Lecture 2 - Unconstrained Optimization

Definition[Global Minimum and Maximum]Let $f: S \rightarrow \mathbb{R}$ be defined on a set $S \subseteq \mathbb{R}^{n}$. Then

1. $\mathbf{x}^{*} \in S$ is a global minimum point of f over S if $f(\mathbf{x}) \geq f\left(\mathbf{x}^{*}\right)$ for any $\mathbf{x} \in S$.
2. $\mathbf{x}^{*} \in S$ is a strict global minimum point of f over S if $f(\mathbf{x})>f\left(\mathbf{x}^{*}\right)$ for any $\mathbf{x}^{*} \neq \mathbf{x} \in S$.
3. $\mathbf{x}^{*} \in S$ is a global maximum point of f over S if $f(\mathbf{x}) \leq f\left(\mathbf{x}^{*}\right)$ for any $\mathbf{x} \in S$.
4. $\mathbf{x}^{*} \in S$ is a strict global maximum point of f over S if $f(\mathbf{x})<f\left(\mathbf{x}^{*}\right)$ for any $\mathbf{x}^{*} \neq \mathbf{x} \in S$.

- global optimum=global minimum or maximum.
- maximal value of f over S :

$$
\sup \{f(\mathbf{x}): \mathbf{x} \in S\}
$$

- minimal value of f over S :

$$
\inf \{f(\mathbf{x}): \mathbf{x} \in S\}
$$

- minimal and maximal values are always unique.

Example 1:

Find the global minimum and maximum points of $f(x, y)=x+y$ over the unit ball $S=B[\mathbf{0}, 1]=\left\{(x, y)^{T}: x^{2}+y^{2} \leq 1\right\}$

In class.

Example 2:

$$
\min \left\{f(x, y)=\frac{x+y}{x^{2}+y^{2}+1}: x, y \in \mathbb{R}\right\}
$$

$(1 / \sqrt{2}, 1 / \sqrt{2})$ - global maximizer $(-1 / \sqrt{2},-1 / \sqrt{2})$ - global minimizer.

Local Minima and Maxima

Definition Let $f: S \rightarrow \mathbb{R}$ be defined on a set $S \subseteq \mathbb{R}^{n}$. Then

1. $\mathbf{x}^{*} \in S$ is a local minimum of f over S if there exists $r>0$ for which $f\left(\mathbf{x}^{*}\right) \leq f(\mathbf{x})$ for any $\mathbf{x} \in S \cap B\left(\mathbf{x}^{*}, r\right)$.
2. $\mathbf{x}^{*} \in S$ is a strict local minimum of f over S if there exists $r>0$ for which $f\left(\mathbf{x}^{*}\right)<f(\mathbf{x})$ for any $\mathbf{x}^{*} \neq \mathbf{x} \in S \cap B\left(\mathbf{x}^{*}, r\right)$.
3. $\mathbf{x}^{*} \in S$ is a local maximum of f over S if there exists $r>0$ for which $f\left(\mathbf{x}^{*}\right) \geq f(\mathbf{x})$ for any $\mathbf{x} \in S \cap B\left(\mathbf{x}^{*}, r\right)$.
4. $\mathbf{x}^{*} \in S$ is a strict local maximum of f over S if there exists $r>0$ for which $f\left(\mathbf{x}^{*}\right)>f(\mathbf{x})$ for any $\mathbf{x}^{*} \neq \mathbf{x} \in S \cap B\left(\mathbf{x}^{*}, r\right)$.
Of course, a global minimum (maximum) point is also a local minimum (maximum) point.

Example

f described above is defined over $[-1,8]$. Classify each of the points $x=-1,1,2,3,5,6.5,8$ as strict/nonstrict global/local minimum/maximum points. In class

Fermat's Theorem - First Order Optimality Condition

Theorem. Let $f: U \rightarrow \mathbb{R}$ be a function defined on a set $U \subseteq \mathbb{R}^{n}$. Suppose that $\mathbf{x}^{*} \in \operatorname{int}(U)$ is a local optimum point and that all the partial derivatives of f exist at \mathbf{x}^{*}. Then $\nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0}$.

