Lecture 3 - Least Squares

- In January 1, 1801, an Italian monk Giuseppe Piazzi, discovered a faint, nomadic object through his telescope in Palermo, correctly believing it to reside in the orbital region between Mars and Jupiter.
- Piazzi watched the object for 41 days but then fell ill, and shortly thereafter the wandering star strayed into the halo of the Sun and was lost to observation.
- The newly-discovered planet had been lost, and astronomers had a mere 41 days of observation covering a tiny arc of the night from which to attempt to compute an orbit and find the planet again.
pages 1,2 are from
http://www.keplersdiscovery.
com/Asteroid.html

Carl Friedrich Gauss

- The dean of the French astrophysical establishment, Pierre-Simon Laplace (1749-1827), declared that it simply could not be done.
- In Germany, the 24 years old German mathematician Car Friedrich Gauss had considered that this type of problem to determine a planet's orbit from a limited handful of observations - "commended itself to mathematicians by its difficulty and elegance."
- Gauss discovered a method for computing the planet's orbit using only three of the original observations and successfully predicted where Ceres might be found (now considered to be a dworf planet).
- The prediction catapulted him to worldwide acclaim.

Formulation

- Consider the linear system

$$
\mathbf{A} \mathbf{x} \approx \mathbf{b}, \quad\left(\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}\right)
$$

- Assumption: A has a full column rank, that is, $\operatorname{rank}(\mathbf{A})=n$.
- When $m>n$, the system is usually inconsistent and a common approach for finding an approximate solution is to pick the solution of the problem
(LS) $\quad \min \|\mathbf{A x}-\mathbf{b}\|^{2}$.

The Least Squares Solution

- The LS problem is the same as

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\left\{f(\mathbf{x}) \equiv \mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{x}-2 \mathbf{b}^{T} \mathbf{A} \mathbf{x}+\|\mathbf{b}\|^{2}\right\}
$$

The Least Squares Solution

- The LS problem is the same as

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\left\{f(\mathbf{x}) \equiv \mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{x}-2 \mathbf{b}^{T} \mathbf{A} \mathbf{x}+\|\mathbf{b}\|^{2}\right\}
$$

- $\nabla^{2} f(\mathbf{x})=2 \mathbf{A}^{T} \mathbf{A} \succ \mathbf{0}$

The Least Squares Solution

- The LS problem is the same as

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\left\{f(\mathbf{x}) \equiv \mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{x}-2 \mathbf{b}^{T} \mathbf{A} \mathbf{x}+\|\mathbf{b}\|^{2}\right\}
$$

- $\nabla^{2} f(\mathbf{x})=2 \mathbf{A}^{T} \mathbf{A} \succ \mathbf{0}$
- Therefore, the unique optimal solution \mathbf{x}_{LS} is the solution $\nabla f(\mathbf{x})=\mathbf{0}$, namely,

$$
\left(\mathbf{A}^{T} \mathbf{A}\right) \mathbf{x}_{\mathrm{LS}}=\mathbf{A}^{T} \mathbf{b} \leftarrow \text { normal equations }
$$

The Least Squares Solution

- The LS problem is the same as

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\left\{f(\mathbf{x}) \equiv \mathbf{x}^{T} \mathbf{A}^{T} \mathbf{A} \mathbf{x}-2 \mathbf{b}^{T} \mathbf{A} \mathbf{x}+\|\mathbf{b}\|^{2}\right\}
$$

- $\nabla^{2} f(\mathbf{x})=2 \mathbf{A}^{T} \mathbf{A} \succ \mathbf{0}$
- Therefore, the unique optimal solution \mathbf{x}_{LS} is the solution $\nabla f(\mathbf{x})=\mathbf{0}$, namely,

$$
\left(\mathbf{A}^{T} \mathbf{A}\right) \mathbf{x}_{\mathrm{LS}}=\mathbf{A}^{T} \mathbf{b} \leftarrow \text { normal equations }
$$

- $\mathbf{x}_{\mathrm{LS}}=\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{\top} \mathbf{b}$.

