Lecture 2 - Unconstrained Optimization

Definition[Global Minimum and Maximum]Let $f : S \to \mathbb{R}$ be defined on a set $S \subseteq \mathbb{R}^n$. Then

- 1. $\mathbf{x}^* \in S$ is a global minimum point of f over S if $f(\mathbf{x}) \ge f(\mathbf{x}^*)$ for any $\mathbf{x} \in S$.
- 2. $\mathbf{x}^* \in S$ is a strict global minimum point of f over S if $f(\mathbf{x}) > f(\mathbf{x}^*)$ for any $\mathbf{x}^* \neq \mathbf{x} \in S$.
- 3. $\mathbf{x}^* \in S$ is a global maximum point of f over S if $f(\mathbf{x}) \leq f(\mathbf{x}^*)$ for any $\mathbf{x} \in S$.
- 4. $\mathbf{x}^* \in S$ is a strict global maximum point of f over S if $f(\mathbf{x}) < f(\mathbf{x}^*)$ for any $\mathbf{x}^* \neq \mathbf{x} \in S$.
- **global optimum**=global minimum or maximum.
- maximal value of f over S:

 $\sup\{f(\mathbf{x}): \mathbf{x} \in S\}$

minimal value of f over S:

```
\inf\{f(\mathbf{x}): \mathbf{x} \in S\}
```

minimal and maximal values are always unique.

Example 1:

Find the global minimum and maximum points of f(x, y) = x + y over the unit ball $S = B[\mathbf{0}, 1] = \{(x, y)^T : x^2 + y^2 \le 1\}$

In class.

Example 2:

$$\min\left\{f(x,y)=\frac{x+y}{x^2+y^2+1}:x,y\in\mathbb{R}\right\}$$

 $(1/\sqrt{2},1/\sqrt{2})$ - global maximizer $(-1/\sqrt{2},-1/\sqrt{2})$ - global minimizer.

Amir Beck

"Introduction to Nonlinear Optimization" Lecture Slides - Unconstrained Optimization

Local Minima and Maxima

Definition Let $f: S \to \mathbb{R}$ be defined on a set $S \subseteq \mathbb{R}^n$. Then

- 1. $\mathbf{x}^* \in S$ is a local minimum of f over S if there exists r > 0 for which $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for any $\mathbf{x} \in S \cap B(\mathbf{x}^*, r)$.
- 2. $\mathbf{x}^* \in S$ is a strict local minimum of f over S if there exists r > 0 for which $f(\mathbf{x}^*) < f(\mathbf{x})$ for any $\mathbf{x}^* \neq \mathbf{x} \in S \cap B(\mathbf{x}^*, r)$.
- 3. $\mathbf{x}^* \in S$ is a local maximum of f over S if there exists r > 0 for which $f(\mathbf{x}^*) \ge f(\mathbf{x})$ for any $\mathbf{x} \in S \cap B(\mathbf{x}^*, r)$.
- 4. $\mathbf{x}^* \in S$ is a strict local maximum of f over S if there exists r > 0 for which $f(\mathbf{x}^*) > f(\mathbf{x})$ for any $\mathbf{x}^* \neq \mathbf{x} \in S \cap B(\mathbf{x}^*, r)$.

Of course, a global minimum (maximum) point is also a local minimum (maximum) point.

Example

f described above is defined over [-1, 8]. Classify each of the points x = -1, 1, 2, 3, 5, 6.5, 8 as strict/nonstrict global/local minimum/maximum points. In class

Fermat's Theorem - First Order Optimality Condition

Theorem. Let $f: U \to \mathbb{R}$ be a function defined on a set $U \subseteq \mathbb{R}^n$. Suppose that $\mathbf{x}^* \in int(U)$ is a local optimum point and that all the partial derivatives of f exist at \mathbf{x}^* . Then $\nabla f(\mathbf{x}^*) = \mathbf{0}$.

Proof.