Proof.

- Let $i \in\{1,2, \ldots, n\}$ and consider the 1-D function $g(t)=f\left(\mathbf{x}^{*}+t \mathbf{e}_{i}\right)$
- \mathbf{x}^{*} is a local optimum point of $f \Rightarrow t=0$ is a local optimum of $g \Rightarrow$ $g^{\prime}(0)=0$.
- Thus, $\frac{\partial f}{\partial x_{i}}\left(\mathbf{x}^{*}\right)=g^{\prime}(0)=0$.

Stationary Points

Definition Let $f: U \rightarrow \mathbb{R}$ be a function defined on a set $U \subseteq \mathbb{R}^{n}$. Suppose that $\mathbf{x}^{*} \in \operatorname{int}(U)$ and that all the partial derivatives of f are defined at \mathbf{x}^{*}. Then \mathbf{x}^{*} is called a stationary point of f if $\nabla f\left(\mathbf{x}^{*}\right)=\mathbf{0}$.

Example:

$$
\begin{gathered}
\min \left\{f(x, y)=\frac{x+y}{x^{2}+y^{2}+1}: x, y \in \mathbb{R}\right\} \\
\nabla f(x, y)=\frac{1}{\left(x^{2}+y^{2}+1\right)^{2}}\binom{\left(x^{2}+y^{2}+1\right)-2(x+y) x}{\left(x^{2}+y^{2}+1\right)-2(x+y) y} .
\end{gathered}
$$

- Stationary points are those satisfying:

$$
\begin{aligned}
-x^{2}-2 x y+y^{2} & =-1 \\
x^{2}-2 x y-y^{2} & =-1
\end{aligned}
$$

- Hence, the stationary points are $(1 / \sqrt{2}, 1 / \sqrt{2}),(-1 / \sqrt{2},-1 / \sqrt{2})$.
- $(1 / \sqrt{2}, 1 / \sqrt{2})$ - global maximum, $(-1 / \sqrt{2},-1 / \sqrt{2})$ - global minimum.

Classification of Matrices - Positive Definiteness

1. A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is called positive semidefinite, denoted by $\mathbf{A} \succeq \mathbf{0}$, if $\mathbf{x}^{T} \mathbf{A} \mathbf{x} \geq 0$ for every $\mathbf{x} \in \mathbb{R}^{n}$.
2. A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is called positive definite, denoted by $\mathbf{A} \succ \mathbf{0}$, if $\mathbf{x}^{T} \mathbf{A} \mathbf{x}>0$ for every $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^{n}$.
Example 1:

$$
\mathbf{A}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right)
$$

In class

Example 2:

$$
\mathbf{B}=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) .
$$

In class

Lemma: Let A be a positive definite (semidefinite) matrix. Then the diagonal elements of \mathbf{A} are positive (nonnegative).

Negative (Semi)Definiteness, Indefiniteness

1. A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is called negative semidefinite, denoted by $\mathbf{A} \preceq \mathbf{0}$, if $\mathbf{x}^{T} \mathbf{A} \mathbf{x} \leq 0$ for every $\mathbf{x} \in \mathbb{R}^{n}$.
2. A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is called negative definite, denoted by $\mathbf{A} \prec \mathbf{0}$, if $\mathbf{x}^{T} \mathbf{A} \mathbf{x}<0$ for every $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^{n}$.
3. A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is called indefinite if there exist $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ such that $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}>0, \mathbf{y}^{\top} \mathbf{A} \mathbf{y}<0$..

Remarks:

- \mathbf{A} is negative (semi)definite if and only if $-\mathbf{A}$ is positive (semi)definite.
- A matrix is indefinite if and only if it is neither positive semidefinite nor negative semidefinite.

Eigenvalue Characterization

Theorem. Let \mathbf{A} be a symmetric $n \times n$ matrix. Then
(a) \mathbf{A} is positive definite iff all its eigenvalues are positive.
(b) \mathbf{A} is positive semidefinite iff all its eigenvalues are nonnegative.
(c) \mathbf{A} is negative definite iff all its eigenvalues are negative.
(d) \mathbf{A} is negative semidefinite iff all its eigenvalues are nonpositive.
(e) \mathbf{A} is indefinite iff it has at least one positive eigenvalue and at least one negative eigenvalue.

