Lecture 4 - The Gradient Method

Objective: find an optimal solution of the problem

$$
\min \left\{f(\mathbf{x}): \mathbf{x} \in \mathbb{R}^{n}\right\} .
$$

The iterative algorithms that we will consider are of the form

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}+t_{k} \mathbf{d}_{k}, k=0,1, \ldots
$$

- \mathbf{d}_{k} - direction.
- t_{k} - stepsize.

Lecture 4 - The Gradient Method

Objective: find an optimal solution of the problem

$$
\min \left\{f(\mathbf{x}): \mathbf{x} \in \mathbb{R}^{n}\right\} .
$$

The iterative algorithms that we will consider are of the form

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}+t_{k} \mathbf{d}_{k}, k=0,1, \ldots
$$

- \mathbf{d}_{k} - direction.
- t_{k} - stepsize.

We will limit ourselves to descent directions.
Definition. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuously differentiable function over \mathbb{R}^{n}. A vector $\mathbf{0} \neq \mathbf{d} \in \mathbb{R}^{n}$ is called a descent direction of f at \mathbf{x} if the directional derivative $f^{\prime}(\mathbf{x} ; \mathbf{d})$ is negative, meaning that

$$
f^{\prime}(\mathbf{x} ; \mathbf{d})=\nabla f(\mathbf{x})^{T} \mathbf{d}<0 .
$$

The Descent Property of Descent Directions

Lemma: Let f be a continuously differentiable function over \mathbb{R}^{n}, and let $\mathbf{x} \in \mathbb{R}^{n}$. Suppose that \mathbf{d} is a descent direction of f at \mathbf{x}. Then there exists $\varepsilon>0$ such that

$$
f(\mathbf{x}+t \mathbf{d})<f(\mathbf{x})
$$

for any $t \in(0, \varepsilon]$.

The Descent Property of Descent Directions

Lemma: Let f be a continuously differentiable function over \mathbb{R}^{n}, and let $\mathbf{x} \in \mathbb{R}^{n}$. Suppose that \mathbf{d} is a descent direction of f at \mathbf{x}. Then there exists $\varepsilon>0$ such that

$$
f(\mathbf{x}+t \mathbf{d})<f(\mathbf{x})
$$

for any $t \in(0, \varepsilon]$.

Proof.

- Since $f^{\prime}(\mathbf{x} ; \mathbf{d})<0$, it follows from the definition of the directional derivative that

$$
\lim _{t \rightarrow 0^{+}} \frac{f(\mathbf{x}+t \mathbf{d})-f(\mathbf{x})}{t}=f^{\prime}(\mathbf{x} ; \mathbf{d})<0 .
$$

The Descent Property of Descent Directions

Lemma: Let f be a continuously differentiable function over \mathbb{R}^{n}, and let $\mathbf{x} \in \mathbb{R}^{n}$. Suppose that \mathbf{d} is a descent direction of f at \mathbf{x}. Then there exists $\varepsilon>0$ such that

$$
f(\mathbf{x}+t \mathbf{d})<f(\mathbf{x})
$$

for any $t \in(0, \varepsilon]$.

Proof.

- Since $f^{\prime}(\mathbf{x} ; \mathbf{d})<0$, it follows from the definition of the directional derivative that

$$
\lim _{t \rightarrow 0^{+}} \frac{f(\mathbf{x}+t \mathbf{d})-f(\mathbf{x})}{t}=f^{\prime}(\mathbf{x} ; \mathbf{d})<0
$$

- Therefore, $\exists \varepsilon>0$ such that

$$
\frac{f(\mathbf{x}+t \mathbf{d})-f(\mathbf{x})}{t}<0
$$

for any $t \in(0, \varepsilon]$, which readily implies the desired result.

Schematic Descent Direction Method

Initialization: pick $\mathbf{x}_{0} \in \mathbb{R}^{n}$ arbitrarily.
General step: for any $k=0,1,2, \ldots$ set
(a) pick a descent direction \mathbf{d}_{k}.
(b) find a stepsize t_{k} satisfying $f\left(\mathbf{x}_{k}+t_{k} \mathbf{d}_{k}\right)<f\left(\mathbf{x}_{k}\right)$.
(c) set $\mathbf{x}_{k+1}=\mathbf{x}_{k}+t_{k} \mathbf{d}_{k}$.
(d) if a stopping criteria is satisfied, then STOP and \mathbf{x}_{k+1} is the output.

Of course, many details are missing in the above schematic algorithm:

- What is the starting point?
- How to choose the descent direction?
- What stepsize should be taken?
- What is the stopping criteria?

Stepsize Selection Rules

- constant stepsize $-t_{k}=\bar{t}$ for any k.
- exact stepsize $-t_{k}$ is a minimizer of f along the ray $\mathbf{x}_{k}+t \mathbf{d}_{k}$:

$$
t_{k} \in \underset{t \geq 0}{\operatorname{argmin}} f\left(\mathbf{x}_{k}+t \mathbf{d}_{k}\right)
$$

- backtracking ${ }^{1}$ - The method requires three parameters:
$s>0, \alpha \in(0,1), \beta \in(0,1)$. Here we start with an initial stepsize $t_{k}=s$. While

$$
f\left(\mathbf{x}_{k}\right)-f\left(\mathbf{x}_{k}+t_{k} \mathbf{d}_{k}\right)<-\alpha t_{k} \nabla f\left(\mathbf{x}_{k}\right)^{T} \mathbf{d}_{k} .
$$

set $t_{k}:=\beta t_{k}$

Sufficient Decrease Property:

$$
f\left(\mathbf{x}_{k}\right)-f\left(\mathbf{x}_{k}+t_{k} \mathbf{d}_{k}\right) \geq-\alpha t_{k} \nabla f\left(\mathbf{x}_{k}\right)^{T} \mathbf{d}_{k} .
$$

Exact Line Search for Quadratic Functions

$f(\mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c$ where \mathbf{A} is an $n \times n$ positive definite matrix, $\mathbf{b} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$. Let $\mathbf{x} \in \mathbb{R}^{n}$ and let $\mathbf{d} \in \mathbb{R}^{n}$ be a descent direction of f at \mathbf{x}. The objective is to find a solution to

$$
\min _{t \geq 0} f(\mathbf{x}+t \mathbf{d}) .
$$

In class

The Gradient Method - Taking the Direction of Minus the Gradient

- In the gradient method $\mathbf{d}_{k}=-\nabla f\left(\mathbf{x}_{k}\right)$.
- This is a descent direction as long as $\nabla f\left(\mathbf{x}^{k}\right) \neq 0$ since

$$
f^{\prime}\left(\mathbf{x}_{k} ;-\nabla f\left(\mathbf{x}_{k}\right)\right)=-\nabla f\left(\mathbf{x}_{k}\right)^{T} \nabla f\left(\mathbf{x}_{k}\right)=-\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|^{2}<0 .
$$

- In addition for being a descent direction, minus the gradient is also the steepest direction method.

Lemma: Let f be a continuously differentiable function and let $\mathbf{x} \in \mathbb{R}^{n}$ be a non-stationary point $(\nabla f(\mathbf{x}) \neq \mathbf{0})$. Then an optimal solution of

$$
\begin{equation*}
\min _{\mathbf{d}}\left\{f^{\prime}(\mathbf{x} ; \mathbf{d}):\|\mathbf{d}\|=1\right\} \tag{1}
\end{equation*}
$$

is $\mathbf{d}=-\nabla f(\mathbf{x}) /\|\nabla f(\mathbf{x})\|$.
Proof. In class

The Gradient Method

The Gradient Method

Input: $\varepsilon>0$ - tolerance parameter.
Initialization: pick $\mathrm{x}_{0} \in \mathbb{R}^{n}$ arbitrarily.
General step: for any $k=0,1,2, \ldots$ execute the following steps:
(a) pick a stepsize t_{k} by a line search procedure on the function

$$
g(t)=f\left(\mathbf{x}_{k}-t \nabla f\left(\mathbf{x}_{k}\right)\right) .
$$

(b) set $\mathbf{x}_{k+1}=\mathbf{x}_{k}-t_{k} \nabla f\left(\mathbf{x}_{k}\right)$.
(c) if $\left\|\nabla f\left(\mathbf{x}_{k+1}\right)\right\| \leq \varepsilon$, then STOP and \mathbf{x}_{k+1} is the output.

Numerical Example

$$
\min x^{2}+2 y^{2}
$$

$\mathbf{x}_{0}=(2 ; 1), \varepsilon=10^{-5}$, exact line search.

13 iterations until convergence.

The Zig-Zag Effect

Lemma. Let $\left\{\mathbf{x}_{k}\right\}_{k \geq 0}$ be the sequence generated by the gradient method with exact line search for solving a problem of minimizing a continuously differentiable function f. Then for any $k=0,1,2, \ldots$

$$
\left(\mathbf{x}_{k+2}-\mathbf{x}_{k+1}\right)^{T}\left(\mathbf{x}_{k+1}-\mathbf{x}_{k}\right)=0 .
$$

Proof.

