Lecture 4 - The Gradient Method

Objective: find an optimal solution of the problem

 $\min\{f(\mathbf{x}):\mathbf{x}\in\mathbb{R}^n\}.$

The iterative algorithms that we will consider are of the form

 $\mathbf{x}_{k+1} = \mathbf{x}_k + t_k \mathbf{d}_k, k = 0, 1, \dots$

- **d**_k direction.
- ► *t_k* stepsize.

Lecture 4 - The Gradient Method

Objective: find an optimal solution of the problem

 $\min\{f(\mathbf{x}):\mathbf{x}\in\mathbb{R}^n\}.$

The iterative algorithms that we will consider are of the form

 $\mathbf{x}_{k+1} = \mathbf{x}_k + t_k \mathbf{d}_k, k = 0, 1, \dots$

- **d**_k direction.
- ► *t_k* stepsize.

We will limit ourselves to descent directions.

Definition. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function over \mathbb{R}^n . A vector $\mathbf{0} \neq \mathbf{d} \in \mathbb{R}^n$ is called a descent direction of f at \mathbf{x} if the directional derivative $f'(\mathbf{x}; \mathbf{d})$ is negative, meaning that

$$f'(\mathbf{x};\mathbf{d}) = \nabla f(\mathbf{x})^T \mathbf{d} < 0.$$

The Descent Property of Descent Directions

Lemma: Let f be a continuously differentiable function over \mathbb{R}^n , and let $\mathbf{x} \in \mathbb{R}^n$. Suppose that **d** is a descent direction of f at **x**. Then there exists $\varepsilon > 0$ such that

 $f(\mathbf{x} + t\mathbf{d}) < f(\mathbf{x})$

for any $t \in (0, \varepsilon]$.

The Descent Property of Descent Directions

Lemma: Let f be a continuously differentiable function over \mathbb{R}^n , and let $\mathbf{x} \in \mathbb{R}^n$. Suppose that **d** is a descent direction of f at \mathbf{x} . Then there exists $\varepsilon > 0$ such that

 $f(\mathbf{x} + t\mathbf{d}) < f(\mathbf{x})$

for any $t \in (0, \varepsilon]$.

Proof.

Since f'(x; d) < 0, it follows from the definition of the directional derivative that</p>

$$\lim_{t\to 0^+}\frac{f(\mathbf{x}+t\mathbf{d})-f(\mathbf{x})}{t}=f'(\mathbf{x};\mathbf{d})<0.$$

The Descent Property of Descent Directions

Lemma: Let f be a continuously differentiable function over \mathbb{R}^n , and let $\mathbf{x} \in \mathbb{R}^n$. Suppose that **d** is a descent direction of f at \mathbf{x} . Then there exists $\varepsilon > 0$ such that

 $f(\mathbf{x} + t\mathbf{d}) < f(\mathbf{x})$

for any $t \in (0, \varepsilon]$.

Proof.

Since f'(x; d) < 0, it follows from the definition of the directional derivative that</p>

$$\lim_{t\to 0^+}\frac{f(\mathbf{x}+t\mathbf{d})-f(\mathbf{x})}{t}=f'(\mathbf{x};\mathbf{d})<0.$$

• Therefore, $\exists \varepsilon > 0$ such that

$$\frac{f(\mathbf{x}+t\mathbf{d})-f(\mathbf{x})}{t}<0$$

for any $t \in (0, \varepsilon]$, which readily implies the desired result.

Schematic Descent Direction Method

Initialization: pick $\mathbf{x}_0 \in \mathbb{R}^n$ arbitrarily. **General step:** for any k = 0, 1, 2, ... set (a) pick a descent direction \mathbf{d}_k . (b) find a stepsize t_k satisfying $f(\mathbf{x}_k + t_k \mathbf{d}_k) < f(\mathbf{x}_k)$. (c) set $\mathbf{x}_{k+1} = \mathbf{x}_k + t_k \mathbf{d}_k$. (d) if a stopping criteria is satisfied, then STOP and \mathbf{x}_{k+1} is the output.

Of course, many details are missing in the above schematic algorithm:

- What is the starting point?
- How to choose the descent direction?
- What stepsize should be taken?
- What is the stopping criteria?

Stepsize Selection Rules

- constant stepsize $t_k = \overline{t}$ for any k.
- exact stepsize t_k is a minimizer of f along the ray $\mathbf{x}_k + t\mathbf{d}_k$:

```
t_k \in \operatorname*{argmin}_{t\geq 0} f(\mathbf{x}_k + t\mathbf{d}_k).
```

backtracking¹ - The method requires three parameters: s > 0, α ∈ (0, 1), β ∈ (0, 1). Here we start with an initial stepsize t_k = s. While

$$f(\mathbf{x}_k) - f(\mathbf{x}_k + t_k \mathbf{d}_k) < -\alpha t_k \nabla f(\mathbf{x}_k)^T \mathbf{d}_k.$$

set $t_k := \beta t_k$

Sufficient Decrease Property:

$$f(\mathbf{x}_k) - f(\mathbf{x}_k + t_k \mathbf{d}_k) \geq -\alpha t_k \nabla f(\mathbf{x}_k)^T \mathbf{d}_k.$$

¹also referred to as Armijo

Exact Line Search for Quadratic Functions

 $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + 2\mathbf{b}^T \mathbf{x} + c$ where **A** is an $n \times n$ positive definite matrix, $\mathbf{b} \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Let $\mathbf{x} \in \mathbb{R}^n$ and let $\mathbf{d} \in \mathbb{R}^n$ be a descent direction of f at \mathbf{x} . The objective is to find a solution to

 $\min_{t\geq 0}f(\mathbf{x}+t\mathbf{d}).$

In class

The Gradient Method - Taking the Direction of Minus the Gradient

- In the gradient method $\mathbf{d}_k = -\nabla f(\mathbf{x}_k)$.
- This is a descent direction as long as $\nabla f(\mathbf{x}^k) \neq 0$ since

 $f'(\mathbf{x}_k; -\nabla f(\mathbf{x}_k)) = -\nabla f(\mathbf{x}_k)^T \nabla f(\mathbf{x}_k) = -\|\nabla f(\mathbf{x}_k)\|^2 < 0.$

In addition for being a descent direction, minus the gradient is also the steepest direction method.

Lemma: Let f be a continuously differentiable function and let $\mathbf{x} \in \mathbb{R}^n$ be a non-stationary point $(\nabla f(\mathbf{x}) \neq \mathbf{0})$. Then an optimal solution of

$$\min_{\mathbf{d}} \{ f'(\mathbf{x}; \mathbf{d}) : \|\mathbf{d}\| = 1 \}$$
(1)

is $\mathbf{d} = -\nabla f(\mathbf{x}) / \|\nabla f(\mathbf{x})\|$.

Proof. In class

The Gradient Method

The Gradient Method

Input: $\varepsilon > 0$ - tolerance parameter.

Initialization: pick $\mathbf{x}_0 \in \mathbb{R}^n$ arbitrarily. **General step:** for any k = 0, 1, 2, ... execute the following steps: (a) pick a stepsize t_k by a line search procedure on the function

 $g(t) = f(\mathbf{x}_k - t\nabla f(\mathbf{x}_k)).$

(b) set $\mathbf{x}_{k+1} = \mathbf{x}_k - t_k \nabla f(\mathbf{x}_k)$. (c) if $\|\nabla f(\mathbf{x}_{k+1})\| \le \varepsilon$, then STOP and \mathbf{x}_{k+1} is the output.

Numerical Example

 $\min x^2 + 2y^2$

 $x_0 = (2; 1), \varepsilon = 10^{-5}$, exact line search.

13 iterations until convergence.

