very attractive feature - under certain assumptions one can prove local quadratic rate of convergence, which means that near the optimal solution the errors $e_{k}=\left\|\mathbf{x}_{k}-\mathbf{x}^{*}\right\|$ satisfy an inequality $e_{k+1} \leq M e_{k}^{2}$ for some positive $M>0$.
- This property essentially means that the number of accuracy digits is doubled at each iteration.
- This is in contrast to the gradient method in which the convergence theorems are rather independent in the starting point, but only "relatively" slow linear convergence is assured.


## Thm: Quadratic Convergence of Newton's Method

Theorem. Let $f$ be a twice continuously differentiable function defined over $\mathbb{R}^{n}$. Assume that

- There exists $m>0$ for which $\nabla^{2} f(\mathbf{x}) \succeq m \mathbf{l}$ for any $\mathbf{x} \in \mathbb{R}^{n}$.
- There exists $L>0$ for which $\left\|\nabla^{2} f(\mathbf{x})-\nabla^{2} f(\mathbf{y})\right\| \leq L\|\mathbf{x}-\mathbf{y}\|$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.
Let $\left\{\mathbf{x}_{k}\right\}_{k \geq 0}$ be the sequence generated by Newton's method and let $\mathbf{x}^{*}$ be the unique minimizer of $f$ over $\mathbb{R}^{n}$. Then for any $k=0,1, \ldots$ the inequality

$$
\left\|\mathbf{x}_{k+1}-\mathbf{x}^{*}\right\| \leq \frac{L}{2 m}\left\|\mathbf{x}_{k+1}-\mathbf{x}^{*}\right\|^{2}
$$

holds. In addition, if $\left\|\mathbf{x}_{0}-\mathbf{x}^{*}\right\| \leq \frac{m}{L}$, then:

$$
\left\|x_{k}-x^{*}\right\| \leq \frac{2 m}{L}\left(\frac{1}{4}\right)^{2^{k}}, \quad k=0,1,2, \ldots
$$

See proof of Theorem 5.2 on page 85 of the book.

## Numerical Example

Consider the minimization problem

$$
\min 100 x^{4}+0.01 y^{4}
$$

- optimal solution: $(x, y)=(0,0)$.
- poorly scaled problem

```
>> f=@(x)100*x(1)^4+0.01*x(2)^4;
>> g=@(x)[400*x(1)^3;0.04*x(2)^3];
>> [x,fun_val]=gradient_method_backtracking(f,g,[1;1],1,0.5,0.5,1e-6)
iter_number = 1 norm_grad = 90.513620 fun_val = 13.799181
iter_number = 2 norm_grad = 32.381098 fun_val = 3.511932
iter_number = 3 norm_grad = 11.472585 fun_val = 0.887929
iter_number = 14611 norm_grad = 0.000001 fun_val = 0.000000
iter_number = 14612 norm_grad = 0.000001 fun_val = 0.000000
```


## Numerical Example Contd.

Invoking pure Newton's method we obtain convergence after only 17 iterations.

```
>>h=@(x)[1200*x(1)^2,0;0,0.12*x(2)^2];
>>pure_newton(f,g,h,[1;1],1e-6)
iter= 1 f(x)=19.7550617284
iter= 2 f(x)=3.9022344155
iter= 3 f(x)=0.7708117364
iter= 15 f(x)=0.0000000027
iter= 16 f(x)=0.0000000005
iter= 17 f(x)=0.0000000001
```


## Numerical Example 2

Consider the minimization problem

$$
\min \sqrt{x_{1}^{2}+1}+\sqrt{x_{2}^{2}+1}
$$

- Optimal solution $\mathbf{x}=\mathbf{0}$.
- The Hessian of the function is

$$
\nabla^{2} f(\mathbf{x})=\left(\begin{array}{cc}
\frac{1}{\left(x_{1}^{2}+1\right)^{3 / 2}} & 0 \\
0 & \frac{1}{\left(x_{2}^{2}+1\right)^{3 / 2}}
\end{array}\right) \succ \mathbf{0},
$$

but there does not exists an $m>0$ for which $\nabla^{2} f(\mathbf{x}) \succeq m \mathbf{l}$.

```
>>f=@(x)sqrt(1+x(1)^2)+sqrt(1+x(2) ^2)
>>g=@(x)[x(1)/sqrt(x(1)^2+1);x(2)/sqrt(x(2)~2+1)];
>h=@(x)}\operatorname{diag}([1/(x(1)^2+1)^1.5,1/(x(2)^2+1)^1.5])
>>pure_newton(f,g,h,[1;1],1e-8)
iter= 1 f(x)=2.8284271247
iter= 2f(x)=2.8284271247
iter= 30 f(x)=2.8105247315
iter= 31 f(x)=2.7757389625
iter= 32 f(x)=2.6791717153
iter= 33 f(x)=2.4507092918
iter= 34 f(x)=2.1223796622
iter= 35 f(x)=2.0020052756
iter= 36 f(x)=2.0000000081
iter=37 f(x)=2.0000000000
```