- $\mathbf{x}_{k+1}-\mathbf{x}_{k}=-t_{k} \nabla f\left(\mathbf{x}_{k}\right), \mathbf{x}_{k+2}-\mathbf{x}_{k+1}=-t_{k+1} \nabla f\left(\mathbf{x}_{k+1}\right)$.

The Zig-Zag Effect

Lemma. Let $\left\{\mathbf{x}_{k}\right\}_{k \geq 0}$ be the sequence generated by the gradient method with exact line search for solving a problem of minimizing a continuously differentiable function f. Then for any $k=0,1,2, \ldots$

$$
\left(\mathbf{x}_{k+2}-\mathbf{x}_{k+1}\right)^{T}\left(\mathbf{x}_{k+1}-\mathbf{x}_{k}\right)=0 .
$$

Proof.

- $\mathbf{x}_{k+1}-\mathbf{x}_{k}=-t_{k} \nabla f\left(\mathbf{x}_{k}\right), \mathbf{x}_{k+2}-\mathbf{x}_{k+1}=-t_{k+1} \nabla f\left(\mathbf{x}_{k+1}\right)$.
- Therefore, we need to prove that $\nabla f\left(\mathbf{x}_{k}\right)^{T} \nabla f\left(\mathbf{x}_{k+1}\right)=0$.

The Zig-Zag Effect

Lemma. Let $\left\{\mathbf{x}_{k}\right\}_{k \geq 0}$ be the sequence generated by the gradient method with exact line search for solving a problem of minimizing a continuously differentiable function f. Then for any $k=0,1,2, \ldots$

$$
\left(\mathbf{x}_{k+2}-\mathbf{x}_{k+1}\right)^{T}\left(\mathbf{x}_{k+1}-\mathbf{x}_{k}\right)=0
$$

Proof.

- $\mathbf{x}_{k+1}-\mathbf{x}_{k}=-t_{k} \nabla f\left(\mathbf{x}_{k}\right), \mathbf{x}_{k+2}-\mathbf{x}_{k+1}=-t_{k+1} \nabla f\left(\mathbf{x}_{k+1}\right)$.
- Therefore, we need to prove that $\nabla f\left(\mathbf{x}_{k}\right)^{T} \nabla f\left(\mathbf{x}_{k+1}\right)=0$.
- $t_{k} \in \operatorname{argmin}\left\{g(t) \equiv f\left(\mathbf{x}_{k}-t \nabla f\left(\mathbf{x}_{k}\right)\right)\right\}$

$$
t \geq 0
$$

The Zig-Zag Effect

Lemma. Let $\left\{\mathbf{x}_{k}\right\}_{k \geq 0}$ be the sequence generated by the gradient method with exact line search for solving a problem of minimizing a continuously differentiable function f. Then for any $k=0,1,2, \ldots$

$$
\left(\mathbf{x}_{k+2}-\mathbf{x}_{k+1}\right)^{T}\left(\mathbf{x}_{k+1}-\mathbf{x}_{k}\right)=0 .
$$

Proof.

- $\mathbf{x}_{k+1}-\mathbf{x}_{k}=-t_{k} \nabla f\left(\mathbf{x}_{k}\right), \mathbf{x}_{k+2}-\mathbf{x}_{k+1}=-t_{k+1} \nabla f\left(\mathbf{x}_{k+1}\right)$.
- Therefore, we need to prove that $\nabla f\left(\mathbf{x}_{k}\right)^{T} \nabla f\left(\mathbf{x}_{k+1}\right)=0$.
- $t_{k} \in \operatorname{argmin}\left\{g(t) \equiv f\left(\mathbf{x}_{k}-t \nabla f\left(\mathbf{x}_{k}\right)\right)\right\}$

$$
t \geq 0
$$

- Hence, $g^{\prime}\left(t_{k}\right)=0$.

The Zig-Zag Effect

Lemma. Let $\left\{\mathbf{x}_{k}\right\}_{k \geq 0}$ be the sequence generated by the gradient method with exact line search for solving a problem of minimizing a continuously differentiable function f. Then for any $k=0,1,2, \ldots$

$$
\left(\mathbf{x}_{k+2}-\mathbf{x}_{k+1}\right)^{T}\left(\mathbf{x}_{k+1}-\mathbf{x}_{k}\right)=0 .
$$

Proof.

- $\mathbf{x}_{k+1}-\mathbf{x}_{k}=-t_{k} \nabla f\left(\mathbf{x}_{k}\right), \mathbf{x}_{k+2}-\mathbf{x}_{k+1}=-t_{k+1} \nabla f\left(\mathbf{x}_{k+1}\right)$.
- Therefore, we need to prove that $\nabla f\left(\mathbf{x}_{k}\right)^{T} \nabla f\left(\mathbf{x}_{k+1}\right)=0$.
- $t_{k} \in \operatorname{argmin}\left\{g(t) \equiv f\left(\mathbf{x}_{k}-t \nabla f\left(\mathbf{x}_{k}\right)\right)\right\}$

$$
t \geq 0
$$

- Hence, $g^{\prime}\left(t_{k}\right)=0$.
- $-\nabla f\left(\mathbf{x}_{k}\right)^{T} \nabla f\left(\mathbf{x}_{k}-t_{k} \nabla f\left(\mathbf{x}_{k}\right)\right)=0$.
- $\nabla f\left(\mathbf{x}_{k}\right)^{T} \nabla f\left(\mathbf{x}_{k+1}\right)=0$.

Numerical Example - Constant Stepsize, $\bar{t}=0.1$

$$
\min x^{2}+2 y^{2}
$$

```
\mp@subsup{x}{0}{}}=(2;1),\varepsilon=1\mp@subsup{0}{}{-5},\overline{t}=0.1
iter_number = 1 norm_grad = 4.000000 fun_val = 3.280000
iter_number = 2 norm_grad = 2.937210 fun_val = 1.897600
iter_number = 3 norm_grad = 2.222791 fun_val = 1.141888
iter_number = 56 norm_grad = 0.000015 fun_val = 0.000000
iter_number = 57 norm_grad = 0.000012 fun_val = 0.000000
iter_number = 58 norm_grad = 0.000010 fun_val = 0.000000
```

- quite a lot of iterations...

Numerical Example - Constant Stepsize, $\bar{t}=10$

$$
\min x^{2}+2 y^{2}
$$

```
\mp@subsup{x}{0}{}}=(2;1),\varepsilon=1\mp@subsup{0}{}{-5},\overline{t}=10.
iter_number = 1 norm_grad = 1783.488716 fun_val = 476806.000000
iter_number = 2 norm_grad = 656209.693339 fun_val = 56962873606.00
iter_number = 3 norm_grad = 256032703.004797 fun_val = 8318300807
iter_number = 119 norm_grad = NaN fun_val = NaN
```

- The sequence diverges:(
- Important question: how can we choose the constant stepsize so that convergence is guaranteed?

Lipschitz Continuity of the Gradient

Definition Let f be a continuously differentiable function over \mathbb{R}^{n}. We say that f has a Lipschitz gradient if there exists $L \geq 0$ for which

$$
\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\| \leq L\|\mathbf{x}-\mathbf{y}\| \text { for any } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

L is called the Lipschitz constant.

- If ∇f is Lipschitz with constant L, then it is also Lipschitz with constant \tilde{L} for all $\tilde{L} \geq L$.
- The class of functions with Lipschitz gradient with constant L is denoted by $C_{L}^{1,1}\left(\mathbb{R}^{n}\right)$ or just $C_{L}^{1,1}$.

Lipschitz Continuity of the Gradient

Definition Let f be a continuously differentiable function over \mathbb{R}^{n}. We say that f has a Lipschitz gradient if there exists $L \geq 0$ for which

$$
\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\| \leq L\|\mathbf{x}-\mathbf{y}\| \text { for any } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

L is called the Lipschitz constant.

- If ∇f is Lipschitz with constant L, then it is also Lipschitz with constant \tilde{L} for all $\tilde{L} \geq L$.
- The class of functions with Lipschitz gradient with constant L is denoted by $C_{L}^{1,1}\left(\mathbb{R}^{n}\right)$ or just $C_{L}^{1,1}$.
- Linear functions - Given $\mathbf{a} \in \mathbb{R}^{n}$, the function $f(\mathbf{x})=\mathbf{a}^{T} \mathbf{x}$ is in $C_{0}^{1,1}$.
- Quadratic functions - Let \mathbf{A} be a symmetric $n \times n$ matrix, $\mathbf{b} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$. Then the function $f(\mathbf{x})=\mathbf{x}^{\top} \mathbf{A} \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c$ is a $C^{1,1}$ function. The smallest Lipschitz constant of ∇f is $2\|\mathbf{A}\|_{2}-$ why? In class

Equivalence to Boundedness of the Hessian

Theorem. Let f be a twice continuously differentiable function over \mathbb{R}^{n}. Then the following two claims are equivalent:

1. $f \in C_{L}^{1,1}\left(\mathbb{R}^{n}\right)$.
2. $\left\|\nabla^{2} f(\mathbf{x})\right\| \leq L$ for any $\mathbf{x} \in \mathbb{R}^{n}$.