Amir Beck

"Introduction to Nonlinear Optimization" Lecture Slides - The Gradient Method

Lemma. Let $\{\mathbf{x}_k\}_{k\geq 0}$ be the sequence generated by the gradient method with exact line search for solving a problem of minimizing a continuously differentiable function f. Then for any k = 0, 1, 2, ...

$$(\mathbf{x}_{k+2} - \mathbf{x}_{k+1})^T (\mathbf{x}_{k+1} - \mathbf{x}_k) = 0.$$

Proof.

 $\mathbf{k}_{k+1} - \mathbf{x}_k = -t_k \nabla f(\mathbf{x}_k), \mathbf{x}_{k+2} - \mathbf{x}_{k+1} = -t_{k+1} \nabla f(\mathbf{x}_{k+1}).$

Lemma. Let $\{\mathbf{x}_k\}_{k\geq 0}$ be the sequence generated by the gradient method with exact line search for solving a problem of minimizing a continuously differentiable function f. Then for any k = 0, 1, 2, ...

$$(\mathbf{x}_{k+2} - \mathbf{x}_{k+1})^T (\mathbf{x}_{k+1} - \mathbf{x}_k) = 0.$$

- $\mathbf{x}_{k+1} \mathbf{x}_k = -t_k \nabla f(\mathbf{x}_k), \mathbf{x}_{k+2} \mathbf{x}_{k+1} = -t_{k+1} \nabla f(\mathbf{x}_{k+1}).$
- Therefore, we need to prove that $\nabla f(\mathbf{x}_k)^T \nabla f(\mathbf{x}_{k+1}) = 0$.

Lemma. Let $\{\mathbf{x}_k\}_{k\geq 0}$ be the sequence generated by the gradient method with exact line search for solving a problem of minimizing a continuously differentiable function f. Then for any k = 0, 1, 2, ...

$$(\mathbf{x}_{k+2} - \mathbf{x}_{k+1})^T (\mathbf{x}_{k+1} - \mathbf{x}_k) = 0.$$

- $\mathbf{k}_{k+1} \mathbf{x}_k = -t_k \nabla f(\mathbf{x}_k), \mathbf{x}_{k+2} \mathbf{x}_{k+1} = -t_{k+1} \nabla f(\mathbf{x}_{k+1}).$
- Therefore, we need to prove that $\nabla f(\mathbf{x}_k)^T \nabla f(\mathbf{x}_{k+1}) = 0$.
- $t_k \in \operatorname*{argmin}_{t \geq 0} \{ g(t) \equiv f(\mathbf{x}_k t \nabla f(\mathbf{x}_k)) \}$

Lemma. Let $\{\mathbf{x}_k\}_{k\geq 0}$ be the sequence generated by the gradient method with exact line search for solving a problem of minimizing a continuously differentiable function f. Then for any k = 0, 1, 2, ...

$$(\mathbf{x}_{k+2}-\mathbf{x}_{k+1})^T(\mathbf{x}_{k+1}-\mathbf{x}_k)=0.$$

- $\mathbf{k}_{k+1} \mathbf{x}_k = -t_k \nabla f(\mathbf{x}_k), \mathbf{x}_{k+2} \mathbf{x}_{k+1} = -t_{k+1} \nabla f(\mathbf{x}_{k+1}).$
- Therefore, we need to prove that $\nabla f(\mathbf{x}_k)^T \nabla f(\mathbf{x}_{k+1}) = 0$.
- $t_k \in \underset{t \geq 0}{\operatorname{argmin}} \{ g(t) \equiv f(\mathbf{x}_k t \nabla f(\mathbf{x}_k)) \}$
- Hence, $g'(t_k) = 0$.

Lemma. Let $\{\mathbf{x}_k\}_{k\geq 0}$ be the sequence generated by the gradient method with exact line search for solving a problem of minimizing a continuously differentiable function f. Then for any k = 0, 1, 2, ...

$$(\mathbf{x}_{k+2}-\mathbf{x}_{k+1})^T(\mathbf{x}_{k+1}-\mathbf{x}_k)=0.$$

- $\mathbf{k}_{k+1} \mathbf{x}_k = -t_k \nabla f(\mathbf{x}_k), \mathbf{x}_{k+2} \mathbf{x}_{k+1} = -t_{k+1} \nabla f(\mathbf{x}_{k+1}).$
- Therefore, we need to prove that $\nabla f(\mathbf{x}_k)^T \nabla f(\mathbf{x}_{k+1}) = 0$.
- $\flat t_k \in \operatorname*{argmin}_{t \ge 0} \{ g(t) \equiv f(\mathbf{x}_k t \nabla f(\mathbf{x}_k)) \}$
- Hence, $g'(t_k) = 0$.
- $-\nabla f(\mathbf{x}_k)^T \nabla f(\mathbf{x}_k t_k \nabla f(\mathbf{x}_k)) = 0.$
- $\triangleright \nabla f(\mathbf{x}_k)^T \nabla f(\mathbf{x}_{k+1}) = 0.$

Numerical Example - Constant Stepsize, $\bar{t} = 0.1$

 $\min x^2 + 2y^2$

 $\mathbf{x}_0 = (2; 1), \varepsilon = 10^{-5}, \overline{t} = 0.1.$

iter_number =	: 1	norm_grad	=	4.000000	fun_val	=	3.280000
iter_number =	2	norm_grad	=	2.937210	fun_val	=	1.897600
iter_number =	- 3	norm_grad	=	2.222791	fun_val	=	1.141888
:		:			:		
iter_number =	56	norm_grad	=	0.000015	fun_val	=	0.000000
iter_number =	57	norm_grad	=	0.000012	fun_val	=	0.000000
iter number =	58	norm grad	=	0.000010	fun val	=	0.000000

quite a lot of iterations...

Numerical Example - Constant Stepsize, $\bar{t} = 10$

 $\min x^2 + 2y^2$

 $\begin{aligned} \mathbf{x}_0 &= (2;1), \varepsilon = 10^{-5}, \overline{t} = 10.. \\ \texttt{iter_number} &= 1 \text{ norm_grad} = 1783.488716 \text{ fun_val} = 476806.000000 \\ \texttt{iter_number} &= 2 \text{ norm_grad} = 656209.693339 \text{ fun_val} = 56962873606.00 \\ \texttt{iter_number} &= 3 \text{ norm_grad} = 256032703.004797 \text{ fun_val} = 83183008071 \\ \texttt{:} & \texttt{:} & \texttt{:} \\ \texttt{iter_number} = 119 \text{ norm_grad} = \text{NaN fun_val} = \text{NaN} \end{aligned}$

- The sequence diverges:(
- Important question: how can we choose the constant stepsize so that convergence is guaranteed?

Lipschitz Continuity of the Gradient

Definition Let f be a continuously differentiable function over \mathbb{R}^n . We say that f has a Lipschitz gradient if there exists $L \ge 0$ for which

```
\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \leq L \|\mathbf{x} - \mathbf{y}\| for any \mathbf{x}, \mathbf{y} \in \mathbb{R}^n.
```

L is called the Lipschitz constant.

- If ∇f is Lipschitz with constant L, then it is also Lipschitz with constant L for all L ≥ L.
- ▶ The class of functions with Lipschitz gradient with constant *L* is denoted by $C_L^{1,1}(\mathbb{R}^n)$ or just $C_L^{1,1}$.

Lipschitz Continuity of the Gradient

Definition Let f be a continuously differentiable function over \mathbb{R}^n . We say that f has a Lipschitz gradient if there exists $L \ge 0$ for which

 $\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\| \leq L \|\mathbf{x} - \mathbf{y}\|$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.

L is called the Lipschitz constant.