- Let $i \in \{1, 2, ..., n\}$ and consider the 1-D function $g(t) = f(\mathbf{x}^* + t\mathbf{e}_i)$
- ▶ \mathbf{x}^* is a local optimum point of $f \Rightarrow t = 0$ is a local optimum of $g \Rightarrow g'(0) = 0$.
- Thus, $\frac{\partial f}{\partial x_i}(\mathbf{x}^*) = g'(0) = 0.$

Stationary Points

Definition Let $f : U \to \mathbb{R}$ be a function defined on a set $U \subseteq \mathbb{R}^n$. Suppose that $\mathbf{x}^* \in int(U)$ and that all the partial derivatives of f are defined at \mathbf{x}^* . Then \mathbf{x}^* is called a stationary point of f if $\nabla f(\mathbf{x}^*) = \mathbf{0}$.

Example:

$$\min\left\{f(x,y)=\frac{x+y}{x^2+y^2+1}:x,y\in\mathbb{R}\right\}$$

$$\nabla f(x,y) = \frac{1}{(x^2 + y^2 + 1)^2} \begin{pmatrix} (x^2 + y^2 + 1) - 2(x + y)x \\ (x^2 + y^2 + 1) - 2(x + y)y \end{pmatrix}.$$

Stationary points are those satisfying:

$$\begin{aligned} -x^2 - 2xy + y^2 &= -1, \\ x^2 - 2xy - y^2 &= -1. \end{aligned}$$

▶ Hence, the stationary points are (1/√2, 1/√2), (-1/√2, -1/√2).
 ▶ (1/√2, 1/√2) - global maximum, (-1/√2, -1/√2) - global minimum.

Classification of Matrices - Positive Definiteness

- 1. A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is called positive semidefinite, denoted by $\mathbf{A} \succeq \mathbf{0}$, if $\mathbf{x}^T \mathbf{A} \mathbf{x} \ge 0$ for every $\mathbf{x} \in \mathbb{R}^n$.
- 2. A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is called positive definite, denoted by $\mathbf{A} \succ \mathbf{0}$, if $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for every $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^n$.

Example 1:

$$\mathbf{A} = egin{pmatrix} 2 & -1 \ -1 & 1 \end{pmatrix}.$$

In class

Example 2:

$$\mathbf{B} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}.$$

In class

Lemma: Let **A** be a positive definite (semidefinite) matrix. Then the diagonal elements of **A** are positive (nonnegative).

Amir Beck

Negative (Semi)Definiteness, Indefiniteness

- 1. A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is called negative semidefinite, denoted by $\mathbf{A} \preceq \mathbf{0}$, if $\mathbf{x}^T \mathbf{A} \mathbf{x} \leq 0$ for every $\mathbf{x} \in \mathbb{R}^n$.
- 2. A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is called negative definite, denoted by $\mathbf{A} \prec \mathbf{0}$, if $\mathbf{x}^T \mathbf{A} \mathbf{x} < 0$ for every $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^n$.
- 3. A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is called indefinite if there exist $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ such that $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0, \mathbf{y}^T \mathbf{A} \mathbf{y} < 0$.

Remarks:

- ► A is negative (semi)definite if and only if -A is positive (semi)definite.
- A matrix is indefinite if and only if it is neither positive semidefinite nor negative semidefinite.

Eigenvalue Characterization

Theorem. Let **A** be a symmetric $n \times n$ matrix. Then

- (a) A is positive definite iff all its eigenvalues are positive.
- (b) **A** is positive semidefinite iff all its eigenvalues are nonnegative.
- (c) **A** is negative definite iff all its eigenvalues are negative.
- (d) **A** is negative semidefinite iff all its eigenvalues are nonpositive.
- (e) A is indefinite iff it has at least one positive eigenvalue and at least one negative eigenvalue.

Eigenvalue Characterization – Proof

Proof of part (a): (other parts follows immediately or by similar arguments)

▶ There exists orthogonal $\mathbf{U} \in \mathbb{R}^{n \times n}$ such that

$$\mathbf{U}^{\mathsf{T}}\mathbf{A}\mathbf{U}=\mathbf{D}\equiv \mathrm{diag}(d_1,d_2,\ldots,d_n)$$

where $d_i = \lambda_i(\mathbf{A})$.