Proof on pages 73,74 of the book
Example: $f(x)=\sqrt{1+x^{2}} \in C^{1,1}$
In class

Convergence of the Gradient Method

Theorem. Let $\left\{\mathbf{x}_{k}\right\}_{k \geq 0}$ be the sequence generated by GM for solving

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x})
$$

with one of the following stepsize strategies:

- constant stepsize $\bar{t} \in\left(0, \frac{2}{L}\right)$.
- exact line search.
- backtracking procedure with parameters $s>0$ and $\alpha, \beta \in(0,1)$.

Assume that

- $f \in C_{L}^{1,1}\left(\mathbb{R}^{n}\right)$.
- f is bounded below over \mathbb{R}^{n}, that is, there exists $m \in \mathbb{R}$ such that $f(\mathbf{x})>m$ for all $\left.\mathbf{x} \in \mathbb{R}^{n}\right)$.
Then

1. for any $k, f\left(\mathbf{x}_{k+1}\right)<f\left(\mathbf{x}_{k}\right)$ unless $\nabla f\left(\mathbf{x}_{k}\right)=\mathbf{0}$.
2. $\nabla f\left(\mathbf{x}_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$.

Two Numerical Examples - Backtracking

```
            min}\mp@subsup{x}{}{2}+2\mp@subsup{y}{}{2
    \mp@subsup{\mathbf{x}}{0}{}=(2;1),s=2,\alpha=0.25,\beta=0.5,\varepsilon=10-5}
iter_number = 1 norm_grad = 2.000000 fun_val = 1.000000
iter_number = 2 norm_grad = 0.000000 fun_val = 0.000000
- fast convergence (also due to lack!)
- no real advantage to exact line search.
ANOTHER EXAMPLE:
\(\min 0.01 x^{2}+y^{2}, s=2, \alpha=0.25, \beta=0.5, \varepsilon=10^{-5}\).
iter_number = 1 norm_grad \(=0.028003\) fun_val \(=0.009704\)
iter_number \(=2\) norm_grad \(=0.027730\) fun_val \(=0.009324\)
iter_number \(=3\) norm_grad \(=0.027465\) fun_val \(=0.008958\)
iter_number = 201 norm_grad \(=0.000010\) fun_val \(=0.000000\)
Important Question: Can we detect key properties of the objective function that imply slow/fast convergence?
```


Kantorovich Inequality

Lemma. Let \mathbf{A} be a positive definite $n \times n$ matrix. Then for any $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^{n}$ the inequality

$$
\frac{\mathbf{x}^{T} \mathbf{x}}{\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right)\left(\mathbf{x}^{T} \mathbf{A}^{-1} \mathbf{x}\right)} \geq \frac{4 \lambda_{\max }(\mathbf{A}) \lambda_{\min }(\mathbf{A})}{\left(\lambda_{\max }(\mathbf{A})+\lambda_{\min }(\mathbf{A})\right)^{2}}
$$

holds.

Proof.

- Denote $m=\lambda_{\text {min }}(\mathbf{A})$ and $M=\lambda_{\max }(\mathbf{A})$.

Kantorovich Inequality

Lemma. Let \mathbf{A} be a positive definite $n \times n$ matrix. Then for any $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^{n}$ the inequality

$$
\frac{\mathbf{x}^{T} \mathbf{x}}{\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right)\left(\mathbf{x}^{T} \mathbf{A}^{-1} \mathbf{x}\right)} \geq \frac{4 \lambda_{\max }(\mathbf{A}) \lambda_{\min }(\mathbf{A})}{\left(\lambda_{\max }(\mathbf{A})+\lambda_{\min }(\mathbf{A})\right)^{2}}
$$

holds.

Proof.

- Denote $m=\lambda_{\text {min }}(\mathbf{A})$ and $M=\lambda_{\max }(\mathbf{A})$.
- The eigenvalues of the matrix $\mathbf{A}+M m \mathbf{A}^{-1}$ are $\lambda_{i}(\mathbf{A})+\frac{M m}{\lambda_{i}(\mathbf{A})}$.

Kantorovich Inequality

Lemma. Let \mathbf{A} be a positive definite $n \times n$ matrix. Then for any $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^{n}$ the inequality

$$
\frac{\mathbf{x}^{T} \mathbf{x}}{\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right)\left(\mathbf{x}^{T} \mathbf{A}^{-1} \mathbf{x}\right)} \geq \frac{4 \lambda_{\max }(\mathbf{A}) \lambda_{\min }(\mathbf{A})}{\left(\lambda_{\max }(\mathbf{A})+\lambda_{\min }(\mathbf{A})\right)^{2}}
$$

holds.

Proof.

- Denote $m=\lambda_{\text {min }}(\mathbf{A})$ and $M=\lambda_{\max }(\mathbf{A})$.
- The eigenvalues of the matrix $\mathbf{A}+M m \mathbf{A}^{-1}$ are $\lambda_{i}(\mathbf{A})+\frac{M m}{\lambda_{i}(\mathbf{A})}$.
- The maximum of the 1-D function $\varphi(t)=t+\frac{M m}{t}$ over $[m, M$] is attained at the endpoints m and M with a corresponding value of $M+m$.

Kantorovich Inequality

Lemma. Let \mathbf{A} be a positive definite $n \times n$ matrix. Then for any $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^{n}$ the inequality

$$
\frac{\mathbf{x}^{T} \mathbf{x}}{\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right)\left(\mathbf{x}^{T} \mathbf{A}^{-1} \mathbf{x}\right)} \geq \frac{4 \lambda_{\max }(\mathbf{A}) \lambda_{\min }(\mathbf{A})}{\left(\lambda_{\max }(\mathbf{A})+\lambda_{\min }(\mathbf{A})\right)^{2}}
$$

holds.

Proof.

- Denote $m=\lambda_{\text {min }}(\mathbf{A})$ and $M=\lambda_{\max }(\mathbf{A})$.
- The eigenvalues of the matrix $\mathbf{A}+M m \mathbf{A}^{-1}$ are $\lambda_{i}(\mathbf{A})+\frac{M m}{\lambda_{i}(\mathbf{A})}$.
- The maximum of the 1-D function $\varphi(t)=t+\frac{M m}{t}$ over $[m, M]$ is attained at the endpoints m and M with a corresponding value of $M+m$.
- Thus, the eigenvalues of $\mathbf{A}+M m \mathbf{A}^{-1}$ are smaller than $(M+m)$.

Kantorovich Inequality

Lemma. Let \mathbf{A} be a positive definite $n \times n$ matrix. Then for any $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^{n}$ the inequality

$$
\frac{\mathbf{x}^{T} \mathbf{x}}{\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right)\left(\mathbf{x}^{\top} \mathbf{A}^{-1} \mathbf{x}\right)} \geq \frac{4 \lambda_{\max }(\mathbf{A}) \lambda_{\min }(\mathbf{A})}{\left(\lambda_{\max }(\mathbf{A})+\lambda_{\min }(\mathbf{A})\right)^{2}}
$$

holds.

Proof.

- Denote $m=\lambda_{\text {min }}(\mathbf{A})$ and $M=\lambda_{\max }(\mathbf{A})$.
- The eigenvalues of the matrix $\mathbf{A}+M m \mathbf{A}^{-1}$ are $\lambda_{i}(\mathbf{A})+\frac{M m}{\lambda_{i}(\mathbf{A})}$.
- The maximum of the 1-D function $\varphi(t)=t+\frac{M m}{t}$ over $[m, M]$ is attained at the endpoints m and M with a corresponding value of $M+m$.
- Thus, the eigenvalues of $\mathbf{A}+M m \mathbf{A}^{-1}$ are smaller than $(M+m)$.
- $\mathbf{A}+M m \mathbf{A}^{-1} \preceq(M+m) \mathbf{I}$.

Kantorovich Inequality

Lemma. Let \mathbf{A} be a positive definite $n \times n$ matrix. Then for any $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^{n}$ the inequality

$$
\frac{\mathbf{x}^{\top} \mathbf{x}}{\left(\mathbf{x}^{\top} \mathbf{A} \mathbf{x}\right)\left(\mathbf{x}^{\top} \mathbf{A}^{-1} \mathbf{x}\right)} \geq \frac{4 \lambda_{\max }(\mathbf{A}) \lambda_{\min }(\mathbf{A})}{\left(\lambda_{\max }(\mathbf{A})+\lambda_{\min }(\mathbf{A})\right)^{2}}
$$

holds.

Proof.