- If ∇f is Lipschitz with constant L, then it is also Lipschitz with constant L for all L ≥ L.
- ▶ The class of functions with Lipschitz gradient with constant *L* is denoted by $C_L^{1,1}(\mathbb{R}^n)$ or just $C_L^{1,1}$.
- Linear functions Given $\mathbf{a} \in \mathbb{R}^n$, the function $f(\mathbf{x}) = \mathbf{a}^T \mathbf{x}$ is in $C_0^{1,1}$.
- ▶ Quadratic functions Let **A** be a symmetric $n \times n$ matrix, $\mathbf{b} \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Then the function $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + 2\mathbf{b}^T \mathbf{x} + c$ is a $C^{1,1}$ function. The smallest Lipschitz constant of ∇f is $2\|\mathbf{A}\|_2 \text{why}$? In class

Equivalence to Boundedness of the Hessian

Theorem. Let f be a twice continuously differentiable function over \mathbb{R}^n . Then the following two claims are equivalent:

1.
$$f \in C_L^{1,1}(\mathbb{R}^n)$$
.
2. $\|\nabla^2 f(\mathbf{x})\| \le L$ for any $\mathbf{x} \in \mathbb{R}^n$.

Proof on pages 73,74 of the book Example: $f(x) = \sqrt{1 + x^2} \in C^{1,1}$ In class

Convergence of the Gradient Method

Theorem. Let $\{\mathbf{x}_k\}_{k\geq 0}$ be the sequence generated by GM for solving

 $\min_{\mathbf{x}\in\mathbb{R}^n}f(\mathbf{x})$

with one of the following stepsize strategies:

- constant stepsize $\overline{t} \in (0, \frac{2}{L})$.
- exact line search.
- backtracking procedure with parameters s > 0 and $\alpha, \beta \in (0, 1)$.

Assume that

- ► $f \in C^{1,1}_L(\mathbb{R}^n).$
- ▶ *f* is bounded below over \mathbb{R}^n , that is, there exists $m \in \mathbb{R}$ such that $f(\mathbf{x}) > m$ for all $\mathbf{x} \in \mathbb{R}^n$).

Then

1. for any k,
$$f(\mathbf{x}_{k+1}) < f(\mathbf{x}_k)$$
 unless $\nabla f(\mathbf{x}_k) = \mathbf{0}$.

2.
$$\nabla f(\mathbf{x}_k) \to 0$$
 as $k \to \infty$.

Theorem 4.25 in the book.

Amir Beck

"Introduction to Nonlinear Optimization" Lecture Slides - The Gradient Method

Two Numerical Examples - Backtracking

 $\min x^2 + 2y^2$

 $\mathbf{x}_0 = (2; 1), s = 2, \alpha = 0.25, \beta = 0.5, \varepsilon = 10^{-5}.$

iter_number = 1 norm_grad = 2.000000 fun_val = 1.000000 iter_number = 2 norm_grad = 0.000000 fun_val = 0.000000

fast convergence (also due to lack!)

no real advantage to exact line search.

ANOTHER EXAMPLE:

min $0.01x^2 + y^2$, $s = 2, \alpha = 0.25, \beta = 0.5, \varepsilon = 10^{-5}$.

Important Question: Can we detect key properties of the objective function that imply slow/fast convergence?

Amir Beck

Lemma. Let **A** be a positive definite $n \times n$ matrix. Then for any $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^n$ the inequality

$$\frac{\mathbf{x}^{\mathsf{T}}\mathbf{x}}{(\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x})(\mathbf{x}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{x})} \geq \frac{4\lambda_{\max}(\mathbf{A})\lambda_{\min}(\mathbf{A})}{(\lambda_{\max}(\mathbf{A}) + \lambda_{\min}(\mathbf{A}))^2}$$

holds.

• Denote
$$m = \lambda_{\min}(\mathbf{A})$$
 and $M = \lambda_{\max}(\mathbf{A})$.

Lemma. Let **A** be a positive definite $n \times n$ matrix. Then for any $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^n$ the inequality

$$\frac{\mathbf{x}^{\mathsf{T}}\mathbf{x}}{(\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x})(\mathbf{x}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{x})} \geq \frac{4\lambda_{\max}(\mathbf{A})\lambda_{\min}(\mathbf{A})}{(\lambda_{\max}(\mathbf{A}) + \lambda_{\min}(\mathbf{A}))^2}$$

holds.

Proof.

• Denote
$$m = \lambda_{\min}(\mathbf{A})$$
 and $M = \lambda_{\max}(\mathbf{A})$.

• The eigenvalues of the matrix $\mathbf{A} + Mm\mathbf{A}^{-1}$ are $\lambda_i(\mathbf{A}) + \frac{Mm}{\lambda_i(\mathbf{A})}$.

Lemma. Let **A** be a positive definite $n \times n$ matrix. Then for any $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^n$ the inequality

$$\frac{\mathbf{x}^{\mathsf{T}}\mathbf{x}}{(\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x})(\mathbf{x}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{x})} \geq \frac{4\lambda_{\max}(\mathbf{A})\lambda_{\min}(\mathbf{A})}{(\lambda_{\max}(\mathbf{A}) + \lambda_{\min}(\mathbf{A}))^2}$$

holds.

• Denote
$$m = \lambda_{\min}(\mathbf{A})$$
 and $M = \lambda_{\max}(\mathbf{A})$.

- The eigenvalues of the matrix $\mathbf{A} + Mm\mathbf{A}^{-1}$ are $\lambda_i(\mathbf{A}) + \frac{Mm}{\lambda_i(\mathbf{A})}$.
- ▶ The maximum of the 1-D function $\varphi(t) = t + \frac{Mm}{t}$ over [m, M] is attained at the endpoints *m* and *M* with a corresponding value of M + m.

Lemma. Let **A** be a positive definite $n \times n$ matrix. Then for any $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^n$ the inequality

$$\frac{\mathbf{x}^{\mathsf{T}}\mathbf{x}}{(\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x})(\mathbf{x}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{x})} \geq \frac{4\lambda_{\max}(\mathbf{A})\lambda_{\min}(\mathbf{A})}{(\lambda_{\max}(\mathbf{A}) + \lambda_{\min}(\mathbf{A}))^2}$$

holds.

• Denote
$$m = \lambda_{\min}(\mathbf{A})$$
 and $M = \lambda_{\max}(\mathbf{A})$.

- The eigenvalues of the matrix $\mathbf{A} + Mm\mathbf{A}^{-1}$ are $\lambda_i(\mathbf{A}) + \frac{Mm}{\lambda_i(\mathbf{A})}$.
- The maximum of the 1-D function $\varphi(t) = t + \frac{Mm}{t}$ over [m, M] is attained at the endpoints m and M with a corresponding value of M + m.
- ▶ Thus, the eigenvalues of $\mathbf{A} + Mm\mathbf{A}^{-1}$ are smaller than (M + m).

Lemma. Let **A** be a positive definite $n \times n$ matrix. Then for any $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^n$ the inequality

$$\frac{\mathbf{x}^{\mathsf{T}}\mathbf{x}}{(\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x})(\mathbf{x}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{x})} \geq \frac{4\lambda_{\max}(\mathbf{A})\lambda_{\min}(\mathbf{A})}{(\lambda_{\max}(\mathbf{A}) + \lambda_{\min}(\mathbf{A}))^2}$$

holds.

• Denote
$$m = \lambda_{\min}(\mathbf{A})$$
 and $M = \lambda_{\max}(\mathbf{A})$.

- The eigenvalues of the matrix $\mathbf{A} + Mm\mathbf{A}^{-1}$ are $\lambda_i(\mathbf{A}) + \frac{Mm}{\lambda_i(\mathbf{A})}$.
- ▶ The maximum of the 1-D function $\varphi(t) = t + \frac{Mm}{t}$ over [m, M] is attained at the endpoints *m* and *M* with a corresponding value of M + m.
- Thus, the eigenvalues of $\mathbf{A} + Mm\mathbf{A}^{-1}$ are smaller than (M + m).
- ► $\mathbf{A} + Mm\mathbf{A}^{-1} \preceq (M+m)\mathbf{I}$.

Lemma. Let **A** be a positive definite $n \times n$ matrix. Then for any $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^n$ the inequality

$$\frac{\mathbf{x}^{\mathsf{T}}\mathbf{x}}{(\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x})(\mathbf{x}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{x})} \geq \frac{4\lambda_{\max}(\mathbf{A})\lambda_{\min}(\mathbf{A})}{(\lambda_{\max}(\mathbf{A}) + \lambda_{\min}(\mathbf{A}))^2}$$

holds.