A Numerical Example

- Consider the inconsistent linear system

$$
\begin{aligned}
x_{1}+2 x_{2} & =0 \\
2 x_{1}+x_{2} & =1 \\
3 x_{1}+2 x_{2} & =1
\end{aligned}
$$

A Numerical Example

- Consider the inconsistent linear system

$$
\begin{aligned}
x_{1}+2 x_{2} & =0 \\
2 x_{1}+x_{2} & =1 \\
3 x_{1}+2 x_{2} & =1
\end{aligned}
$$

- To find the least squares solution, we will solve the normal equations:

$$
\left(\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 2
\end{array}\right)^{T}\left(\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 2
\end{array}\right)^{T}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

which is the same as

$$
\left(\begin{array}{cc}
14 & 10 \\
10 & 9
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{5}{3} \Rightarrow \mathbf{x}_{\mathrm{LS}}=\binom{15 / 26}{-8 / 26} .
$$

A Numerical Example

- Consider the inconsistent linear system

$$
\begin{aligned}
x_{1}+2 x_{2} & =0 \\
2 x_{1}+x_{2} & =1 \\
3 x_{1}+2 x_{2} & =1
\end{aligned}
$$

- To find the least squares solution, we will solve the normal equations:

$$
\left(\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 2
\end{array}\right)^{T}\left(\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1 \\
3 & 2
\end{array}\right)^{T}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

which is the same as

$$
\left(\begin{array}{cc}
14 & 10 \\
10 & 9
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{5}{3} \Rightarrow \mathbf{x}_{\mathrm{LS}}=\binom{15 / 26}{-8 / 26}
$$

- Note that $\mathbf{A} \mathbf{x}_{\mathrm{LS}}=(-0.038 ; 0.846 ; 1.115)$, so that the errors are

$$
\mathbf{b}-\mathbf{A} \mathbf{x}_{\mathrm{LS}}=\left(\begin{array}{c}
0.038 \\
0.154 \\
-0.115
\end{array}\right) \Rightarrow \text { sq. err. }=0.038^{2}+0.154^{2}+(-0.115)^{2}=0.038
$$

Data Fitting

Linear Fitting:

- Data: $\left(\mathbf{s}_{i}, t_{i}\right), i=1,2, \ldots, m$, where $\mathbf{s}_{i} \in \mathbb{R}^{n}$ and $t_{i} \in \mathbb{R}$. Assume that an approximate linear relation holds:

$$
t_{i} \approx \mathbf{s}_{i}^{T} \mathbf{x}, \quad i=1,2, \ldots, m
$$

- The corresponding least squares problem is:

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} \sum_{i=1}^{m}\left(\mathbf{s}_{i}^{T} \mathbf{x}-t_{i}\right)^{2}
$$

- equivalent formulation:

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}}\|\mathbf{S x}-\mathbf{t}\|^{2}
$$

where

$$
\mathbf{S}=\left(\begin{array}{c}
-\mathbf{s}_{1}^{T}- \\
-\mathbf{s}_{2}^{T}- \\
\vdots \\
-\mathbf{s}_{m}^{T}-
\end{array}\right), \mathbf{t}=\left(\begin{array}{c}
t_{1} \\
t_{2} \\
\vdots \\
t_{m}
\end{array}\right) .
$$

Illustration

Example of Polynomial Fitting

- Given a set of points in $\mathbb{R}^{2}:\left(u_{i}, y_{i}\right), i=1,2, \ldots, m$ for which the following approximate relation holds for some a_{0}, \ldots, a_{d} :

$$
\sum_{j=0}^{d} a_{j} u_{i}^{j} \approx y_{i}, \quad i=1, \ldots, m .
$$

Example of Polynomial Fitting

- Given a set of points in $\mathbb{R}^{2}:\left(u_{i}, y_{i}\right), i=1,2, \ldots, m$ for which the following approximate relation holds for some a_{0}, \ldots, a_{d} :