• Making the linear change of variables $\mathbf{x} = \mathbf{U}\mathbf{y}$, we have

$$\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} = \mathbf{y}^{\mathsf{T}} \mathbf{U}^{\mathsf{T}} \mathbf{A} \mathbf{U} \mathbf{y} = \mathbf{y}^{\mathsf{T}} \mathbf{D} \mathbf{y} = \sum_{i=1}^{n} d_i y_i^2.$$

• Therefore, $\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$ iff

$$\sum_{i=1}^{n} d_i y_i^2 > 0 \text{ for any } \mathbf{y} \neq \mathbf{0}.$$
 (1)

• (1) holds iff $d_i > 0$ for all i (why?)

Trace and Determinant

Corollary. Let A be a positive semidefinite (definite) matrix. Then Tr(A) and det(A) are nonnegative (positive).

Proof. In class

Proposition. Let **A** be a symmetric 2×2 matrix. Then **A** is positive semidefinite (definite) if and only if $Tr(\mathbf{A}), det(\mathbf{A}) \ge 0$ ($Tr(\mathbf{A}), det(\mathbf{A}) > 0$).

Proof. In class

Example

Classify the matrices

$$\mathbf{A} = \begin{pmatrix} 4 & 1 \\ 1 & 3 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 0.1 \end{pmatrix}.$$

In class

The Principal Minors Criteria

Definition Given an $n \times n$ matrix, the determinant of the upper left $k \times k$ submatrix is called the *k*-th principal minor and is denoted by $D_k(\mathbf{A})$. Example.

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

$$D_1(\mathbf{A}) = a_{11}, D_2(\mathbf{A}) = \det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, D_3(\mathbf{A}) = \det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

Principal Minors Criteria Let **A** be an $n \times n$ symmetric matrix. Then **A** is positive definite if and only if $D_1(\mathbf{A}) > 0, D_2(\mathbf{A}) > 0, \dots, D_n(\mathbf{A}) > 0$.

Examples

Classify the matrices

$$\mathbf{A} = \begin{pmatrix} 4 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 2 & 4 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & -1 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} -4 & 1 & 1 \\ 1 & -4 & 1 \\ 1 & 1 & -4 \end{pmatrix}.$$

In class

Diagonal Dominance

Definition (diagonally dominant matrices) Let **A** be a symmetric $n \times n$ matrix. (a) **A** is called diagonally dominant if

 $|A_{ii}| \geq \sum_{j \neq i} |A_{ij}| \ \forall i = 1, 2, \dots, n$

(b) A is called strictly diagonally dominant if

$$|A_{ii}| > \sum_{j \neq i} |A_{ij}| \ \forall i = 1, 2, \dots, n$$

Theorem (positive (semi)definiteness of diagonally dominant matrices)

- (a) If **A** is symmetric, diagonally dominant with nonnegative diagonal elements, then **A** is positive semidefinite.
- (b) If **A** is symmetric, **strictly** diagonally dominant with positive diagonal elements, then **A** is positive definite.

See proof of Theorem 2.25 on pages 22,23.

Necessary Second Order Optimality Conditions

Theorem. Let $f : U \to \mathbb{R}$ be a function defined on an open set $U \subseteq \mathbb{R}^n$. Suppose that f is twice continuously differentiable over U and that \mathbf{x}^* is a stationary point. Then

1. if \mathbf{x}^* is a local minimum point, then $\nabla^2 f(\mathbf{x}^*) \succeq \mathbf{0}$.

2. if \mathbf{x}^* is a local maximum point, then $\nabla^2 f(\mathbf{x}^*) \preceq \mathbf{0}$.