• Denote
$$m = \lambda_{\min}(\mathbf{A})$$
 and $M = \lambda_{\max}(\mathbf{A})$.

- The eigenvalues of the matrix $\mathbf{A} + Mm\mathbf{A}^{-1}$ are $\lambda_i(\mathbf{A}) + \frac{Mm}{\lambda_i(\mathbf{A})}$.
- ▶ The maximum of the 1-D function $\varphi(t) = t + \frac{Mm}{t}$ over [m, M] is attained at the endpoints *m* and *M* with a corresponding value of M + m.
- Thus, the eigenvalues of $\mathbf{A} + Mm\mathbf{A}^{-1}$ are smaller than (M + m).
- ► $\mathbf{A} + Mm\mathbf{A}^{-1} \preceq (M+m)\mathbf{I}$.
- $\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} + Mm(\mathbf{x}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{x}) \leq (M+m)(\mathbf{x}^{\mathsf{T}} \mathbf{x}),$

Lemma. Let **A** be a positive definite $n \times n$ matrix. Then for any $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^n$ the inequality

$$\frac{\mathbf{x}^{\mathsf{T}}\mathbf{x}}{(\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x})(\mathbf{x}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{x})} \geq \frac{4\lambda_{\max}(\mathbf{A})\lambda_{\min}(\mathbf{A})}{(\lambda_{\max}(\mathbf{A}) + \lambda_{\min}(\mathbf{A}))^2}$$

holds.

• Denote
$$m = \lambda_{\min}(\mathbf{A})$$
 and $M = \lambda_{\max}(\mathbf{A})$.

- ► The eigenvalues of the matrix $\mathbf{A} + Mm\mathbf{A}^{-1}$ are $\lambda_i(\mathbf{A}) + \frac{Mm}{\lambda_i(\mathbf{A})}$.
- ▶ The maximum of the 1-D function $\varphi(t) = t + \frac{Mm}{t}$ over [m, M] is attained at the endpoints *m* and *M* with a corresponding value of M + m.
- Thus, the eigenvalues of $\mathbf{A} + Mm\mathbf{A}^{-1}$ are smaller than (M + m).
- ► $\mathbf{A} + Mm\mathbf{A}^{-1} \preceq (M+m)\mathbf{I}$.
- $\mathbf{F} \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} + Mm(\mathbf{x}^{\mathsf{T}} \mathbf{A}^{-1} \mathbf{x}) \leq (M + m)(\mathbf{x}^{\mathsf{T}} \mathbf{x}),$
- Therefore,

$$(\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x})[Mm(\mathbf{x}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{x})] \leq \frac{1}{4}\left[(\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x}) + Mm(\mathbf{x}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{x})\right]^{2} \leq \frac{(M+m)^{2}}{4}(\mathbf{x}^{\mathsf{T}}\mathbf{x})^{2},$$

Gradient Method for Minimizing $\mathbf{x}^T \mathbf{A} \mathbf{x}$

Theorem. Let $\{x_k\}_{k\geq 0}$ be the sequence generated by the gradient method with exact linesearch for solving the problem

 $\min_{\mathbf{x}\in\mathbb{R}^n}\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} \quad (\mathbf{A}\succ\mathbf{0}).$

Then for any $k = 0, 1, \ldots$

$$f(\mathbf{x}_{k+1}) \leq \left(\frac{M-m}{M+m}\right)^2 f(\mathbf{x}_k),$$

where $M = \lambda_{\max}(\mathbf{A}), m = \lambda_{\min}(\mathbf{A}).$

$$\mathbf{x}_{k+1} = \mathbf{x}_k - t_k \mathbf{d}_k,$$

where
$$t_k = \frac{\mathbf{d}_k^T \mathbf{d}_k}{2\mathbf{d}_k^T \mathbf{A} \mathbf{d}_k}, \mathbf{d}_k = 2\mathbf{A}\mathbf{x}_k.$$

Proof of Rate of Convergence Contd.

$$f(\mathbf{x}_{k+1}) = \mathbf{x}_{k+1}^{T} \mathbf{A} \mathbf{x}_{k+1} = (\mathbf{x}_{k} - t_{k} \mathbf{d}_{k})^{T} \mathbf{A} (\mathbf{x}_{k} - t_{k} \mathbf{d}_{k})$$
$$= \mathbf{x}_{k}^{T} \mathbf{A} \mathbf{x}_{k} - 2t_{k} \mathbf{d}_{k}^{T} \mathbf{A} \mathbf{x}_{k} + t_{k}^{2} \mathbf{d}_{k}^{T} \mathbf{A} \mathbf{d}_{k}$$
$$= \mathbf{x}_{k}^{T} \mathbf{A} \mathbf{x}_{k} - t_{k} \mathbf{d}_{k}^{T} \mathbf{d}_{k} + t_{k}^{2} \mathbf{d}_{k}^{T} \mathbf{A} \mathbf{d}_{k}.$$

Proof of Rate of Convergence Contd.

$$f(\mathbf{x}_{k+1}) = \mathbf{x}_{k+1}^T \mathbf{A} \mathbf{x}_{k+1} = (\mathbf{x}_k - t_k \mathbf{d}_k)^T \mathbf{A} (\mathbf{x}_k - t_k \mathbf{d}_k)$$
$$= \mathbf{x}_k^T \mathbf{A} \mathbf{x}_k - 2t_k \mathbf{d}_k^T \mathbf{A} \mathbf{x}_k + t_k^2 \mathbf{d}_k^T \mathbf{A} \mathbf{d}_k$$
$$= \mathbf{x}_k^T \mathbf{A} \mathbf{x}_k - t_k \mathbf{d}_k^T \mathbf{d}_k + t_k^2 \mathbf{d}_k^T \mathbf{A} \mathbf{d}_k.$$

• Plugging in the expression for t_k

f

$$\begin{aligned} \mathbf{T}(\mathbf{x}_{k+1}) &= \mathbf{x}_k^T \mathbf{A} \mathbf{x}_k - \frac{1}{4} \frac{(\mathbf{d}_k^T \mathbf{d}_k)^2}{\mathbf{d}_k^T \mathbf{A} \mathbf{d}_k} \\ &= \mathbf{x}_k^T \mathbf{A} \mathbf{x}_k \left(1 - \frac{1}{4} \frac{(\mathbf{d}_k^T \mathbf{d}_k)^2}{(\mathbf{d}_k^T \mathbf{A} \mathbf{d}_k)(\mathbf{x}_k^T \mathbf{A} \mathbf{A}^{-1} \mathbf{A} \mathbf{x}_k)} \right) \\ &= \left(1 - \frac{(\mathbf{d}_k^T \mathbf{d}_k)^2}{(\mathbf{d}_k^T \mathbf{A} \mathbf{d}_k)(\mathbf{d}_k^T \mathbf{A}^{-1} \mathbf{d}_k)} \right) f(\mathbf{x}_k). \end{aligned}$$

Proof of Rate of Convergence Contd.

$$f(\mathbf{x}_{k+1}) = \mathbf{x}_{k+1}^T \mathbf{A} \mathbf{x}_{k+1} = (\mathbf{x}_k - t_k \mathbf{d}_k)^T \mathbf{A} (\mathbf{x}_k - t_k \mathbf{d}_k)$$
$$= \mathbf{x}_k^T \mathbf{A} \mathbf{x}_k - 2t_k \mathbf{d}_k^T \mathbf{A} \mathbf{x}_k + t_k^2 \mathbf{d}_k^T \mathbf{A} \mathbf{d}_k$$
$$= \mathbf{x}_k^T \mathbf{A} \mathbf{x}_k - t_k \mathbf{d}_k^T \mathbf{d}_k + t_k^2 \mathbf{d}_k^T \mathbf{A} \mathbf{d}_k.$$