- Denote $m=\lambda_{\text {min }}(\mathbf{A})$ and $M=\lambda_{\max }(\mathbf{A})$.
- The eigenvalues of the matrix $\mathbf{A}+M m \mathbf{A}^{-1}$ are $\lambda_{i}(\mathbf{A})+\frac{M m}{\lambda_{i}(\mathbf{A})}$.
- The maximum of the 1-D function $\varphi(t)=t+\frac{M m}{t}$ over $[m, M$] is attained at the endpoints m and M with a corresponding value of $M+m$.
- Thus, the eigenvalues of $\mathbf{A}+M m \mathbf{A}^{-1}$ are smaller than $(M+m)$.
- $\mathbf{A}+M m \mathbf{A}^{-1} \preceq(M+m) \mathbf{I}$.
- $\mathbf{x}^{T} \mathbf{A} \mathbf{x}+M m\left(\mathbf{x}^{T} \mathbf{A}^{-1} \mathbf{x}\right) \leq(M+m)\left(\mathbf{x}^{T} \mathbf{x}\right)$,

Kantorovich Inequality

Lemma. Let \mathbf{A} be a positive definite $n \times n$ matrix. Then for any $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^{n}$ the inequality

$$
\frac{\mathbf{x}^{T} \mathbf{x}}{\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right)\left(\mathbf{x}^{\top} \mathbf{A}^{-1} \mathbf{x}\right)} \geq \frac{4 \lambda_{\max }(\mathbf{A}) \lambda_{\min }(\mathbf{A})}{\left(\lambda_{\max }(\mathbf{A})+\lambda_{\min }(\mathbf{A})\right)^{2}}
$$

holds.

Proof.

- Denote $m=\lambda_{\text {min }}(\mathbf{A})$ and $M=\lambda_{\max }(\mathbf{A})$.
- The eigenvalues of the matrix $\mathbf{A}+M m \mathbf{A}^{-1}$ are $\lambda_{i}(\mathbf{A})+\frac{M m}{\lambda_{i}(\mathbf{A})}$.
- The maximum of the 1-D function $\varphi(t)=t+\frac{M m}{t}$ over $[m, M$] is attained at the endpoints m and M with a corresponding value of $M+m$.
- Thus, the eigenvalues of $\mathbf{A}+M m \mathbf{A}^{-1}$ are smaller than $(M+m)$.
- $\mathbf{A}+M m \mathbf{A}^{-1} \preceq(M+m) \mathbf{I}$.
- $\mathbf{x}^{T} \mathbf{A} \mathbf{x}+M m\left(\mathbf{x}^{T} \mathbf{A}^{-1} \mathbf{x}\right) \leq(M+m)\left(\mathbf{x}^{T} \mathbf{x}\right)$,
- Therefore,
$\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right)\left[M m\left(\mathbf{x}^{T} \mathbf{A}^{-1} \mathbf{x}\right)\right] \leq \frac{1}{4}\left[\left(\mathbf{x}^{T} \mathbf{A} \mathbf{x}\right)+M m\left(\mathbf{x}^{T} \mathbf{A}^{-1} \mathbf{x}\right)\right]^{2} \leq \frac{(M+m)^{2}}{4}\left(\mathbf{x}^{T} \mathbf{x}\right)^{2}$,

Gradient Method for Minimizing $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}$

Theorem. Let $\left\{\mathbf{x}_{k}\right\}_{k \geq 0}$ be the sequence generated by the gradient method with exact linesearch for solving the problem

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} \boldsymbol{x}^{T} \mathbf{A x} \quad(\mathbf{A} \succ \mathbf{0}) .
$$

Then for any $k=0,1, \ldots$:

$$
f\left(\mathbf{x}_{k+1}\right) \leq\left(\frac{M-m}{M+m}\right)^{2} f\left(\mathbf{x}_{k}\right)
$$

where $M=\lambda_{\max }(\mathbf{A}), m=\lambda_{\min }(\mathbf{A})$.

Proof.

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-t_{k} \mathbf{d}_{k},
$$

where $t_{k}=\frac{\mathbf{d}_{k}^{T} \mathbf{d}_{k}}{2 \mathbf{d}_{k}^{T} A \mathbf{d}_{k}}, \mathbf{d}_{k}=2 \mathbf{A} \mathbf{x}_{k}$.

Proof of Rate of Convergence Contd.

$$
\begin{aligned}
f\left(\mathbf{x}_{k+1}\right) & =\mathbf{x}_{k+1}^{T} \mathbf{A} \mathbf{x}_{k+1}=\left(\mathbf{x}_{k}-t_{k} \mathbf{d}_{k}\right)^{T} \mathbf{A}\left(\mathbf{x}_{k}-t_{k} \mathbf{d}_{k}\right) \\
& =\mathbf{x}_{k}^{T} \mathbf{A} \mathbf{x}_{k}-2 t_{k} \mathbf{d}_{k}^{T} \mathbf{A} \mathbf{x}_{k}+t_{k}^{2} \mathbf{d}_{k}^{T} \mathbf{A} \mathbf{d}_{k} \\
& =\mathbf{x}_{k}^{T} \mathbf{A} \mathbf{x}_{k}-t_{k} \mathbf{d}_{k}^{T} \mathbf{d}_{k}+t_{k}^{2} \mathbf{d}_{k}^{T} \mathbf{A} \mathbf{d}_{k} .
\end{aligned}
$$

Proof of Rate of Convergence Contd.

$$
\begin{aligned}
f\left(\mathbf{x}_{k+1}\right) & =\mathbf{x}_{k+1}^{T} \mathbf{A} \mathbf{x}_{k+1}=\left(\mathbf{x}_{k}-t_{k} \mathbf{d}_{k}\right)^{T} \mathbf{A}\left(\mathbf{x}_{k}-t_{k} \mathbf{d}_{k}\right) \\
& =\mathbf{x}_{k}^{T} \mathbf{A} \mathbf{x}_{k}-2 t_{k} \mathbf{d}_{k}^{T} \mathbf{A} \mathbf{x}_{k}+t_{k}^{2} \mathbf{d}_{k}^{T} \mathbf{A} \mathbf{d}_{k} \\
& =\mathbf{x}_{k}^{T} \mathbf{A} \mathbf{x}_{k}-t_{k} \mathbf{d}_{k}^{T} \mathbf{d}_{k}+t_{k}^{2} \mathbf{d}_{k}^{T} \mathbf{A} \mathbf{d}_{k} .
\end{aligned}
$$

- Plugging in the expression for t_{k}

$$
\begin{aligned}
f\left(\mathbf{x}_{k+1}\right) & =\mathbf{x}_{k}^{T} \mathbf{A} \mathbf{x}_{k}-\frac{1}{4} \frac{\left(\mathbf{d}_{k}^{T} \mathbf{d}_{k}\right)^{2}}{\mathbf{d}_{k}^{T} \mathbf{A} \mathbf{d}_{k}} \\
& =\mathbf{x}_{k}^{T} \mathbf{A} \mathbf{x}_{k}\left(1-\frac{1}{4} \frac{\left(\mathbf{d}_{k}^{T} \mathbf{d}_{k}\right)^{2}}{\left(\mathbf{d}_{k}^{T} \mathbf{A} \mathbf{d}_{k}\right)\left(\mathbf{x}_{k}^{T} \mathbf{A} \mathbf{A}^{-1} \mathbf{A} \mathbf{x}_{k}\right)}\right) \\
& =\left(1-\frac{\left(\mathbf{d}_{k}^{T} \mathbf{d}_{k}\right)^{2}}{\left(\mathbf{d}_{k}^{T} \mathbf{A} \mathbf{d}_{k}\right)\left(\mathbf{d}_{k}^{T} \mathbf{A}^{-1} \mathbf{d}_{k}\right)}\right) f\left(\mathbf{x}_{k}\right)
\end{aligned}
$$

Proof of Rate of Convergence Contd.

$$
\begin{aligned}
f\left(\mathbf{x}_{k+1}\right) & =\mathbf{x}_{k+1}^{T} \mathbf{A} \mathbf{x}_{k+1}=\left(\mathbf{x}_{k}-t_{k} \mathbf{d}_{k}\right)^{T} \mathbf{A}\left(\mathbf{x}_{k}-t_{k} \mathbf{d}_{k}\right) \\
& =\mathbf{x}_{k}^{T} \mathbf{A} \mathbf{x}_{k}-2 t_{k} \mathbf{d}_{k}^{T} \mathbf{A} \mathbf{x}_{k}+t_{k}^{2} \mathbf{d}_{k}^{T} \mathbf{A} \mathbf{d}_{k} \\
& =\mathbf{x}_{k}^{T} \mathbf{A} \mathbf{x}_{k}-t_{k} \mathbf{d}_{k}^{T} \mathbf{d}_{k}+t_{k}^{2} \mathbf{d}_{k}^{T} \mathbf{A} \mathbf{d}_{k} .
\end{aligned}
$$

- Plugging in the expression for t_{k}

$$
\begin{aligned}
f\left(\mathbf{x}_{k+1}\right) & =\mathbf{x}_{k}^{T} \mathbf{A} \mathbf{x}_{k}-\frac{1}{4} \frac{\left(\mathbf{d}_{k}^{T} \mathbf{d}_{k}\right)^{2}}{\mathbf{d}_{k}^{T} \mathbf{A} \mathbf{d}_{k}} \\
& =\mathbf{x}_{k}^{T} \mathbf{A} \mathbf{x}_{k}\left(1-\frac{1}{4} \frac{\left(\mathbf{d}_{k}^{T} \mathbf{d}_{k}\right)^{2}}{\left(\mathbf{d}_{k}^{T} \mathbf{A} \mathbf{d}_{k}\right)\left(\mathbf{x}_{k}^{T} \mathbf{A} \mathbf{A}^{-1} \mathbf{A} \mathbf{x}_{k}\right)}\right) \\
& =\left(1-\frac{\left(\mathbf{d}_{k}^{T} \mathbf{d}_{k}\right)^{2}}{\left(\mathbf{d}_{k}^{T} \mathbf{A d} \mathbf{d}_{k}\right)\left(\mathbf{d}_{k}^{T} \mathbf{A}^{-1} \mathbf{d}_{k}\right)}\right) f\left(\mathbf{x}_{k}\right) .
\end{aligned}
$$