$$
\sum_{j=0}^{d} a_{j} u_{i}^{j} \approx y_{i}, \quad i=1, \ldots, m
$$

- The system is

$$
\underbrace{\left(\begin{array}{ccccc}
1 & u_{1} & u_{1}^{2} & \cdots & u_{1}^{d} \\
1 & u_{2} & u_{2}^{2} & \cdots & u_{2}^{d} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & u_{m} & u_{m}^{2} & \cdots & u_{m}^{d}
\end{array}\right)}_{\mathbf{U}}\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{d}
\end{array}\right)=\left(\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{m}
\end{array}\right) .
$$

Example of Polynomial Fitting

- Given a set of points in $\mathbb{R}^{2}:\left(u_{i}, y_{i}\right), i=1,2, \ldots, m$ for which the following approximate relation holds for some a_{0}, \ldots, a_{d} :

$$
\sum_{j=0}^{d} a_{j} u_{i}^{j} \approx y_{i}, \quad i=1, \ldots, m
$$

- The system is

$$
\underbrace{\left(\begin{array}{ccccc}
1 & u_{1} & u_{1}^{2} & \cdots & u_{1}^{d} \\
1 & u_{2} & u_{2}^{2} & \cdots & u_{2}^{d} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & u_{m} & u_{m}^{2} & \cdots & u_{m}^{d}
\end{array}\right)}_{\mathrm{U}}\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{d}
\end{array}\right)=\left(\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{m}
\end{array}\right) .
$$

- The least squares solution is of course well defined if the $m \times(d+1)$ matrix is of full column rank.
- This is true when all the u_{i} 's are different from each other (why?)

Regularized Least Squares

- There are several situations in which the least squares solution does not give rise to a good estimate of the "true" vector \mathbf{x}.
- In these cases, a regularized problem (called regularized least squares (RLS)) is often solved:

$$
(\mathrm{RLS}) \min _{\mathbf{x}}\|\mathbf{A x}-\mathbf{b}\|^{2}+\lambda R(\mathbf{x})
$$

Here λ is the regularization parameter and $R(\cdot)$ is the regularization function (also called a penalty function).

- quadratic regularization is a specific choice of regularization function:

Regularized Least Squares

- There are several situations in which the least squares solution does not give rise to a good estimate of the "true" vector \mathbf{x}.
- In these cases, a regularized problem (called regularized least squares (RLS)) is often solved:

$$
\text { (RLS) } \min _{\mathbf{x}}\|\mathbf{A x}-\mathbf{b}\|^{2}+\lambda R(\mathbf{x}) .
$$

Here λ is the regularization parameter and $R(\cdot)$ is the regularization function (also called a penalty function).

- quadratic regularization is a specific choice of regularization function:

$$
\min \|\mathbf{A x}-\mathbf{b}\|^{2}+\lambda\|\mathbf{D} \mathbf{x}\|^{2}
$$

- The optimal solution of the above problem is

$$
\mathbf{x}_{R L S}=\left(\mathbf{A}^{\top} \mathbf{A}+\lambda \mathbf{D}^{\top} \mathbf{D}\right)^{-1} \mathbf{A}^{\top} \mathbf{b} .
$$

what kind of assumptions are needed to assure that $\mathbf{A}^{T} \mathbf{A}+\lambda \mathbf{D}^{T} \mathbf{D}$ is invertible?

Regularized Least Squares

- There are several situations in which the least squares solution does not give rise to a good estimate of the "true" vector \mathbf{x}.
- In these cases, a regularized problem (called regularized least squares (RLS)) is often solved:

$$
\text { (RLS) } \min _{\mathbf{x}}\|\mathbf{A x}-\mathbf{b}\|^{2}+\lambda R(\mathbf{x}) .
$$

Here λ is the regularization parameter and $R(\cdot)$ is the regularization function (also called a penalty function).