• Plugging in the expression for t_k

$$f(\mathbf{x}_{k+1}) = \mathbf{x}_k^T \mathbf{A} \mathbf{x}_k - \frac{1}{4} \frac{(\mathbf{d}_k^T \mathbf{d}_k)^2}{\mathbf{d}_k^T \mathbf{A} \mathbf{d}_k}$$

$$= \mathbf{x}_k^T \mathbf{A} \mathbf{x}_k \left(1 - \frac{1}{4} \frac{(\mathbf{d}_k^T \mathbf{d}_k)^2}{(\mathbf{d}_k^T \mathbf{A} \mathbf{d}_k)(\mathbf{x}_k^T \mathbf{A} \mathbf{A}^{-1} \mathbf{A} \mathbf{x}_k)} \right)$$

$$= \left(1 - \frac{(\mathbf{d}_k^T \mathbf{d}_k)^2}{(\mathbf{d}_k^T \mathbf{A} \mathbf{d}_k)(\mathbf{d}_k^T \mathbf{A}^{-1} \mathbf{d}_k)} \right) f(\mathbf{x}_k).$$

By Kantorovich:

$$f(\mathbf{x}_{k+1}) \leq \left(1 - \frac{4Mm}{(M+m)^2}\right) f(\mathbf{x}_k) = \left(\frac{M-m}{M+m}\right)^2 f(\mathbf{x}_k) = \left(\frac{\kappa(\mathbf{A}) - 1}{\kappa(\mathbf{A}) + 1}\right)^2 f(\mathbf{x}_k),$$

"Introduction to Nonlinear Optimization" Lecture Slides - The Gradient Method

The Condition Number

Definition. Let **A** be an $n \times n$ positive definite matrix. Then the condition number of **A** is defined by

$$\kappa(\mathbf{A}) = rac{\lambda_{\mathsf{max}}(\mathbf{A})}{\lambda_{\mathsf{min}}(\mathbf{A})}.$$

- matrices (or quadratic functions) with large condition number are called ill-conditioned.
- matrices with small condition number are called well-conditioned.
- large condition number implies large number of iterations of the gradient method.
- small condition number implies small number of iterations of the gradient method.
- For a non-quadratic function, the asymptotic rate of convergence of x_k to a stationary point x^{*} is usually determined by the condition number of ∇²f(x^{*}).

A Severely III-Condition Function - Rosenbrock

$$\min\left\{f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2\right\}.$$

• optimal solution: $(x_1, x_2) = (1, 1)$, optimal value: 0.

$$\nabla f(\mathbf{x}) = \begin{pmatrix} -400x_1(x_2 - x_1^2) - 2(1 - x_1) \\ 200(x_2 - x_1^2) \end{pmatrix},$$

$$\nabla^2 f(\mathbf{x}) = \begin{pmatrix} -400x_2 + 1200x_1^2 + 2 & -400x_1 \\ -400x_1 & 200 \end{pmatrix}.$$

$$abla^2 f(1,1) = egin{pmatrix} 802 & -400\ -400 & 200 \end{pmatrix}$$

condition number: 2508

Amir Beck

►

Solution of the Rosenbrock Problem with the Gradient Method

 $\mathbf{x}_0 = (2; 5), s = 2, \alpha = 0.25, \beta = 0.5, \varepsilon = 10^{-5}$, backtracking stepsize selection.

6890(!!!) iterations.

Amir Beck

"Introduction to Nonlinear Optimization" Lecture Slides - The Gradient Method

Sensitivity of Solutions to Linear Systems

Suppose that we are given the linear system

$\mathbf{A}\mathbf{x} = \mathbf{b}$

where $\bm{A}\succ\bm{0}$ and we assume that \bm{x} is indeed the solution of the system $(\bm{x}=\bm{A}^{-1}\bm{b}).$

- Suppose that the right-hand side is perturbed $\mathbf{b} + \Delta \mathbf{b}$. What can be said on the solution of the new system $\mathbf{x} + \Delta \mathbf{x}$?
- $\blacktriangleright \Delta \mathbf{x} = \mathbf{A}^{-1} \Delta \mathbf{b}.$
- Result (derivation In class):

$$rac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq \kappa(\mathbf{A}) rac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|}$$

Numerical Example

consider the ill-condition matrix:

$$\textbf{A} = \begin{pmatrix} 1+10^{-5} & 1 \\ 1 & 1+10^{-5} \end{pmatrix}$$

>> cond(A)

ans =

2.00000999998795e+005

We have

```
>> A\[1;1]
```

ans =

- 0.499997500018278
- 0.499997500006722
- ► However,

```
>> A\[1.1;1]
```

ans =

- 1.0e+003 *
 - 5.000524997400047
- -4.999475002650021

Amir Beck

Consider the minimization problem

(P) $\min\{f(\mathbf{x}) : \mathbf{x} \in \mathbb{R}^n\}.$

▶ For a given nonsingular matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$, we make the linear change of variables $\mathbf{x} = \mathbf{S}\mathbf{y}$, and obtain the equivalent problem

 $(\mathsf{P}') \quad \min\{g(\mathbf{y}) \equiv f(\mathbf{S}\mathbf{y}) : \mathbf{y} \in \mathbb{R}^n\}.$

Consider the minimization problem

(P) $\min\{f(\mathbf{x}) : \mathbf{x} \in \mathbb{R}^n\}.$

▶ For a given nonsingular matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$, we make the linear change of variables $\mathbf{x} = \mathbf{S}\mathbf{y}$, and obtain the equivalent problem

 $(\mathsf{P}') \quad \min\{g(\mathbf{y}) \equiv f(\mathbf{S}\mathbf{y}) : \mathbf{y} \in \mathbb{R}^n\}.$

► Since $\nabla g(\mathbf{y}) = \mathbf{S}^T \nabla f(\mathbf{S}\mathbf{y}) = \mathbf{S}^T \nabla f(\mathbf{x})$, the gradient method for (P') is $\mathbf{y}_{k+1} = \mathbf{y}_k - t_k \mathbf{S}^T \nabla f(\mathbf{S}\mathbf{y}_k)$.

Consider the minimization problem

(P) $\min\{f(\mathbf{x}) : \mathbf{x} \in \mathbb{R}^n\}.$

▶ For a given nonsingular matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$, we make the linear change of variables $\mathbf{x} = \mathbf{S}\mathbf{y}$, and obtain the equivalent problem

 $(\mathsf{P}') \quad \min\{g(\mathbf{y}) \equiv f(\mathbf{S}\mathbf{y}) : \mathbf{y} \in \mathbb{R}^n\}.$

► Since
$$\nabla g(\mathbf{y}) = \mathbf{S}^T \nabla f(\mathbf{S}\mathbf{y}) = \mathbf{S}^T \nabla f(\mathbf{x})$$
, the gradient method for (P') is
 $\mathbf{y}_{k+1} = \mathbf{y}_k - t_k \mathbf{S}^T \nabla f(\mathbf{S}\mathbf{y}_k)$.

• Multiplying the latter equality by **S** from the left, and using the notation $\mathbf{x}_k = \mathbf{S}\mathbf{y}_k$:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - t_k \mathbf{S} \mathbf{S}^T \nabla f(\mathbf{x}_k).$$

Consider the minimization problem

(P) $\min\{f(\mathbf{x}) : \mathbf{x} \in \mathbb{R}^n\}.$

▶ For a given nonsingular matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$, we make the linear change of variables $\mathbf{x} = \mathbf{S}\mathbf{y}$, and obtain the equivalent problem

 $(\mathsf{P}') \quad \min\{g(\mathbf{y}) \equiv f(\mathbf{S}\mathbf{y}) : \mathbf{y} \in \mathbb{R}^n\}.$

► Since
$$\nabla g(\mathbf{y}) = \mathbf{S}^T \nabla f(\mathbf{S}\mathbf{y}) = \mathbf{S}^T \nabla f(\mathbf{x})$$
, the gradient method for (P') is
 $\mathbf{y}_{k+1} = \mathbf{y}_k - t_k \mathbf{S}^T \nabla f(\mathbf{S}\mathbf{y}_k)$.