Proof. of 1:

- ▶ There exists a ball $B(\mathbf{x}^*, r) \subseteq U$ for which $f(\mathbf{x}) \ge f(\mathbf{x}^*)$ for all $\mathbf{x} \in B(\mathbf{x}^*, r)$.
- ▶ Let $\mathbf{d} \in \mathbb{R}^n$ be a nonzero vector. For any $0 < \alpha < \frac{r}{\|\mathbf{d}\|}$, we have

$$\mathbf{x}_{lpha}^* \equiv \mathbf{x}^* + lpha \mathbf{d} \in B(\mathbf{x}^*, r),$$

- for any such α , $f(\mathbf{x}^*_{\alpha}) \geq f(\mathbf{x}^*)$.
- ▶ On the other hand, there exists a vector $\mathbf{z}_{\alpha} \in [\mathbf{x}^*, \mathbf{x}_{\alpha}^*]$ such that

$$f(\mathbf{x}_{\alpha}^{*}) - f(\mathbf{x}^{*}) = \frac{\alpha^{2}}{2} \mathbf{d}^{T} \nabla^{2} f(\mathbf{z}_{\alpha}) \mathbf{d}.$$
 (2)

- ▶ ⇒ for any $\alpha \in (0, \frac{r}{\|\mathbf{d}\|})$ the inequality $\mathbf{d}^T \nabla^2 f(\mathbf{z}_\alpha) \mathbf{d} \ge 0$ holds.
- Since $\mathbf{z}_{\alpha} \to \mathbf{x}^*$ as $\alpha \to 0^+$, we obtain that $\mathbf{d}^T \nabla f(\mathbf{x}^*) \mathbf{d} \ge 0$. $\mathbf{z} \to \nabla^2 f(\mathbf{x}^*) \succeq \mathbf{0}$.

Sufficient Second Order Optimality Conditions

Theorem. Let $f : U \to \mathbb{R}$ be a function defined on an open set $U \subseteq \mathbb{R}^n$. Suppose that f is twice continuously differentiable over U and that \mathbf{x}^* is a stationary point. Then

1. if $\nabla^2 f(\mathbf{x}^*) \succ \mathbf{0}$, then \mathbf{x}^* is a strict local minimum point of f over U.

2. if $\nabla^2 f(\mathbf{x}^*) \prec \mathbf{0}$, then \mathbf{x}^* is a strict local maximum point of f over U.

Proof. of 1: (2 directly follows)

- There exists a ball $B(\mathbf{x}^*, r) \subseteq U$ for which $\nabla^2 f(\mathbf{x}) \succ \mathbf{0}$ for any $\mathbf{x} \in B(\mathbf{x}^*, r)$.
- ▶ By LAT, there exists a vector $\mathbf{z}_{\mathbf{x}} \in [\mathbf{x}^*, \mathbf{x}]$ (and hence $\mathbf{z}_{\mathbf{x}} \in B(\mathbf{x}^*, r)$) for which

$$f(\mathbf{x}) - f(\mathbf{x}^*) = \frac{1}{2} (\mathbf{x} - \mathbf{x}^*)^T \nabla^2 f(\mathbf{z}_{\mathbf{x}}) (\mathbf{x} - \mathbf{x}^*).$$

▶ $\nabla^2 f(\mathbf{z}_{\mathbf{x}}) \succ \mathbf{0} \Rightarrow$ for any $\mathbf{x} \in B(\mathbf{x}^*, r)$ such that $\mathbf{x} \neq \mathbf{x}^*$, the inequality $f(\mathbf{x}) > f(\mathbf{x}^*)$ holds, implying that \mathbf{x}^* is a strict local minimum point of f over U.

Saddle Points

Definition Let $f: U \to \mathbb{R}$ be a continuously differentiable function defined on an open set $U \subseteq \mathbb{R}^n$. A stationary point $\mathbf{x}^* \in U$ is called a saddle point of f over U if it is neither a local minimum point nor a local maximum point of f over U.

Sufficient Condition for Saddle Points

Theorem Let $f: U \to \mathbb{R}$ be a function defined on an open set $U \subseteq \mathbb{R}^n$. Suppose that f is twice continuously differentiable over U and that \mathbf{x}^* is a stationary point. If $\nabla^2 f(\mathbf{x}^*)$ is an indefinite matrix, then \mathbf{x}^* is a saddle point of f over U.

