
Lecture 3 - Least Squares

I In January 1, 1801, an Italian monk
Giuseppe Piazzi, discovered a faint,
nomadic object through his telescope in
Palermo, correctly believing it to reside in
the orbital region between Mars and
Jupiter.

I Piazzi watched the object for 41 days but
then fell ill, and shortly thereafter the
wandering star strayed into the halo of
the Sun and was lost to observation.

I The newly-discovered planet had been
lost, and astronomers had a mere 41 days
of observation covering a tiny arc of the
night from which to attempt to compute
an orbit and find the planet again.

pages 1,2 are from
http://www.keplersdiscovery.

com/Asteroid.html
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Carl Friedrich Gauss

I The dean of the French astrophysical establishment, Pierre-Simon Laplace
(1749-1827), declared that it simply could not be done.

I In Germany, the 24 years old German mathematician Car Friedrich Gauss had
considered that this type of problem to determine a planet’s orbit from a
limited handful of observations - ”commended itself to mathematicians by its
difficulty and elegance.”

I Gauss discovered a method for computing the planet’s orbit using only three
of the original observations and successfully predicted where Ceres might be
found (now considered to be a dworf planet).

I The prediction catapulted him to worldwide acclaim.
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Formulation

I Consider the linear system

Ax ≈ b, (A ∈ Rm×n,b ∈ Rm)

I Assumption: A has a full column rank, that is, rank(A) = n.

I When m > n, the system is usually inconsistent and a common approach for
finding an approximate solution is to pick the solution of the problem

(LS) min ‖Ax− b‖2.
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The Least Squares Solution

I The LS problem is the same as

min
x∈Rn

{
f (x) ≡ xTATAx− 2bTAx + ‖b‖2

}
.

I ∇2f (x) = 2ATA � 0

I Therefore, the unique optimal solution xLS is the solution ∇f (x) = 0,
namely,

(ATA)xLS = ATb← normal equations

I xLS = (ATA)−1ATb.
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A Numerical Example
I Consider the inconsistent linear system

x1 + 2x2 = 0

2x1 + x2 = 1

3x1 + 2x2 = 1

I To find the least squares solution, we will solve the normal equations:1 2
2 1
3 2

T 1 2
2 1
3 2

(x1
x2

)
=

1 2
2 1
3 2

T 0
1
1

 ,

which is the same as(
14 10
10 9

)(
x1
x2

)
=

(
5
3

)
⇒ xLS =

(
15/26
−8/26

)
.

I Note that AxLS = (−0.038; 0.846; 1.115), so that the errors are

b− AxLS =

 0.038
0.154
−0.115

⇒ sq. err.=0.0382 + 0.1542 + (−0.115)2 = 0.038
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Data Fitting
Linear Fitting:

I Data: (si , ti ), i = 1, 2, . . . ,m, where si ∈ Rn and ti ∈ R. Assume that an
approximate linear relation holds:

ti ≈ sTi x, i = 1, 2, . . . ,m

I The corresponding least squares problem is:

min
x∈Rn

m∑
i=1

(sTi x− ti )
2.

I equivalent formulation:
min
x∈Rn
‖Sx− t‖2,

where

S =


— sT1 —
— sT2 —

...
— sTm—

 , t =


t1
t2
...
tm

 .
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Illustration
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Example of Polynomial Fitting
I Given a set of points in R2: (ui , yi ), i = 1, 2, . . . ,m for which the following

approximate relation holds for some a0, . . . , ad :

d∑
j=0

aju
j
i ≈ yi , i = 1, . . . ,m.

I The system is 
1 u1 u21 · · · ud1
1 u2 u22 · · · ud2
...

...
...

...
1 um u2m · · · udm


︸ ︷︷ ︸

U


a0
a1
...
ad

 =


y0
y1
...
ym

 .

I The least squares solution is of course well defined if the m × (d + 1) matrix
is of full column rank.

I This is true when all the ui ’s are different from each other (why?)
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Regularized Least Squares
I There are several situations in which the least squares solution does not give

rise to a good estimate of the “true” vector x.

I In these cases, a regularized problem (called regularized least squares (RLS))
is often solved:

(RLS) min
x
‖Ax− b‖2 + λR(x).

Here λ is the regularization parameter and R(·) is the regularization function
(also called a penalty function).