• Multiplying the latter equality by **S** from the left, and using the notation $\mathbf{x}_k = \mathbf{S}\mathbf{y}_k$:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - t_k \mathbf{S} \mathbf{S}^T \nabla f(\mathbf{x}_k).$$

▶ Defining **D** = **SS**^{*T*}, we obtain the scaled gradient method:

$$\mathbf{x}_{k+1} = \mathbf{x}_k - t_k \mathbf{D} \nabla f(\mathbf{x}_k).$$

Amir Beck

"Introduction to Nonlinear Optimization" Lecture Slides - The Gradient Method

▶ **D** > **0**, so the direction $-\mathbf{D}\nabla f(\mathbf{x}_k)$ is a descent direction:

 $f'(\mathbf{x}_k; -\mathbf{D}\nabla f(\mathbf{x}_k)) = -\nabla f(\mathbf{x}_k)^T \mathbf{D}\nabla f(\mathbf{x}_k) < 0,$

▶ **D** > **0**, so the direction $-\mathbf{D}\nabla f(\mathbf{x}_k)$ is a descent direction:

 $f'(\mathbf{x}_k; -\mathbf{D}\nabla f(\mathbf{x}_k)) = -\nabla f(\mathbf{x}_k)^T \mathbf{D}\nabla f(\mathbf{x}_k) < 0,$

We also allow different scaling matrices at each iteration.

Scaled Gradient Method

Input: $\varepsilon > 0$ - tolerance parameter. **Initialization:** pick $\mathbf{x}_0 \in \mathbb{R}^n$ arbitrarily. **General step:** for any k = 0, 1, 2, ... execute the following steps: (a) pick a scaling matrix $\mathbf{D}_k \succ \mathbf{0}$. (b) pick a stepsize t_k by a line search procedure on the function $g(t) = f(\mathbf{x}_k - t\mathbf{D}_k \nabla f(\mathbf{x}_k))$.

(c) set $\mathbf{x}_{k+1} = \mathbf{x}_k - t_k \mathbf{D}_k \nabla f(\mathbf{x}_k)$. (c) if $\|\nabla f(\mathbf{x}_{k+1})\| \le \varepsilon$, then STOP and \mathbf{x}_{k+1} is the output.

Choosing the Scaling Matrix D_k

The scaled gradient method with scaling matrix D is equivalent to the gradient method employed on the function g(y) = f(D^{1/2}y).

Choosing the Scaling Matrix \mathbf{D}_k

- The scaled gradient method with scaling matrix D is equivalent to the gradient method employed on the function g(y) = f(D^{1/2}y).
- Note that the gradient and Hessian of g are given by

$$\nabla g(\mathbf{y}) = \mathbf{D}^{1/2} f(\mathbf{D}^{1/2} \mathbf{y}) = \mathbf{D}^{1/2} f(\mathbf{x}),$$

$$\nabla^2 g(\mathbf{y}) = \mathbf{D}^{1/2} \nabla^2 f(\mathbf{D}^{1/2} \mathbf{y}) \mathbf{D}^{1/2} = \mathbf{D}^{1/2} \nabla^2 f(\mathbf{x}) \mathbf{D}^{1/2}.$$

► The objective is usually to pick D_k so as to make D^{1/2}_k ∇²f(x_k)D^{1/2}_k as well-conditioned as possible.

Choosing the Scaling Matrix D_k

- The scaled gradient method with scaling matrix D is equivalent to the gradient method employed on the function g(y) = f(D^{1/2}y).
- Note that the gradient and Hessian of g are given by

 $\nabla g(\mathbf{y}) = \mathbf{D}^{1/2} f(\mathbf{D}^{1/2} \mathbf{y}) = \mathbf{D}^{1/2} f(\mathbf{x}),$ $\nabla^2 g(\mathbf{y}) = \mathbf{D}^{1/2} \nabla^2 f(\mathbf{D}^{1/2} \mathbf{y}) \mathbf{D}^{1/2} = \mathbf{D}^{1/2} \nabla^2 f(\mathbf{x}) \mathbf{D}^{1/2}.$

- ► The objective is usually to pick D_k so as to make D^{1/2}_k ∇²f(x_k)D^{1/2}_k as well-conditioned as possible.
- ► A well known choice (Newton's method): $\mathbf{D}_k = (\nabla^2 f(\mathbf{x}_k))^{-1}$.
- diagonal scaling: \mathbf{D}_k is picked to be diagonal. For example,

$$(\mathbf{D}_k)_{ii} = \left(\frac{\partial^2 f(\mathbf{x}_k)}{\partial x_i^2}\right)^{-1}.$$

Choosing the Scaling Matrix D_k

- The scaled gradient method with scaling matrix D is equivalent to the gradient method employed on the function g(y) = f(D^{1/2}y).
- Note that the gradient and Hessian of g are given by

 $\nabla g(\mathbf{y}) = \mathbf{D}^{1/2} f(\mathbf{D}^{1/2} \mathbf{y}) = \mathbf{D}^{1/2} f(\mathbf{x}),$ $\nabla^2 g(\mathbf{y}) = \mathbf{D}^{1/2} \nabla^2 f(\mathbf{D}^{1/2} \mathbf{y}) \mathbf{D}^{1/2} = \mathbf{D}^{1/2} \nabla^2 f(\mathbf{x}) \mathbf{D}^{1/2}.$

- ► The objective is usually to pick D_k so as to make D^{1/2}_k ∇²f(x_k)D^{1/2}_k as well-conditioned as possible.
- ► A well known choice (Newton's method): $\mathbf{D}_k = (\nabla^2 f(\mathbf{x}_k))^{-1}$.
- diagonal scaling: D_k is picked to be diagonal. For example,

$$(\mathbf{D}_k)_{ii} = \left(\frac{\partial^2 f(\mathbf{x}_k)}{\partial x_i^2}\right)^{-1}.$$

 Diagonal scaling can be very effective when the decision variables are of different magnitudes.

Amir Beck

Nonlinear least squares problem:

(NLS):
$$\min_{\mathbf{x}\in\mathbb{R}^n}\left\{g(\mathbf{x})\equiv\sum_{i=1}^m(f_i(\mathbf{x})-c_i)^2\right\}.$$

 f_1, \ldots, f_m are continuously differentiable over \mathbb{R}^n and $c_1, \ldots, c_m \in \mathbb{R}$. \blacktriangleright Denote:

$$F(\mathbf{x}) = \begin{pmatrix} f_1(\mathbf{x}) - c_1 \\ f_2(\mathbf{x}) - c_2 \\ \vdots \\ f_m(\mathbf{x}) - c_m \end{pmatrix},$$

Then the problem becomes:

 $\min \|F(\mathbf{x})\|^2.$

Given the *k*th iterate \mathbf{x}_k , the next iterate is chosen to minimize the sum of squares of the linearized terms, that is,

$$\mathbf{x}_{k+1} = \operatorname*{argmin}_{\mathbf{x} \in \mathbb{R}^n} \left\{ \sum_{i=1}^m \left[f_i(\mathbf{x}_k) + \nabla f_i(\mathbf{x}_k)^T (\mathbf{x} - \mathbf{x}_k) - c_i \right]^2 \right\}.$$

Given the *k*th iterate \mathbf{x}_k , the next iterate is chosen to minimize the sum of squares of the linearized terms, that is,

$$\mathbf{x}_{k+1} = \operatorname*{argmin}_{\mathbf{x} \in \mathbb{R}^n} \left\{ \sum_{i=1}^m \left[f_i(\mathbf{x}_k) + \nabla f_i(\mathbf{x}_k)^T (\mathbf{x} - \mathbf{x}_k) - c_i \right]^2 \right\}.$$