Proof.

- ∇²f(x*) has at least one positive eigenvalue λ > 0, corresponding to a normalized eigenvector denoted by v.
- ▶ $\exists r > 0$ such that $\mathbf{x}^* + \alpha \mathbf{v} \in U$ for any $\alpha \in (0, r)$.
- ▶ BY QAT¹ There exists a function $g : \mathbb{R}_{++} \to \mathbb{R}$ satisfying

$$rac{g(t)}{t} o 0$$
 as $t o 0,$

such that for any $\alpha \in (0, r)$

$$f(\mathbf{x}^* + \alpha \mathbf{v}) = f(\mathbf{x}^*) + \frac{\lambda \alpha^2}{2} \|\mathbf{v}\|^2 + g(\|\mathbf{v}\|^2 \alpha^2).$$

Amir Beck

¹quadratic approximation theory

Proof Contd.

- $f(\mathbf{x}^* + \alpha \mathbf{v}) = f(\mathbf{x}^*) + \frac{\lambda \alpha^2}{2} + g(\alpha^2).$
- ▶ $\exists \varepsilon_1 \in (0, r)$ such that $g(\alpha^2) > -\frac{\lambda}{2}\alpha^2$ for all $\alpha \in (0, \varepsilon_1)$.
- $\blacktriangleright \Rightarrow f(\mathbf{x}^* + \alpha \mathbf{v}) > f(\mathbf{x}^*) \text{ for all } \alpha \in (0, \varepsilon_1).$
- \mathbf{x}^* cannot be a local maximum point of f over U.
- ▶ Similarly, *cannot* be a local minimum point of f over $U \Rightarrow$ saddle point.

Attainment of Minimal/Maximal Points

Weierstrass Theorem Let f be a continuous function defined over a nonempty compact set $C \subseteq \mathbb{R}^n$. Then there exists a global minimum point of f over C and a global maximum point of f over C.

When the underlying set is not compact, Weierstrass theorem does not guarantee the attainment of the solution, but certain properties of the function f can imply attainment of the solution.

Definition Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous function over \mathbb{R}^n . f is called coercive if

 $\lim_{\|\mathbf{x}\|\to\infty}f(\mathbf{x})=\infty.$

Theorem[Attainment of Global Optima Points for Coercive Functions] Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous and coercive function and let $S \subseteq \mathbb{R}^n$ be a nonempty closed set. Then f attains a global minimum point on S.

Proof. In class

Example

Classify the stationary points of the function $f(x_1, x_2) = -2x_1^2 + x_1x_2^2 + 4x_1^4$.

$$abla f(\mathbf{x}) = \begin{pmatrix} -4x_1 + x_2^2 + 16x_1^3 \\ 2x_1x_2 \end{pmatrix},$$

 \Rightarrow Stationary points are the solutions to

$$\begin{array}{rcl} -4x_1 + x_2^2 + 16x_1^3 & = & 0, \\ & 2x_1x_2 & = & 0. \end{array}$$

 \Rightarrow Stationary points are (0,0), (0.5,0), (-0.5,0)

$$abla^2 f(x_1, x_2) = \begin{pmatrix} -4 + 48x_1^2 & 2x_2 \\ 2x_2 & 2x_1 \end{pmatrix}.$$

$$abla^2 f(0.5,0) = \begin{pmatrix} 8 & 0 \\ 0 & 1 \end{pmatrix} \qquad
abla^2 f(-0.5,0) = \begin{pmatrix} 8 & 0 \\ 0 & -1 \end{pmatrix} \qquad
abla^2 f(0,0) = \begin{pmatrix} -4 & 0 \\ 0 & 0 \end{pmatrix}$$

strict local minimum

saddle point

saddle point (why?)

Illustration

Global Optimality Conditions

No free meals...

Theorem. Let f be a twice continuously defined over \mathbb{R}^n . Suppose that $\nabla^2 f(\mathbf{x}) \succeq \mathbf{0}$ for any $\mathbf{x} \in \mathbb{R}^n$. Let $\mathbf{x}^* \in \mathbb{R}^n$ be a stationary point of f. Then \mathbf{x}^* is a global minimum point of f.