## Numerical Example 2 Contd.

Gradient method with backtracking and parameters $(s, \alpha, \beta)=(1,0.5,0.5)$ converges after only 7 iterations.

```
>>[x,fun_val]=gradient_method_backtracking(f,g, [1;1],1,0.5,0.5,1e-8);
iter_number = 1 norm_grad = 0.397514 fun_val = 2.084022
iter_number = 2 norm_grad = 0.016699 fun_val = 2.000139
iter_number = 3 norm_grad = 0.000001 fun_val = 2.000000
iter_number = 4 norm_grad = 0.000001 fun_val = 2.000000
iter_number = 5 norm_grad = 0.000000 fun_val = 2.000000
iter_number = 6 norm_grad = 0.000000 fun_val = 2.000000
iter_number = 7 norm_grad = 0.000000 fun_val = 2.000000
```


## Numerical Example 2 Contd. Starting from $(10 ; 10)$

```
>> [x,fun_val]=gradient_method_backtracking(f,g,[10;10],1,0.5,0.5,1e-8);
iter_number = 1 norm_grad = 1.405573 fun_val = 18.120635
iter_number = 2 norm_grad = 1.403323 fun_val = 16.146490
iter_number = 12 norm_grad = 0.000049 fun_val = 2.000000
iter_number = 13 norm_grad = 0.000000 fun_val = 2.000000
```


## Numerical Example 2 Contd. Starting from $(10 ; 10)$

```
>> [x,fun_val]=gradient_method_backtracking(f,g,[10;10],1,0.5,0.5,1e-8);
iter_number = 1 norm_grad = 1.405573 fun_val = 18.120635
iter_number = 2 norm_grad = 1.403323 fun_val = 16.146490
iter_number = 12 norm_grad = 0.000049 fun_val = 2.000000
iter_number = 13 norm_grad = 0.000000 fun_val = 2.000000
>>pure_newton(f,g,h,[10;10],1e-8);
iter= 1 f(x)=2000.0009999997
iter= 2 f(x)=1999999999.9999990000
iter= 3 f(x)=1999999999999997300000000000.0000000
iter= 4 f(x)=1999999999999992300000000000000000000....
iter= 5 f(x)= Inf
```


## Numerical Example 2 Contd. Starting from $(10 ; 10)$

```
>> [x,fun_val]=gradient_method_backtracking(f,g,[10;10],1,0.5,0.5,1e-8);
iter_number = 1 norm_grad = 1.405573 fun_val = 18.120635
iter_number = 2 norm_grad = 1.403323 fun_val = 16.146490
iter_number = 12 norm_grad = 0.000049 fun_val = 2.000000
iter_number = 13 norm_grad = 0.000000 fun_val = 2.000000
>>pure_newton(f,g,h,[10;10],1e-8);
iter= 1 f(x)=2000.0009999997
iter= 2 f(x)=1999999999.9999990000
iter= 3 f(x)=19999999999999997300000000000.0000000
iter= 4 f(x)=1999999999999992300000000000000000000....
iter= 5 f(x)= Inf
```

- Newton's method seem to be unreliable - partly since no stepsize was defined.


## Damped Newton's Method

## Damped Newton's Method

Input: $(\alpha, \beta)-$ parameters for the backtracking procedure $(\alpha \in(0,1), \beta \in(0,1))$
$\varepsilon>0$ - tolerance parameter.

Initialization: pick $\mathrm{x}_{0} \in \mathbb{R}^{n}$ arbitrarily.
General step: for any $k=0,1,2, \ldots$ execute the following steps:
(a) compute the Newton direction $\mathbf{d}_{k}$, which is the solution to the linear system $\nabla^{2} f\left(\mathbf{x}_{k}\right) \mathbf{d}_{k}=-\nabla f\left(\mathbf{x}_{k}\right)$.
(b) set $t_{k}=1$. While

$$
f\left(\mathbf{x}_{k}\right)-f\left(\mathbf{x}_{k}+t_{k} \mathbf{d}_{k}\right)<-\alpha t_{k} \nabla f\left(\mathbf{x}_{k}\right)^{T} \mathbf{d}_{k}
$$

set $t_{k}:=\beta t_{k}$
(c) $\mathbf{x}_{k+1}=\mathbf{x}_{k}+t_{k} \mathbf{d}_{k}$.
(c) if $\left\|\nabla f\left(\mathbf{x}_{k+1}\right)\right\| \leq \varepsilon$, then STOP and $\mathbf{x}_{k+1}$ is the output.

## Numerical Example 2 Contd. Starting from $(10 ; 10)$

Using damped Newton's method:

```
>>newton_backtracking(f,g,h, [10;10],0.5,0.5,1e-8);
iter= 1 f(x)=4.6688169339
iter= 2 f(x)=2.4101973721
iter= 3 f(x)=2.0336386321
    : :
iter= 16 f(x)=2.0000000005
iter= 17 f(x)=2.0000000000
```