The general step actually consists of solving the linear LS problem

 $\min \|\mathbf{A}_k \mathbf{x} - \mathbf{b}_k\|^2,$

where

$$\mathbf{A}_{k} = \begin{pmatrix} \nabla f_{1}(\mathbf{x}_{k})^{T} \\ \nabla f_{2}(\mathbf{x}_{k})^{T} \\ \vdots \\ \nabla f_{m}(\mathbf{x}_{k})^{T} \end{pmatrix} = J(\mathbf{x}_{k})$$

is the so-called Jacobian matrix, assumed to have full column rank.

$$\mathbf{b}_{k} = \begin{pmatrix} \nabla f_{1}(\mathbf{x}_{k})^{T} \mathbf{x}_{k} - f_{1}(\mathbf{x}_{k}) + c_{1} \\ \nabla f_{2}(\mathbf{x}_{k})^{T} \mathbf{x}_{k} - f_{2}(\mathbf{x}_{k}) + c_{2} \\ \vdots \\ \nabla f_{m}(\mathbf{x}_{k})^{T} \mathbf{x}_{k} - f_{m}(\mathbf{x}_{k}) + c_{m} \end{pmatrix} = J(\mathbf{x}_{k})\mathbf{x}_{k} - F(\mathbf{x}_{k})$$

Amir Beck

"Introduction to Nonlinear Optimization" Lecture Slides - The Gradient Method

The Gauss-Newton method can thus be written as:

 $\mathbf{x}_{k+1} = (J(\mathbf{x}_k)^T J(\mathbf{x}_k))^{-1} J(\mathbf{x}_k)^T \mathbf{b}_k.$

The Gauss-Newton method can thus be written as:

 $\mathbf{x}_{k+1} = (J(\mathbf{x}_k)^T J(\mathbf{x}_k))^{-1} J(\mathbf{x}_k)^T \mathbf{b}_k.$

► The gradient of the objective function $f(\mathbf{x}) = ||F(\mathbf{x})||^2$ is $\nabla f(\mathbf{x}) = 2J(\mathbf{x})^T F(\mathbf{x})$

The Gauss-Newton method can thus be written as:

 $\mathbf{x}_{k+1} = (J(\mathbf{x}_k)^T J(\mathbf{x}_k))^{-1} J(\mathbf{x}_k)^T \mathbf{b}_k.$

- ► The gradient of the objective function $f(\mathbf{x}) = ||F(\mathbf{x})||^2$ is $\nabla f(\mathbf{x}) = 2J(\mathbf{x})^T F(\mathbf{x})$
- ▶ The GN method can be rewritten as follows:

$$\begin{aligned} \mathbf{x}_{k+1} &= (J(\mathbf{x}_k)^T J(\mathbf{x}_k))^{-1} J(\mathbf{x}_k)^T (J(\mathbf{x}_k) \mathbf{x}_k - F(\mathbf{x}_k)) \\ &= \mathbf{x}_k - (J(\mathbf{x}_k)^T J(\mathbf{x}_k))^{-1} J(\mathbf{x}_k)^T F(\mathbf{x}_k) \\ &= \mathbf{x}_k - \frac{1}{2} (J(\mathbf{x}_k)^T J(\mathbf{x}_k))^{-1} \nabla f(\mathbf{x}_k), \end{aligned}$$

The Gauss-Newton method can thus be written as:

 $\mathbf{x}_{k+1} = (J(\mathbf{x}_k)^T J(\mathbf{x}_k))^{-1} J(\mathbf{x}_k)^T \mathbf{b}_k.$

- ► The gradient of the objective function $f(\mathbf{x}) = ||F(\mathbf{x})||^2$ is $\nabla f(\mathbf{x}) = 2J(\mathbf{x})^T F(\mathbf{x})$
- The GN method can be rewritten as follows:

$$\begin{aligned} \mathbf{x}_{k+1} &= (J(\mathbf{x}_k)^T J(\mathbf{x}_k))^{-1} J(\mathbf{x}_k)^T (J(\mathbf{x}_k) \mathbf{x}_k - F(\mathbf{x}_k)) \\ &= \mathbf{x}_k - (J(\mathbf{x}_k)^T J(\mathbf{x}_k))^{-1} J(\mathbf{x}_k)^T F(\mathbf{x}_k) \\ &= \mathbf{x}_k - \frac{1}{2} (J(\mathbf{x}_k)^T J(\mathbf{x}_k))^{-1} \nabla f(\mathbf{x}_k), \end{aligned}$$

that is, it is a scaled gradient method with a special choice of scaling matrix:

$$\mathbf{D}_k = \frac{1}{2} (J(\mathbf{x}_k)^T J(\mathbf{x}_k))^{-1}.$$

Amir Beck

The Damped Gauss-Newton Method

The Gauss-Newton method does not incorporate a stepsize, which might cause it to diverge. A well known variation of the method incorporating stepsizes is the damped Gauss-newton Method.

Damped Gauss-Newton Method

Input: ε - tolerance parameter.

Initialization: pick $\mathbf{x}_0 \in \mathbb{R}^n$ arbitrarily. **General step:** for any k = 0, 1, 2, ... execute the following steps: (a) Set $\mathbf{d}_k = -(J(\mathbf{x}_k)^T J(\mathbf{x}_k))^{-1} J(\mathbf{x}_k)^T F(\mathbf{x}_k)$. (b) Set t_k by a line search procedure on the function $h(t) = g(\mathbf{x}_k + t\mathbf{d}_k)$.

(c) set $\mathbf{x}_{k+1} = \mathbf{x}_k + t_k \mathbf{d}_k$. (c) if $\|\nabla f(\mathbf{x}_{k+1})\| \le \varepsilon$, then STOP and \mathbf{x}_{k+1} is the output.

Fermat-Weber Problem

Fermat-Weber Problem: Given *m* points in \mathbb{R}^n : $\mathbf{a}_1, \ldots, \mathbf{a}_m$ – also called "anchor point" – and *m* weights $\omega_1, \omega_2, \ldots, \omega_m > 0$, find a point $\mathbf{x} \in \mathbb{R}^n$ that minimizes the weighted distance of \mathbf{x} to each of the points $\mathbf{a}_1, \ldots, \mathbf{a}_m$:

$$\min_{\mathbf{x}\in\mathbb{R}^n}\left\{f(\mathbf{x})\equiv\sum_{i=1}^m\omega_i\|\mathbf{x}-\mathbf{a}_i\|\right\}.$$

- ▶ The objective function is not differentiable at the anchor points **a**₁,..., **a**_m.
- One of the simplest instances of facility location problems.

• Start from the stationarity condition $\nabla f(\mathbf{x}) = \mathbf{0}^2$.