- quadratic regularization is a specific choice of regularization function:

$$
\min \|\mathbf{A x}-\mathbf{b}\|^{2}+\lambda\|\mathbf{D} \mathbf{x}\|^{2}
$$

- The optimal solution of the above problem is

$$
\mathbf{x}_{R L S}=\left(\mathbf{A}^{T} \mathbf{A}+\lambda \mathbf{D}^{T} \mathbf{D}\right)^{-1} \mathbf{A}^{T} \mathbf{b}
$$

what kind of assumptions are needed to assure that $\mathbf{A}^{T} \mathbf{A}+\lambda \mathbf{D}^{\top} \mathbf{D}$ is invertible? (answer: $\operatorname{Null}(\mathbf{A}) \cap \operatorname{Null}(\mathbf{D})=\{\mathbf{0}\}$)

Application - Denoising

- Suppose that a noisy measurement of a signal $\mathbf{x} \in \mathbb{R}^{n}$ is given:

$$
\mathbf{b}=\mathbf{x}+\mathbf{w}
$$

\mathbf{x} is the unknown signal, \mathbf{w} is the unknown noise and \mathbf{b} is the (known) measures vector.

Application - Denoising

- Suppose that a noisy measurement of a signal $\mathbf{x} \in \mathbb{R}^{n}$ is given:

$$
\mathbf{b}=\mathbf{x}+\mathbf{w} .
$$

\mathbf{x} is the unknown signal, \mathbf{w} is the unknown noise and \mathbf{b} is the (known) measures vector.

- The least squares problem:

$$
\min \|\mathbf{x}-\mathbf{b}\|^{2}
$$

MEANINGLESS.

Application - Denoising

- Suppose that a noisy measurement of a signal $\mathbf{x} \in \mathbb{R}^{n}$ is given:

$$
\mathbf{b}=\mathbf{x}+\mathbf{w} .
$$

\mathbf{x} is the unknown signal, \mathbf{w} is the unknown noise and \mathbf{b} is the (known) measures vector.

- The least squares problem:

$$
\min \|\mathbf{x}-\mathbf{b}\|^{2}
$$

MEANINGLESS.

- Regularization is performed by exploiting some a priori information. For example, if the signal is "smooth" in some sense, then $R(\cdot)$ can be chosen as

$$
R(\mathbf{x})=\sum_{i=1}^{n-1}\left(x_{i}-x_{i+1}\right)^{2}
$$

Denoising contd.

- $R(\cdot)$ can also be written as $R(\mathbf{x})=\|\mathbf{L x}\|^{2}$ where $\mathbf{L} \in \mathbb{R}^{(n-1) \times n}$ is given by

$$
\mathbf{L}=\left(\begin{array}{ccccccc}
1 & -1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & -1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & -1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & -1
\end{array}\right)
$$

Denoising contd.

- $R(\cdot)$ can also be written as $R(\mathbf{x})=\|\mathbf{L x}\|^{2}$ where $\mathbf{L} \in \mathbb{R}^{(n-1) \times n}$ is given by

$$
\mathbf{L}=\left(\begin{array}{ccccccc}
1 & -1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & -1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & -1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & -1
\end{array}\right) .
$$

- The resulting regularized least squares problem is

$$
\min _{\mathbf{x}}\|\mathbf{x}-\mathbf{b}\|^{2}+\lambda\|\mathbf{L} \mathbf{x}\|^{2}
$$

- Hence,

$$
\mathbf{x}_{\mathrm{RLS}}(\lambda)=\left(\mathbf{I}+\lambda \mathbf{L}^{\top} \mathbf{L}\right)^{-1} \mathbf{b} .
$$

Example - true and noisy signals

RLS reconstructions

Nonlinear Least Squares

- The least squares problem $\min \|\mathbf{A x}-\mathbf{b}\|^{2}$ is often called linear least squares.
- In some applications we are given a set of nonlinear equations:

$$
f_{i}(\mathbf{x}) \approx b_{i}, \quad i=1,2, \ldots, m
$$

Nonlinear Least Squares

- The least squares problem $\min \|\mathbf{A x}-\mathbf{b}\|^{2}$ is often called linear least squares.
- In some applications we are given a set of nonlinear equations:

$$
f_{i}(\mathbf{x}) \approx b_{i}, \quad i=1,2, \ldots, m
$$

- The nonlinear least squares (NLS) problem is the one of finding an \mathbf{x} solving the problem

$$
\min \sum_{i=1}^{m}\left(f_{i}(\mathbf{x})-b_{i}\right)^{2}
$$

- As opposed to linear least squares, there is no easy way to to solve NLS problems. However, there are some dedicated algorithms for this problem, which we will explore later on.