- By Kantorovich:

$$
f\left(\mathbf{x}_{k+1}\right) \leq\left(1-\frac{4 M m}{(M+m)^{2}}\right) f\left(\mathbf{x}_{k}\right)=\left(\frac{M-m}{M+m}\right)^{2} f\left(\mathbf{x}_{k}\right)=\left(\frac{\kappa(\mathbf{A})-1}{\kappa(\mathbf{A})+1}\right)^{2} f\left(\mathbf{x}_{k}\right),
$$

The Condition Number

Definition. Let \mathbf{A} be an $n \times n$ positive definite matrix. Then the condition number of \mathbf{A} is defined by

$$
\kappa(\mathbf{A})=\frac{\lambda_{\max }(\mathbf{A})}{\lambda_{\min }(\mathbf{A})} .
$$

- matrices (or quadratic functions) with large condition number are called ill-conditioned.
- matrices with small condition number are called well-conditioned.
- large condition number implies large number of iterations of the gradient method.
- small condition number implies small number of iterations of the gradient method.
- For a non-quadratic function, the asymptotic rate of convergence of \mathbf{x}_{k} to a stationary point \mathbf{x}^{*} is usually determined by the condition number of $\nabla^{2} f\left(\mathbf{x}^{*}\right)$.

A Severely III-Condition Function - Rosenbrock

$$
\min \left\{f\left(x_{1}, x_{2}\right)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}\right\}
$$

- optimal solution: $\left(x_{1}, x_{2}\right)=(1,1)$, optimal value: 0 .

$$
\begin{aligned}
\nabla f(\mathbf{x})= & \binom{-400 x_{1}\left(x_{2}-x_{1}^{2}\right)-2\left(1-x_{1}\right)}{200\left(x_{2}-x_{1}^{2}\right)} \\
\nabla^{2} f(\mathbf{x})= & \left(\begin{array}{cc}
-400 x_{2}+1200 x_{1}^{2}+2 & -400 x_{1} \\
-400 x_{1} & 200
\end{array}\right) \\
& \nabla^{2} f(1,1)=\left(\begin{array}{cc}
802 & -400 \\
-400 & 200
\end{array}\right)
\end{aligned}
$$

condition number: 2508

Solution of the Rosenbrock Problem with the Gradient

 Method$\mathbf{x}_{0}=(2 ; 5), s=2, \alpha=0.25, \beta=0.5, \varepsilon=10^{-5}$, backtracking stepsize selection.

6890(!!!!) iterations.

Sensitivity of Solutions to Linear Systems

- Suppose that we are given the linear system

$$
\mathbf{A x}=\mathbf{b}
$$

where $\mathbf{A} \succ \mathbf{0}$ and we assume that \mathbf{x} is indeed the solution of the system $\left(\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}\right)$.

- Suppose that the right-hand side is perturbed $\mathbf{b}+\Delta \mathbf{b}$. What can be said on the solution of the new system $\mathbf{x}+\Delta \mathrm{x}$?
- $\Delta x=\mathbf{A}^{-1} \Delta \mathbf{b}$.
- Result (derivation In class):

$$
\frac{\|\Delta \mathbf{x}\|}{\|\mathbf{x}\|} \leq \kappa(\mathbf{A}) \frac{\|\Delta \mathbf{b}\|}{\|\mathbf{b}\|}
$$

Numerical Example

- consider the ill-condition matrix:

$$
\mathbf{A}=\left(\begin{array}{cc}
1+10^{-5} & 1 \\
1 & 1+10^{-5}
\end{array}\right)
$$

```
>> A=[1+1e-5,1;1,1+1e-5];
>> cond(A)
ans =
    2.000009999998795e+005
```

- We have

```
>> A\[1;1]
ans =
    0.499997500018278
    0.499997500006722
```

- However,

```
>> A\[1.1;1]
ans =
    1.0e+003 *
    5.000524997400047
    -4.999475002650021
```


Scaled Gradient Method

- Consider the minimization problem

$$
(P) \quad \min \left\{f(\mathbf{x}): \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

- For a given nonsingular matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$, we make the linear change of variables $\mathbf{x}=\mathbf{S y}$, and obtain the equivalent problem

$$
\left(\mathrm{P}^{\prime}\right) \quad \min \left\{g(\mathbf{y}) \equiv f(\mathbf{S y}): \mathbf{y} \in \mathbb{R}^{n}\right\}
$$

Scaled Gradient Method

- Consider the minimization problem

$$
(P) \quad \min \left\{f(\mathbf{x}): \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

- For a given nonsingular matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$, we make the linear change of variables $\mathbf{x}=\mathbf{S y}$, and obtain the equivalent problem

$$
\left(\mathrm{P}^{\prime}\right) \quad \min \left\{g(\mathbf{y}) \equiv f(\mathbf{S y}): \mathbf{y} \in \mathbb{R}^{n}\right\}
$$

- Since $\nabla g(\mathbf{y})=\mathbf{S}^{T} \nabla f(\mathbf{S y})=\mathbf{S}^{T} \nabla f(\mathbf{x})$, the gradient method for $\left(\mathrm{P}^{\prime}\right)$ is

$$
\mathbf{y}_{k+1}=\mathbf{y}_{k}-t_{k} \mathbf{S}^{\top} \nabla f\left(\mathbf{S} \mathbf{y}_{k}\right) .
$$

Scaled Gradient Method

- Consider the minimization problem

$$
(P) \quad \min \left\{f(\mathbf{x}): \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

- For a given nonsingular matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$, we make the linear change of variables $\mathbf{x}=\mathbf{S y}$, and obtain the equivalent problem

$$
\left(\mathrm{P}^{\prime}\right) \quad \min \left\{g(\mathbf{y}) \equiv f(\mathbf{S y}): \mathbf{y} \in \mathbb{R}^{n}\right\}
$$

- Since $\nabla g(\mathbf{y})=\mathbf{S}^{T} \nabla f(\mathbf{S y})=\mathbf{S}^{T} \nabla f(\mathbf{x})$, the gradient method for $\left(\mathrm{P}^{\prime}\right)$ is

$$
\mathbf{y}_{k+1}=\mathbf{y}_{k}-t_{k} \mathbf{S}^{T} \nabla f\left(\mathbf{S y}_{k}\right) .
$$

- Multiplying the latter equality by \mathbf{S} from the left, and using the notation $\mathbf{x}_{k}=\mathbf{S} \mathbf{y}_{k}$:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-t_{k} \mathbf{S S}^{T} \nabla f\left(\mathbf{x}_{k}\right)
$$

Scaled Gradient Method

- Consider the minimization problem

$$
(P) \quad \min \left\{f(\mathbf{x}): \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

- For a given nonsingular matrix $\mathbf{S} \in \mathbb{R}^{n \times n}$, we make the linear change of variables $\mathbf{x}=\mathbf{S y}$, and obtain the equivalent problem

$$
\left(\mathrm{P}^{\prime}\right) \quad \min \left\{g(\mathbf{y}) \equiv f(\mathbf{S y}): \mathbf{y} \in \mathbb{R}^{n}\right\}
$$

- Since $\nabla g(\mathbf{y})=\mathbf{S}^{T} \nabla f(\mathbf{S y})=\mathbf{S}^{T} \nabla f(\mathbf{x})$, the gradient method for $\left(\mathrm{P}^{\prime}\right)$ is

$$
\mathbf{y}_{k+1}=\mathbf{y}_{k}-t_{k} \mathbf{S}^{T} \nabla f\left(\mathbf{S y}_{k}\right) .
$$

- Multiplying the latter equality by \mathbf{S} from the left, and using the notation $\mathbf{x}_{k}=\mathbf{S} \mathbf{y}_{k}$:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-t_{k} \mathbf{S S}^{T} \nabla f\left(\mathbf{x}_{k}\right)
$$

- Defining $\mathbf{D}=\mathbf{S S}^{\top}$, we obtain the scaled gradient method:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-t_{k} \mathbf{D} \nabla f\left(\mathbf{x}_{k}\right)
$$

Scaled Gradient Method

- $\mathbf{D} \succ \mathbf{0}$, so the direction $-\mathbf{D} \nabla f\left(\mathbf{x}_{k}\right)$ is a descent direction:

$$
f^{\prime}\left(\mathbf{x}_{k} ;-\mathbf{D} \nabla f\left(\mathbf{x}_{k}\right)\right)=-\nabla f\left(\mathbf{x}_{k}\right)^{T} \mathbf{D} \nabla f\left(\mathbf{x}_{k}\right)<0,
$$

Scaled Gradient Method

- $\mathbf{D} \succ \mathbf{0}$, so the direction $-\mathbf{D} \nabla f\left(\mathbf{x}_{k}\right)$ is a descent direction:

$$
f^{\prime}\left(\mathbf{x}_{k} ;-\mathbf{D} \nabla f\left(\mathbf{x}_{k}\right)\right)=-\nabla f\left(\mathbf{x}_{k}\right)^{T} \mathbf{D} \nabla f\left(\mathbf{x}_{k}\right)<0,
$$

We also allow different scaling matrices at each iteration.