- Start from the stationarity condition $\nabla f(\mathbf{x}) = \mathbf{0}^2$.
- $\blacktriangleright \sum_{i=1}^{m} \omega_i \frac{\mathbf{x} \mathbf{a}_i}{\|\mathbf{x} \mathbf{a}_i\|} = \mathbf{0}.$

• Start from the stationarity condition $\nabla f(\mathbf{x}) = \mathbf{0}^2$.

$$\sum_{i=1}^{m} \omega_i \frac{\mathbf{x} - \mathbf{a}_i}{\|\mathbf{x} - \mathbf{a}_i\|} = \mathbf{0}.$$

$$\left(\sum_{i=1}^{m} \frac{\omega_i}{\|\mathbf{x} - \mathbf{a}_i\|} \right) \mathbf{x} = \sum_{i=1}^{m} \frac{\omega_i \mathbf{a}_i}{\|\mathbf{x} - \mathbf{a}_i\|},$$

• Start from the stationarity condition $\nabla f(\mathbf{x}) = \mathbf{0}^2$.

$$\sum_{i=1}^{m} \omega_i \frac{\mathbf{x} - \mathbf{a}_i}{\|\mathbf{x} - \mathbf{a}_i\|} = \mathbf{0}.$$

$$\left(\sum_{i=1}^{m} \frac{\omega_i}{\|\mathbf{x} - \mathbf{a}_i\|} \right) \mathbf{x} = \sum_{i=1}^{m} \frac{\omega_i \mathbf{a}_i}{\|\mathbf{x} - \mathbf{a}_i\|},$$

$$\mathbf{x} = \frac{1}{\sum_{i=1}^{m} \frac{\omega_i}{\|\mathbf{x} - \mathbf{a}_i\|}} \sum_{i=1}^{m} \frac{\omega_i \mathbf{a}_i}{\|\mathbf{x} - \mathbf{a}_i\|}.$$

• Start from the stationarity condition $\nabla f(\mathbf{x}) = \mathbf{0}^2$.

$$\sum_{i=1}^{m} \omega_i \frac{\mathbf{x} - \mathbf{a}_i}{\|\mathbf{x} - \mathbf{a}_i\|} = \mathbf{0}.$$

$$\left(\sum_{i=1}^{m} \frac{\omega_i}{\|\mathbf{x} - \mathbf{a}_i\|} \right) \mathbf{x} = \sum_{i=1}^{m} \frac{\omega_i \mathbf{a}_i}{\|\mathbf{x} - \mathbf{a}_i\|},$$

- $\blacktriangleright \mathbf{x} = \frac{1}{\sum_{i=1}^{m} \frac{\omega_i}{\|\mathbf{x} \mathbf{a}_i\|}} \sum_{i=1}^{m} \frac{\omega_i \mathbf{a}_i}{\|\mathbf{x} \mathbf{a}_i\|}.$
- ► The stationarity condition can be written as x = T(x), where T is the operator

$$\mathcal{T}(\mathbf{x}) \equiv rac{1}{\sum_{i=1}^{m} rac{\omega_i}{\|\mathbf{x}-\mathbf{a}_i\|}} \sum_{i=1}^{m} rac{\omega_i \mathbf{a}_i}{\|\mathbf{x}-\mathbf{a}_i\|},$$

²We implicitly assume here that \mathbf{x} is not an anchor point.

• Start from the stationarity condition $\nabla f(\mathbf{x}) = \mathbf{0}^2$.

$$\sum_{i=1}^{m} \omega_i \frac{\mathbf{x} - \mathbf{a}_i}{\|\mathbf{x} - \mathbf{a}_i\|} = \mathbf{0}.$$

$$\left(\sum_{i=1}^{m} \frac{\omega_i}{\|\mathbf{x} - \mathbf{a}_i\|} \right) \mathbf{x} = \sum_{i=1}^{m} \frac{\omega_i \mathbf{a}_i}{\|\mathbf{x} - \mathbf{a}_i\|},$$

- $\blacktriangleright \mathbf{x} = \frac{1}{\sum_{i=1}^{m} \frac{\omega_i}{\|\mathbf{x} \mathbf{a}_i\|}} \sum_{i=1}^{m} \frac{\omega_i \mathbf{a}_i}{\|\mathbf{x} \mathbf{a}_i\|}.$
- ► The stationarity condition can be written as x = T(x), where T is the operator

$$\mathcal{T}(\mathbf{x}) \equiv rac{1}{\sum_{i=1}^m rac{\omega_i}{\|\mathbf{x}-\mathbf{a}_i\|}} \sum_{i=1}^m rac{\omega_i \mathbf{a}_i}{\|\mathbf{x}-\mathbf{a}_i\|}.$$

Weiszfeld's method is a fixed point method:

$$\mathbf{x}_{k+1} = T(\mathbf{x}_k).$$

Amir Beck

"Introduction to Nonlinear Optimization" Lecture Slides - The Gradient Method

²We implicitly assume here that \mathbf{x} is not an anchor point.

Weiszfeld's Method as a Gradient Method

Weiszfeld's Method Initialization: pick $\mathbf{x}_0 \in \mathbb{R}^n$ such that $\mathbf{x} \neq \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m$. General step: for any $k = 0, 1, 2, \dots$ compute:

$$\mathbf{x}_{k+1} = T(\mathbf{x}_k) = \frac{1}{\sum_{i=1}^m \frac{\omega_i}{\|\mathbf{x}_k - \mathbf{a}_i\|}} \sum_{i=1}^m \frac{\omega_i \mathbf{a}_i}{\|\mathbf{x}_k - \mathbf{a}_i\|}.$$

Weiszfeld's Method as a Gradient Method

Weiszfeld's Method Initialization: pick $\mathbf{x}_0 \in \mathbb{R}^n$ such that $\mathbf{x} \neq \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m$. General step: for any $k = 0, 1, 2, \dots$ compute:

$$\mathbf{x}_{k+1} = T(\mathbf{x}_k) = \frac{1}{\sum_{i=1}^m \frac{\omega_i}{\|\mathbf{x}_k - \mathbf{a}_i\|}} \sum_{i=1}^m \frac{\omega_i \mathbf{a}_i}{\|\mathbf{x}_k - \mathbf{a}_i\|}.$$

Weiszfeld's method is a gradient method since

$$\begin{split} \mathbf{x}_{k+1} &= \frac{1}{\sum_{i=1}^{m} \frac{\omega_i}{\|\mathbf{x}_k - \mathbf{a}_i\|}} \sum_{i=1}^{m} \frac{\omega_i \mathbf{a}_i}{\|\mathbf{x}_k - \mathbf{a}_i\|} \\ &= \mathbf{x}_k - \frac{1}{\sum_{i=1}^{m} \frac{\omega_i}{\|\mathbf{x}_k - \mathbf{a}_i\|}} \sum_{i=1}^{m} \omega_i \frac{\mathbf{x}_k - \mathbf{a}_i}{\|\mathbf{x}_k - \mathbf{a}_i\|} \\ &= \mathbf{x}_k - \frac{1}{\sum_{i=1}^{m} \frac{\omega_i}{\|\mathbf{x}_k - \mathbf{a}_i\|}} \nabla f(\mathbf{x}_k). \end{split}$$

Weiszfeld's Method as a Gradient Method

Weiszfeld's Method Initialization: pick $\mathbf{x}_0 \in \mathbb{R}^n$ such that $\mathbf{x} \neq \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m$. General step: for any $k = 0, 1, 2, \dots$ compute:

$$\mathbf{x}_{k+1} = T(\mathbf{x}_k) = \frac{1}{\sum_{i=1}^m \frac{\omega_i}{\|\mathbf{x}_k - \mathbf{a}_i\|}} \sum_{i=1}^m \frac{\omega_i \mathbf{a}_i}{\|\mathbf{x}_k - \mathbf{a}_i\|}.$$

Weiszfeld's method is a gradient method since

$$\begin{aligned} \mathbf{x}_{k+1} &= \frac{1}{\sum_{i=1}^{m} \frac{\omega_i}{\|\mathbf{x}_k - \mathbf{a}_i\|}} \sum_{i=1}^{m} \frac{\omega_i \mathbf{a}_i}{\|\mathbf{x}_k - \mathbf{a}_i\|} \\ &= \mathbf{x}_k - \frac{1}{\sum_{i=1}^{m} \frac{\omega_i}{\|\mathbf{x}_k - \mathbf{a}_i\|}} \sum_{i=1}^{m} \omega_i \frac{\mathbf{x}_k - \mathbf{a}_i}{\|\mathbf{x}_k - \mathbf{a}_i\|} \\ &= \mathbf{x}_k - \frac{1}{\sum_{i=1}^{m} \frac{\omega_i}{\|\mathbf{x}_k - \mathbf{a}_i\|}} \nabla f(\mathbf{x}_k). \end{aligned}$$

• A gradient method with a special choice of stepsize: $t_k = \frac{1}{\sum_{i=1}^{m} \frac{\omega_i}{\|\mathbf{x}_k - \mathbf{a}_i\|}}$.

Amir Beck