Circle Fitting - Linear Least Squares in Disguise

Given m points $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$, the circle fitting problem seeks to find a circle

$$
C(\mathbf{x}, r)=\left\{\mathbf{y} \in \mathbb{R}^{n}:\|\mathbf{y}-\mathbf{x}\|=r\right\}
$$

that best fits the m points.

Mathematical Formulation of the CF Problem

- Approximate equations:

$$
\left\|\mathbf{x}-\mathbf{a}_{i}\right\| \approx r, \quad i=1,2, \ldots, m
$$

Mathematical Formulation of the CF Problem

- Approximate equations:

$$
\left\|\mathbf{x}-\mathbf{a}_{i}\right\| \approx r, \quad i=1,2, \ldots, m
$$

- To avoid nondifferentiability, consider the squared version:

$$
\left\|\mathbf{x}-\mathbf{a}_{i}\right\|^{2} \approx r^{2}, \quad i=1,2, \ldots, m
$$

Mathematical Formulation of the CF Problem

- Approximate equations:

$$
\left\|\mathbf{x}-\mathbf{a}_{i}\right\| \approx r, \quad i=1,2, \ldots, m
$$

- To avoid nondifferentiability, consider the squared version:

$$
\left\|\mathbf{x}-\mathbf{a}_{i}\right\|^{2} \approx r^{2}, \quad i=1,2, \ldots, m
$$

- Nonlinear least squares formulation:

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}, r \in \mathbb{R}_{+}} \sum_{i=1}^{m}\left(\left\|\mathbf{x}-\mathbf{a}_{i}\right\|^{2}-r^{2}\right)^{2}
$$

Reduction to a Least Squares Problem

$$
\min _{\mathbf{x}, r}\left\{\sum_{i=1}^{m}\left(-2 \mathbf{a}_{i}^{T} \mathbf{x}+\|\mathbf{x}\|^{2}-r^{2}+\left\|\mathbf{a}_{i}\right\|^{2}\right)^{2}: \mathbf{x} \in \mathbb{R}^{n}, r \in \mathbb{R}\right\} .
$$

Reduction to a Least Squares Problem

$$
\min _{\mathbf{x}, r}\left\{\sum_{i=1}^{m}\left(-2 \mathbf{a}_{i}^{T} \mathbf{x}+\|\mathbf{x}\|^{2}-r^{2}+\left\|\mathbf{a}_{i}\right\|^{2}\right)^{2}: \mathbf{x} \in \mathbb{R}^{n}, r \in \mathbb{R}\right\}
$$

- Making the change of variables $R=\|\mathbf{x}\|^{2}-r^{2}$, the above problem reduces to

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}, R \in \mathbb{R}}\left\{f(\mathbf{x}, R) \equiv \sum_{i=1}^{m}\left(-2 \mathbf{a}_{i}^{T} \mathbf{x}+R+\left\|\mathbf{a}_{i}\right\|^{2}\right)^{2}:\|\mathbf{x}\|^{2} \geq R\right\}
$$

Reduction to a Least Squares Problem

$$
\min _{\mathbf{x}, r}\left\{\sum_{i=1}^{m}\left(-2 \mathbf{a}_{i}^{T} \mathbf{x}+\|\mathbf{x}\|^{2}-r^{2}+\left\|\mathbf{a}_{i}\right\|^{2}\right)^{2}: \mathbf{x} \in \mathbb{R}^{n}, r \in \mathbb{R}\right\}
$$