Proof. In class

Example

$$f(\mathbf{x}) = x_1^2 + x_2^2 + x_3^2 + x_1x_2 + x_1x_3 + x_2x_3 + (x_1^2 + x_2^2 + x_3^2)^2.$$

$$\nabla f(\mathbf{x}) = \begin{pmatrix} 2x_1 + x_2 + x_3 + 4x_1(x_1^2 + x_2^2 + x_3^2) \\ 2x_2 + x_1 + x_3 + 4x_2(x_1^2 + x_2^2 + x_3^2) \\ 2x_3 + x_1 + x_2 + 4x_3(x_1^2 + x_2^2 + x_3^2) \end{pmatrix}.$$

$$\nabla^2 f(\mathbf{x}) = \begin{pmatrix} 2 + 4(x_1^2 + x_2^2 + x_3^2) + 8x_1^2 & 1 + 8x_1x_2 \\ 1 + 8x_1x_2 & 2 + 4(x_1^2 + x_2^2 + x_3^2) + 8x_2^2 & 1 + 8x_2x_3 \\ 1 + 8x_1x_3 & 1 + 8x_2x_3 & 2 + 4(x_1^2 + x_2^2 + x_3^2) + 8x_3^2 \end{pmatrix}.$$

- $\mathbf{x} = \mathbf{0}$ is a stationary point.
- $\nabla^2 f(\mathbf{x}) \succeq \mathbf{0}$ for all \mathbf{x} . (why?)
- Consequence: $\mathbf{x} = \mathbf{0}$ is the global minimum point.

Quadratic Functions

• A quadratic function over \mathbb{R}^n is a function of the form

 $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + 2\mathbf{b}^T \mathbf{x} + c,$

where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, $\mathbf{b} \in \mathbb{R}^n$ and $c \in \mathbb{R}$.

 $\nabla f(\mathbf{x}) = 2\mathbf{A}\mathbf{x} + 2\mathbf{b},$ $\nabla^2 f(\mathbf{x}) = 2\mathbf{A}.$

Consequently,

Lemma Let $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A}\mathbf{x} + 2\mathbf{b}^T \mathbf{x} + c$ ($\mathbf{A} \in \mathbb{R}^{n \times n}$ sym., $\mathbf{b} \in \mathbb{R}^n$, $c \in \mathbb{R}$). 1. \mathbf{x} is a stationary point of f iff $\mathbf{A}\mathbf{x} = -\mathbf{b}$. 2. if $\mathbf{A} \succeq \mathbf{0}$, then \mathbf{x} is a global minimum point of f iff $\mathbf{A}\mathbf{x} = -\mathbf{b}$. 3. if $\mathbf{A} \succ \mathbf{0}$, then $\mathbf{x} = -\mathbf{A}^{-1}\mathbf{b}$ is a strict global minimum point of f.

Proof. In class

Two Important Theorems on Quadratic Functions

Lemma [coerciveness of quadratic functions] Let $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + 2\mathbf{b}^T \mathbf{x} + c$ where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, $\mathbf{b} \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Then f is coercive if and only if $\mathbf{A} \succ \mathbf{0}$.

Lemma 2.42 in the book (proof in page 33).

Theorem [characterization of the nonnegativity of quadratic functions] $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + 2\mathbf{b}^T \mathbf{x} + c$, where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, $\mathbf{b} \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Then the following two claims are equivalent (i) $f(\mathbf{x}) \equiv \mathbf{x}^T \mathbf{A} \mathbf{x} + 2\mathbf{b}^T \mathbf{x} + c \ge 0$ for all $\mathbf{x} \in \mathbb{R}^n$. (ii) $\begin{pmatrix} \mathbf{A} & \mathbf{b} \\ \mathbf{b}^T & c \end{pmatrix} \ge \mathbf{0}$.

Theorem 2.43 in the book (proof in pages 33,34).