Scaled Gradient Method

Input: $\varepsilon>0$ - tolerance parameter.
Initialization: pick $\mathrm{x}_{0} \in \mathbb{R}^{n}$ arbitrarily.
General step: for any $k=0,1,2, \ldots$ execute the following steps:
(a) pick a scaling matrix $\mathbf{D}_{k} \succ \mathbf{0}$.
(b) pick a stepsize t_{k} by a line search procedure on the function

$$
g(t)=f\left(\mathbf{x}_{k}-t \mathbf{D}_{k} \nabla f\left(\mathbf{x}_{k}\right)\right) .
$$

(c) set $\mathbf{x}_{k+1}=\mathbf{x}_{k}-t_{k} \mathbf{D}_{k} \nabla f\left(\mathbf{x}_{k}\right)$.
(c) if $\left\|\nabla f\left(\mathbf{x}_{k+1}\right)\right\| \leq \varepsilon$, then STOP and \mathbf{x}_{k+1} is the output.

Choosing the Scaling Matrix \mathbf{D}_{k}

- The scaled gradient method with scaling matrix \mathbf{D} is equivalent to the gradient method employed on the function $g(\mathbf{y})=f\left(\mathbf{D}^{1 / 2} \mathbf{y}\right)$.

Choosing the Scaling Matrix \mathbf{D}_{k}

- The scaled gradient method with scaling matrix \mathbf{D} is equivalent to the gradient method employed on the function $g(\mathbf{y})=f\left(\mathbf{D}^{1 / 2} \mathbf{y}\right)$.
- Note that the gradient and Hessian of g are given by

$$
\begin{aligned}
\nabla g(\mathbf{y}) & =\mathbf{D}^{1 / 2} f\left(\mathbf{D}^{1 / 2} \mathbf{y}\right)=\mathbf{D}^{1 / 2} f(\mathbf{x}) \\
\nabla^{2} g(\mathbf{y}) & =\mathbf{D}^{1 / 2} \nabla^{2} f\left(\mathbf{D}^{1 / 2} \mathbf{y}\right) \mathbf{D}^{1 / 2}=\mathbf{D}^{1 / 2} \nabla^{2} f(\mathbf{x}) \mathbf{D}^{1 / 2}
\end{aligned}
$$

- The objective is usually to pick \mathbf{D}_{k} so as to make $\mathbf{D}_{k}^{1 / 2} \nabla^{2} f\left(\mathbf{x}_{k}\right) \mathbf{D}_{k}^{1 / 2}$ as well-conditioned as possible.

Choosing the Scaling Matrix \mathbf{D}_{k}

- The scaled gradient method with scaling matrix \mathbf{D} is equivalent to the gradient method employed on the function $g(\mathbf{y})=f\left(\mathbf{D}^{1 / 2} \mathbf{y}\right)$.
- Note that the gradient and Hessian of g are given by

$$
\begin{aligned}
\nabla g(\mathbf{y}) & =\mathbf{D}^{1 / 2} f\left(\mathbf{D}^{1 / 2} \mathbf{y}\right)=\mathbf{D}^{1 / 2} f(\mathbf{x}) \\
\nabla^{2} g(\mathbf{y}) & =\mathbf{D}^{1 / 2} \nabla^{2} f\left(\mathbf{D}^{1 / 2} \mathbf{y}\right) \mathbf{D}^{1 / 2}=\mathbf{D}^{1 / 2} \nabla^{2} f(\mathbf{x}) \mathbf{D}^{1 / 2}
\end{aligned}
$$

- The objective is usually to pick \mathbf{D}_{k} so as to make $\mathbf{D}_{k}^{1 / 2} \nabla^{2} f\left(\mathbf{x}_{k}\right) \mathbf{D}_{k}^{1 / 2}$ as well-conditioned as possible.
- A well known choice (Newton's method): $\mathbf{D}_{k}=\left(\nabla^{2} f\left(\mathbf{x}_{k}\right)\right)^{-1}$.
- diagonal scaling: \mathbf{D}_{k} is picked to be diagonal. For example,

$$
\left(\mathbf{D}_{k}\right)_{i i}=\left(\frac{\partial^{2} f\left(\mathbf{x}_{k}\right)}{\partial x_{i}^{2}}\right)^{-1}
$$

Choosing the Scaling Matrix \mathbf{D}_{k}

- The scaled gradient method with scaling matrix \mathbf{D} is equivalent to the gradient method employed on the function $g(\mathbf{y})=f\left(\mathbf{D}^{1 / 2} \mathbf{y}\right)$.
- Note that the gradient and Hessian of g are given by

$$
\begin{aligned}
\nabla g(\mathbf{y}) & =\mathbf{D}^{1 / 2} f\left(\mathbf{D}^{1 / 2} \mathbf{y}\right)=\mathbf{D}^{1 / 2} f(\mathbf{x}) \\
\nabla^{2} g(\mathbf{y}) & =\mathbf{D}^{1 / 2} \nabla^{2} f\left(\mathbf{D}^{1 / 2} \mathbf{y}\right) \mathbf{D}^{1 / 2}=\mathbf{D}^{1 / 2} \nabla^{2} f(\mathbf{x}) \mathbf{D}^{1 / 2}
\end{aligned}
$$

- The objective is usually to pick \mathbf{D}_{k} so as to make $\mathbf{D}_{k}^{1 / 2} \nabla^{2} f\left(\mathbf{x}_{k}\right) \mathbf{D}_{k}^{1 / 2}$ as well-conditioned as possible.
- A well known choice (Newton's method): $\mathbf{D}_{k}=\left(\nabla^{2} f\left(\mathbf{x}_{k}\right)\right)^{-1}$.
- diagonal scaling: \mathbf{D}_{k} is picked to be diagonal. For example,

$$
\left(\mathbf{D}_{k}\right)_{i i}=\left(\frac{\partial^{2} f\left(\mathbf{x}_{k}\right)}{\partial x_{i}^{2}}\right)^{-1}
$$

- Diagonal scaling can be very effective when the decision variables are of different magnitudes.

The Gauss-Newton Method

- Nonlinear least squares problem:

$$
\text { (NLS): } \min _{\mathbf{x} \in \mathbb{R}^{n}}\left\{g(\mathbf{x}) \equiv \sum_{i=1}^{m}\left(f_{i}(\mathbf{x})-c_{i}\right)^{2}\right\}
$$

f_{1}, \ldots, f_{m} are continuously differentiable over \mathbb{R}^{n} and $c_{1}, \ldots, c_{m} \in \mathbb{R}$.

- Denote:

$$
F(\mathbf{x})=\left(\begin{array}{c}
f_{1}(\mathbf{x})-c_{1} \\
f_{2}(\mathbf{x})-c_{2} \\
\vdots \\
f_{m}(\mathbf{x})-c_{m}
\end{array}\right)
$$

- Then the problem becomes:

$$
\min \|F(\mathbf{x})\|^{2}
$$

The Gauss-Newton Method

Given the k th iterate \mathbf{x}_{k}, the next iterate is chosen to minimize the sum of squares of the linearized terms, that is,

$$
\mathbf{x}_{k+1}=\underset{\mathbf{x} \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{\sum_{i=1}^{m}\left[f_{i}\left(\mathbf{x}_{k}\right)+\nabla f_{i}\left(\mathbf{x}_{k}\right)^{T}\left(\mathbf{x}-\mathbf{x}_{k}\right)-c_{i}\right]^{2}\right\}
$$

The Gauss-Newton Method

Given the k th iterate \mathbf{x}_{k}, the next iterate is chosen to minimize the sum of squares of the linearized terms, that is,

$$
\mathbf{x}_{k+1}=\underset{\mathbf{x} \in \mathbb{R}^{n}}{\operatorname{argmin}}\left\{\sum_{i=1}^{m}\left[f_{i}\left(\mathbf{x}_{k}\right)+\nabla f_{i}\left(\mathbf{x}_{k}\right)^{T}\left(\mathbf{x}-\mathbf{x}_{k}\right)-c_{i}\right]^{2}\right\}
$$