- Making the change of variables $R=\|\mathbf{x}\|^{2}-r^{2}$, the above problem reduces to

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}, R \in \mathbb{R}}\left\{f(\mathbf{x}, R) \equiv \sum_{i=1}^{m}\left(-2 \mathbf{a}_{i}^{T} \mathbf{x}+R+\left\|\mathbf{a}_{i}\right\|^{2}\right)^{2}:\|\mathbf{x}\|^{2} \geq R\right\}
$$

- The constraint $\|\mathbf{x}\|^{2} \geq R$ can be dropped (will be shown soon), and therefore the problem is equivalent to the LS problem

$$
\text { (CF-LS) } \min _{\mathrm{x}, R}\left\{\sum_{i=1}^{m}\left(-2 \mathbf{a}_{i}^{T} \mathbf{x}+R+\left\|\mathbf{a}_{i}\right\|^{2}\right)^{2}: \mathbf{x} \in \mathbb{R}^{n}, R \in \mathbb{R}\right\} .
$$

Redundancy of the Constraint $\|\mathrm{x}\|^{2} \geq R$

- We will show that any optimal solution ($\hat{\mathbf{x}}, \hat{R}$) of (CF-LS) automatically satisfies $\|\hat{\mathbf{x}}\|^{2} \geq \hat{R}$.

Redundancy of the Constraint $\|\mathrm{x}\|^{2} \geq R$

- We will show that any optimal solution ($\hat{\mathbf{x}}, \hat{R}$) of (CF-LS) automatically satisfies $\|\hat{\mathbf{x}}\|^{2} \geq \hat{R}$.
- Otherwise, if $\|\hat{\mathbf{x}}\|^{2}<\hat{R}$, then

$$
-2 \mathbf{a}_{i}^{T} \hat{\mathbf{x}}+\hat{R}+\left\|\mathbf{a}_{i}\right\|^{2}>-2 \mathbf{a}_{i}^{T} \hat{\mathbf{x}}+\|\hat{\mathbf{x}}\|^{2}+\left\|\mathbf{a}_{i}\right\|^{2}=\left\|\hat{\mathbf{x}}-\mathbf{a}_{i}\right\|^{2} \geq 0, i=1, \ldots, m .
$$

Redundancy of the Constraint $\|\mathbf{x}\|^{2} \geq R$

- We will show that any optimal solution ($\hat{\mathbf{x}}, \hat{R}$) of (CF-LS) automatically satisfies $\|\hat{\mathbf{x}}\|^{2} \geq \hat{R}$.
- Otherwise, if $\|\hat{\mathbf{x}}\|^{2}<\hat{R}$, then

$$
-2 \mathbf{a}_{i}^{T} \hat{\mathbf{x}}+\hat{R}+\left\|\mathbf{a}_{i}\right\|^{2}>-2 \mathbf{a}_{i}^{T} \hat{\mathbf{x}}+\|\hat{\mathbf{x}}\|^{2}+\left\|\mathbf{a}_{i}\right\|^{2}=\left\|\hat{\mathbf{x}}-\mathbf{a}_{i}\right\|^{2} \geq 0, i=1, \ldots, m
$$

- Thus,
$f(\hat{\mathbf{x}}, \hat{R})=\sum_{i=1}^{m}\left(-2 \mathbf{a}_{i}^{T} \hat{\mathbf{x}}+\hat{R}+\left\|\mathbf{a}_{i}\right\|^{2}\right)^{2}>\sum_{i=1}^{m}\left(-2 \mathbf{a}_{i}^{T} \hat{\mathbf{x}}+\|\hat{\mathbf{x}}\|^{2}+\left\|\mathbf{a}_{i}\right\|^{2}\right)^{2}=f\left(\hat{\mathbf{x}},\|\hat{\mathbf{x}}\|^{2}\right)$,
- Contradiction to the optimality of $(\hat{\mathrm{x}}, \hat{R})$.