I quadratic regularization is a specific choice of regularization function:

min ‖Ax− b‖2 + λ‖Dx‖2.

I The optimal solution of the above problem is

xRLS = (ATA + λDTD)−1ATb.

what kind of assumptions are needed to assure that ATA + λDTD is
invertible? (answer: Null(A) ∩Null(D) = {0})
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Application - Denoising

I Suppose that a noisy measurement of a signal x ∈ Rn is given:

b = x + w.

x is the unknown signal, w is the unknown noise and b is the (known)
measures vector.

I The least squares problem:
min ‖x− b‖2.

MEANINGLESS.

I Regularization is performed by exploiting some a priori information. For
example, if the signal is “smooth” in some sense, then R(·) can be chosen as

R(x) =
n−1∑
i=1

(xi − xi+1)2.
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Denoising contd.

I R(·) can also be written as R(x) = ‖Lx‖2 where L ∈ R(n−1)×n is given by

L =


1 −1 0 0 · · · 0 0
0 1 −1 0 · · · 0 0
0 0 1 −1 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 1 −1

 .

I The resulting regularized least squares problem is

min
x
‖x− b‖2 + λ‖Lx‖2

I Hence,
xRLS(λ) = (I + λLTL)−1b.
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Example - true and noisy signals
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RLS reconstructions

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Least Squares 13 / 18



Nonlinear Least Squares

I The least squares problem min ‖Ax− b‖2 is often called linear least squares.

I In some applications we are given a set of nonlinear equations:

fi (x) ≈ bi , i = 1, 2, . . . ,m.

I The nonlinear least squares (NLS) problem is the one of finding an x solving
the problem

min
m∑
i=1

(fi (x)− bi )
2.

I As opposed to linear least squares, there is no easy way to to solve NLS
problems. However, there are some dedicated algorithms for this problem,
which we will explore later on.
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Circle Fitting – Linear Least Squares in Disguise

Given m points a1, a2, . . . , am ∈ Rn, the circle fitting problem seeks to find a circle

C (x, r) = {y ∈ Rn : ‖y − x‖ = r}

that best fits the m points.

35 40 45 50 55 60 65 70 75

−5

0

5

10

15
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Mathematical Formulation of the CF Problem

I Approximate equations:

‖x− ai‖ ≈ r , i = 1, 2, . . . ,m.

I To avoid nondifferentiability, consider the squared version:

‖x− ai‖2 ≈ r2, i = 1, 2, . . . ,m.

I Nonlinear least squares formulation:

min
x∈Rn,r∈R+

m∑
i=1

(‖x− ai‖2 − r2)2.
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Reduction to a Least Squares Problem

I

min
x,r

{
m∑
i=1

(−2aTi x + ‖x‖2 − r2 + ‖ai‖2)2 : x ∈ Rn, r ∈ R

}
.

I Making the change of variables R = ‖x‖2− r2, the above problem reduces to

min
x∈Rn,R∈R

{
f (x,R) ≡

m∑
i=1

(−2aTi x + R + ‖ai‖2)2 : ‖x‖2 ≥ R

}
.

I The constraint ‖x‖2 ≥ R can be dropped (will be shown soon), and therefore
the problem is equivalent to the LS problem

(CF-LS) min
x,R

{
m∑
i=1

(−2aTi x + R + ‖ai‖2)2 : x ∈ Rn,R ∈ R

}
.
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Redundancy of the Constraint ‖x‖2 ≥ R

I We will show that any optimal solution (x̂, R̂) of (CF-LS) automatically
satisfies ‖x̂‖2 ≥ R̂.

I Otherwise, if ‖x̂‖2 < R̂, then

−2aTi x̂ + R̂ + ‖ai‖2 > −2aTi x̂ + ‖x̂‖2 + ‖ai‖2 = ‖x̂− ai‖2 ≥ 0, i = 1, . . . ,m.

I Thus,

f (x̂, R̂) =
m∑
i=1

(
−2aTi x̂+ R̂ + ‖ai‖2

)2
>

m∑
i=1

(
−2aTi x̂+ ‖x̂‖2 + ‖ai‖2

)2
= f (x̂, ‖x̂‖2),

I Contradiction to the optimality of (x̂, R̂).
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