- The general step actually consists of solving the linear LS problem

$$
\min \left\|\mathbf{A}_{k} \mathbf{x}-\mathbf{b}_{k}\right\|^{2}
$$

where

$$
\mathbf{A}_{k}=\left(\begin{array}{c}
\nabla f_{1}\left(\mathbf{x}_{k}\right)^{T} \\
\nabla f_{2}\left(\mathbf{x}_{k}\right)^{T} \\
\vdots \\
\nabla f_{m}\left(\mathbf{x}_{k}\right)^{T}
\end{array}\right)=J\left(\mathbf{x}_{k}\right)
$$

is the so-called Jacobian matrix, assumed to have full column rank.

$$
\mathbf{b}_{k}=\left(\begin{array}{c}
\nabla f_{1}\left(\mathbf{x}_{k}\right)^{T} \mathbf{x}_{k}-f_{1}\left(\mathbf{x}_{k}\right)+c_{1} \\
\nabla f_{2}\left(\mathbf{x}_{k}\right)^{T} \mathbf{x}_{k}-f_{2}\left(\mathbf{x}_{k}\right)+c_{2} \\
\vdots \\
\nabla f_{m}\left(\mathbf{x}_{k}\right)^{T} \mathbf{x}_{k}-f_{m}\left(\mathbf{x}_{k}\right)+c_{m}
\end{array}\right)=J\left(\mathbf{x}_{k}\right) \mathbf{x}_{k}-F\left(\mathbf{x}_{k}\right)
$$

The Gauss-Newton Method

- The Gauss-Newton method can thus be written as:

$$
\mathbf{x}_{k+1}=\left(J\left(\mathbf{x}_{k}\right)^{T} J\left(\mathbf{x}_{k}\right)\right)^{-1} J\left(\mathbf{x}_{k}\right)^{T} \mathbf{b}_{k} .
$$

The Gauss-Newton Method

- The Gauss-Newton method can thus be written as:

$$
\mathbf{x}_{k+1}=\left(J\left(\mathbf{x}_{k}\right)^{T} J\left(\mathbf{x}_{k}\right)\right)^{-1} J\left(\mathbf{x}_{k}\right)^{T} \mathbf{b}_{k}
$$

- The gradient of the objective function $f(\mathbf{x})=\|F(\mathbf{x})\|^{2}$ is

$$
\nabla f(\mathbf{x})=2 J(\mathbf{x})^{T} F(\mathbf{x})
$$

The Gauss-Newton Method

- The Gauss-Newton method can thus be written as:

$$
\mathbf{x}_{k+1}=\left(J\left(\mathbf{x}_{k}\right)^{T} J\left(\mathbf{x}_{k}\right)\right)^{-1} J\left(\mathbf{x}_{k}\right)^{T} \mathbf{b}_{k}
$$

- The gradient of the objective function $f(\mathbf{x})=\|F(\mathbf{x})\|^{2}$ is

$$
\nabla f(\mathbf{x})=2 J(\mathbf{x})^{T} F(\mathbf{x})
$$

- The GN method can be rewritten as follows:

$$
\begin{aligned}
\mathbf{x}_{k+1} & =\left(J\left(\mathbf{x}_{k}\right)^{T} J\left(\mathbf{x}_{k}\right)\right)^{-1} J\left(\mathbf{x}_{k}\right)^{T}\left(J\left(\mathbf{x}_{k}\right) \mathbf{x}_{k}-F\left(\mathbf{x}_{k}\right)\right) \\
& =\mathbf{x}_{k}-\left(J\left(\mathbf{x}_{k}\right)^{T} J\left(\mathbf{x}_{k}\right)\right)^{-1} J\left(\mathbf{x}_{k}\right)^{T} F\left(\mathbf{x}_{k}\right) \\
& =\mathbf{x}_{k}-\frac{1}{2}\left(J\left(\mathbf{x}_{k}\right)^{T} J\left(\mathbf{x}_{k}\right)\right)^{-1} \nabla f\left(\mathbf{x}_{k}\right)
\end{aligned}
$$

The Gauss-Newton Method

- The Gauss-Newton method can thus be written as:

$$
\mathbf{x}_{k+1}=\left(J\left(\mathbf{x}_{k}\right)^{T} J\left(\mathbf{x}_{k}\right)\right)^{-1} J\left(\mathbf{x}_{k}\right)^{T} \mathbf{b}_{k} .
$$

- The gradient of the objective function $f(\mathbf{x})=\|F(\mathbf{x})\|^{2}$ is

$$
\nabla f(\mathbf{x})=2 J(\mathbf{x})^{T} F(\mathbf{x})
$$

- The GN method can be rewritten as follows:

$$
\begin{aligned}
\mathbf{x}_{k+1} & =\left(J\left(\mathbf{x}_{k}\right)^{T} J\left(\mathbf{x}_{k}\right)\right)^{-1} J\left(\mathbf{x}_{k}\right)^{T}\left(J\left(\mathbf{x}_{k}\right) \mathbf{x}_{k}-F\left(\mathbf{x}_{k}\right)\right) \\
& =\mathbf{x}_{k}-\left(J\left(\mathbf{x}_{k}\right)^{T} J\left(\mathbf{x}_{k}\right)\right)^{-1} J\left(\mathbf{x}_{k}\right)^{T} F\left(\mathbf{x}_{k}\right) \\
& =\mathbf{x}_{k}-\frac{1}{2}\left(J\left(\mathbf{x}_{k}\right)^{T} J\left(\mathbf{x}_{k}\right)\right)^{-1} \nabla f\left(\mathbf{x}_{k}\right),
\end{aligned}
$$

- that is, it is a scaled gradient method with a special choice of scaling matrix:

$$
\mathbf{D}_{k}=\frac{1}{2}\left(J\left(\mathbf{x}_{k}\right)^{T} J\left(\mathbf{x}_{k}\right)\right)^{-1} .
$$

The Damped Gauss-Newton Method

The Gauss-Newton method does not incorporate a stepsize, which might cause it to diverge. A well known variation of the method incorporating stepsizes is the damped Gauss-newton Method.

Damped Gauss-Newton Method

Input: ε - tolerance parameter.

Initialization: pick $x_{0} \in \mathbb{R}^{n}$ arbitrarily.
General step: for any $k=0,1,2, \ldots$ execute the following steps:
(a) Set $\mathbf{d}_{k}=-\left(J\left(\mathbf{x}_{k}\right)^{T} J\left(\mathbf{x}_{k}\right)\right)^{-1} J\left(\mathbf{x}_{k}\right)^{T} F\left(\mathbf{x}_{k}\right)$.
(b) Set t_{k} by a line search procedure on the function

$$
h(t)=g\left(\mathbf{x}_{k}+t \mathbf{d}_{k}\right)
$$

(c) set $\mathbf{x}_{k+1}=\mathbf{x}_{k}+t_{k} \mathbf{d}_{k}$.
(c) if $\left\|\nabla f\left(\mathbf{x}_{k+1}\right)\right\| \leq \varepsilon$, then STOP and \mathbf{x}_{k+1} is the output.

Fermat-Weber Problem

Fermat-Weber Problem: Given m points in $\mathbb{R}^{n}: \mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ - also called "anchor point" - and m weights $\omega_{1}, \omega_{2}, \ldots, \omega_{m}>0$, find a point $\mathbf{x} \in \mathbb{R}^{n}$ that minimizes the weighted distance of \mathbf{x} to each of the points $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$:

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\left\{f(\mathbf{x}) \equiv \sum_{i=1}^{m} \omega_{i}\left\|\mathbf{x}-\mathbf{a}_{i}\right\|\right\}
$$

- The objective function is not differentiable at the anchor points $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$.
- One of the simplest instances of facility location problems.

Weiszfeld's Method (1937)

- Start from the stationarity condition $\nabla f(\mathbf{x})=\mathbf{0}$. ${ }^{2}$
${ }^{2}$ We implicitly assume here that \mathbf{x} is not an anchor point.

Weiszfeld's Method (1937)

- Start from the stationarity condition $\nabla f(\mathbf{x})=\mathbf{0}$. ${ }^{2}$
- $\sum_{i=1}^{m} \omega_{i} \frac{\mathbf{x}-\mathbf{a}_{i}}{\left\|x-\mathbf{a}_{i}\right\|}=\mathbf{0}$.
${ }^{2}$ We implicitly assume here that x is not an anchor point.

Weiszfeld's Method (1937)

- Start from the stationarity condition $\nabla f(\mathbf{x})=\mathbf{0} .^{2}$
- $\sum_{i=1}^{m} \omega_{i} \frac{x-\mathbf{a}_{i}}{\left\|x-\mathbf{a}_{i}\right\|}=\mathbf{0}$.
- $\left(\sum_{i=1}^{m} \frac{\omega_{i}}{\left\|\mathbf{x}-\mathbf{a}_{i}\right\|}\right) \mathbf{x}=\sum_{i=1}^{m} \frac{\omega_{i} \mathbf{a}_{j}}{\left\|\mathbf{x}-\mathbf{a}_{i}\right\|}$,
${ }^{2}$ We implicitly assume here that \mathbf{x} is not an anchor point.

Weiszfeld's Method (1937)

- Start from the stationarity condition $\nabla f(\mathbf{x})=\mathbf{0}$. ${ }^{2}$
- $\sum_{i=1}^{m} \omega_{i} \frac{x-\mathbf{a}_{i}}{\left\|x-\mathbf{a}_{i}\right\|}=\mathbf{0}$.
- $\left(\sum_{i=1}^{m} \frac{\omega_{i}}{\left\|\mathrm{x}-\mathbf{a}_{i}\right\|}\right) \mathbf{x}=\sum_{i=1}^{m} \frac{\omega_{i} \mathbf{a}_{i}}{\left\|\mathrm{x}-\mathbf{a}_{\mathbf{i}}\right\|}$,
- $\mathrm{x}=\frac{1}{\sum_{i=1}^{m} \frac{w_{i}}{\left\|x-\boldsymbol{a}_{i}\right\|}} \sum_{i=1}^{m} \frac{\omega_{i} a_{i}}{\left\|\mathrm{x}-\mathbf{a}_{i}\right\|}$.
${ }^{2}$ We implicitly assume here that \mathbf{x} is not an anchor point.

Weiszfeld's Method (1937)

- Start from the stationarity condition $\nabla f(\mathbf{x})=\mathbf{0} .{ }^{2}$
- $\sum_{i=1}^{m} \omega_{i} \frac{\mathrm{x}-\mathbf{a}_{i}}{\left\|\mathrm{x}-\mathbf{a}_{i}\right\|}=\mathbf{0}$.
- $\left(\sum_{i=1}^{m} \frac{\omega_{i}}{\left\|\mathrm{x}-\mathbf{a}_{i}\right\|}\right) \mathbf{x}=\sum_{i=1}^{m} \frac{\omega_{i} \mathbf{a}_{i}}{\left\|\mathbf{x}-\mathbf{a}_{i}\right\|}$,
- $\mathrm{x}=\frac{1}{\sum_{i=1}^{m} \frac{\mathbf{j}_{i}}{\left\|x a_{i}\right\|}} \sum_{i=1}^{m} \frac{\omega_{i} \mathbf{a}_{i}}{\left\|\mathrm{x}-\mathbf{a}_{i}\right\|}$.
- The stationarity condition can be written as $\mathbf{x}=T(\mathbf{x})$, where T is the operator

$$
T(\mathbf{x}) \equiv \frac{1}{\sum_{i=1}^{m} \frac{\omega_{i}}{\left\|\mathbf{x}-\mathbf{a}_{i}\right\|}} \sum_{i=1}^{m} \frac{\omega_{i} \mathbf{a}_{i}}{\left\|\mathbf{x}-\mathbf{a}_{i}\right\|}
$$

${ }^{2}$ We implicitly assume here that \mathbf{x} is not an anchor point.

Weiszfeld's Method (1937)

- Start from the stationarity condition $\nabla f(\mathbf{x})=\mathbf{0} .{ }^{2}$
- $\sum_{i=1}^{m} \omega_{i} \frac{\mathbf{x}-\mathbf{a}_{i}}{\left\|x-\mathbf{a}_{i}\right\|}=\mathbf{0}$.
- $\left(\sum_{i=1}^{m} \frac{\omega_{i}}{\left\|\mathrm{x}-\mathbf{a}_{i}\right\|}\right) \mathbf{x}=\sum_{i=1}^{m} \frac{\omega_{i} \mathbf{a}_{i}}{\left\|\mathrm{x}-\mathbf{a}_{i}\right\|}$,
- $\mathbf{x}=\frac{1}{\sum_{i=1}^{m} \frac{\omega_{i}}{\left\|x-a_{i}\right\|}} \sum_{i=1}^{m} \frac{\omega_{i} a_{i}}{\left\|\mathbf{x}-\mathbf{a}_{i}\right\|}$.
- The stationarity condition can be written as $\mathbf{x}=T(\mathbf{x})$, where T is the operator

$$
T(\mathbf{x}) \equiv \frac{1}{\sum_{i=1}^{m} \frac{\omega_{i}}{\left\|\mathbf{x}-\mathbf{a}_{i}\right\|}} \sum_{i=1}^{m} \frac{\omega_{i} \mathbf{a}_{i}}{\left\|\mathbf{x}-\mathbf{a}_{i}\right\|}
$$

- Weiszfeld's method is a fixed point method:

$$
\mathbf{x}_{k+1}=T\left(\mathbf{x}_{k}\right) .
$$

[^0]
Weiszfeld's Method as a Gradient Method

Weiszfeld's Method

Initialization: pick $\mathbf{x}_{0} \in \mathbb{R}^{n}$ such that $\mathbf{x} \neq \mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{m}$.
General step: for any $k=0,1,2, \ldots$ compute:

$$
\mathbf{x}_{k+1}=T\left(\mathbf{x}_{k}\right)=\frac{1}{\sum_{i=1}^{m} \frac{\omega_{i}}{\left\|\mathbf{x}_{k}-\mathbf{a}_{i}\right\|}} \sum_{i=1}^{m} \frac{\omega_{i} \mathbf{a}_{i}}{\left\|\mathbf{x}_{k}-\mathbf{a}_{i}\right\|}
$$

Weiszfeld's Method as a Gradient Method

Weiszfeld's Method

Initialization: pick $\mathbf{x}_{0} \in \mathbb{R}^{n}$ such that $\mathbf{x} \neq \mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{m}$.
General step: for any $k=0,1,2, \ldots$ compute:

$$
\mathbf{x}_{k+1}=T\left(\mathbf{x}_{k}\right)=\frac{1}{\sum_{i=1}^{m} \frac{\omega_{i}}{\left\|\mathbf{x}_{k}-\mathbf{a}_{i}\right\|}} \sum_{i=1}^{m} \frac{\omega_{i} \mathbf{a}_{i}}{\left\|\mathbf{x}_{k}-\mathbf{a}_{i}\right\|}
$$

- Weiszfeld's method is a gradient method since

$$
\begin{aligned}
\mathbf{x}_{k+1} & =\frac{1}{\sum_{i=1}^{m} \frac{\omega_{i}}{\left\|\mathbf{x}_{k}-\mathbf{a}_{i}\right\|}} \sum_{i=1}^{m} \frac{\omega_{i} \mathbf{a}_{i}}{\left\|\mathbf{x}_{k}-\mathbf{a}_{i}\right\|} \\
& =\mathbf{x}_{k}-\frac{1}{\sum_{i=1}^{m} \frac{\omega_{i}}{\left\|\mathbf{x}_{k}-\mathbf{a}_{i}\right\|}} \sum_{i=1}^{m} \omega_{i} \frac{\mathbf{x}_{k}-\mathbf{a}_{i}}{\left\|\mathbf{x}_{k}-\mathbf{a}_{i}\right\|} \\
& =\mathbf{x}_{k}-\frac{1}{\sum_{i=1}^{m} \frac{\omega_{i}}{\left\|\mathbf{x}_{k}-\mathbf{a}_{i}\right\|}} \nabla f\left(\mathbf{x}_{k}\right) .
\end{aligned}
$$

Weiszfeld's Method as a Gradient Method

Weiszfeld's Method

Initialization: pick $\mathbf{x}_{0} \in \mathbb{R}^{n}$ such that $\mathbf{x} \neq \mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{m}$.
General step: for any $k=0,1,2, \ldots$ compute:

$$
\mathbf{x}_{k+1}=T\left(\mathbf{x}_{k}\right)=\frac{1}{\sum_{i=1}^{m} \frac{\omega_{i}}{\left\|\mathbf{x}_{k}-\mathbf{a}_{i}\right\|}} \sum_{i=1}^{m} \frac{\omega_{i} \mathbf{a}_{i}}{\left\|\mathbf{x}_{k}-\mathbf{a}_{i}\right\|}
$$

- Weiszfeld's method is a gradient method since

$$
\begin{aligned}
\mathbf{x}_{k+1} & =\frac{1}{\sum_{i=1}^{m} \frac{\omega_{i}}{\left\|\mathbf{x}_{k}-\mathbf{a}_{i}\right\|}} \sum_{i=1}^{m} \frac{\omega_{i} \mathbf{a}_{i}}{\left\|\mathbf{x}_{k}-\mathbf{a}_{i}\right\|} \\
& =\mathbf{x}_{k}-\frac{1}{\sum_{i=1}^{m} \frac{\omega_{i}}{\left\|\mathbf{x}_{k}-\mathbf{a}_{i}\right\|}} \sum_{i=1}^{m} \omega_{i} \frac{\mathbf{x}_{k}-\mathbf{a}_{i}}{\left\|\mathbf{x}_{k}-\mathbf{a}_{i}\right\|} \\
& =\mathbf{x}_{k}-\frac{1}{\sum_{i=1}^{m} \frac{\omega_{i}}{\left\|\mathbf{x}_{k}-\mathbf{a}_{i}\right\|}} \nabla f\left(\mathbf{x}_{k}\right) .
\end{aligned}
$$

- A gradient method with a special choice of stepsize: $t_{k}=\frac{1}{\sum_{i=1}^{m} \frac{\omega_{i}}{\left\|x_{k}-a_{i}\right\|}}$.

[^0]: ${ }^{2}$ We implicitly assume here that \mathbf{x} is not an anchor point.