Eigenvalue Characterization - Proof

Proof of part (a): (other parts follows immediately or by similar arguments)

- There exists orthogonal $\mathbf{U} \in \mathbb{R}^{n \times n}$ such that

$$
\mathbf{U}^{T} \mathbf{A} \mathbf{U}=\mathbf{D} \equiv \operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)
$$

where $d_{i}=\lambda_{i}(\mathbf{A})$.

- Making the linear change of variables $\mathbf{x}=\mathbf{U y}$, we have

$$
\mathbf{x}^{T} \mathbf{A} \mathbf{x}=\mathbf{y}^{T} \mathbf{U}^{T} \mathbf{A} \mathbf{U} \mathbf{y}=\mathbf{y}^{T} \mathbf{D} \mathbf{y}=\sum_{i=1}^{n} d_{i} y_{i}^{2}
$$

- Therefore, $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}>0$ for all $\mathbf{x} \neq \mathbf{0}$ iff

$$
\begin{equation*}
\sum_{i=1}^{n} d_{i} y_{i}^{2}>0 \text { for any } \mathbf{y} \neq \mathbf{0} \tag{1}
\end{equation*}
$$

- (1) holds iff $d_{i}>0$ for all i (why?)

Trace and Determinant

Corollary. Let \mathbf{A} be a positive semidefinite (definite) matrix. Then $\operatorname{Tr}(\mathbf{A})$ and $\operatorname{det}(\mathbf{A})$ are nonnegative (positive).

Proof. In class

Proposition. Let \mathbf{A} be a symmetric 2×2 matrix. Then \mathbf{A} is positive semidefinite (definite) if and only if $\operatorname{Tr}(\mathbf{A}), \operatorname{det}(\mathbf{A}) \geq 0(\operatorname{Tr}(\mathbf{A}), \operatorname{det}(\mathbf{A})>$ $0)$.

Proof. In class

Example

Classify the matrices

$$
\mathbf{A}=\left(\begin{array}{ll}
4 & 1 \\
1 & 3
\end{array}\right), \mathbf{B}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0.1
\end{array}\right)
$$

In class

The Principal Minors Criteria

Definition Given an $n \times n$ matrix, the determinant of the upper left $k \times k$ submatrix is called the k-th principal minor and is denoted by $D_{k}(\mathbf{A})$. Example.

$$
\begin{gathered}
\mathbf{A}=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \\
D_{1}(\mathbf{A})=a_{11}, D_{2}(\mathbf{A})=\operatorname{det}\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right), D_{3}(\mathbf{A})=\operatorname{det}\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) .
\end{gathered}
$$

Principal Minors Criteria Let \mathbf{A} be an $n \times n$ symmetric matrix. Then \mathbf{A} is positive definite if and only if $D_{1}(\mathbf{A})>0, D_{2}(\mathbf{A})>0, \ldots, D_{n}(\mathbf{A})>0$.

Examples

Classify the matrices
$\mathbf{A}=\left(\begin{array}{lll}4 & 2 & 3 \\ 2 & 3 & 2 \\ 3 & 2 & 4\end{array}\right), \mathbf{B}=\left(\begin{array}{ccc}2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & -1\end{array}\right), \mathbf{C}=\left(\begin{array}{ccc}-4 & 1 & 1 \\ 1 & -4 & 1 \\ 1 & 1 & -4\end{array}\right)$. In class

Diagonal Dominance

Definition (diagonally dominant matrices) Let \mathbf{A} be a symmetric $n \times n$ matrix. (a) \mathbf{A} is called diagonally dominant if

$$
\left|A_{i i}\right| \geq \sum_{j \neq i}\left|A_{i j}\right| \forall i=1,2, \ldots, n
$$

(b) \mathbf{A} is called strictly diagonally dominant if

$$
\left|A_{i i}\right|>\sum_{j \neq i}\left|A_{i j}\right| \forall i=1,2, \ldots, n
$$

Theorem (positive (semi)definiteness of diagonally dominant matrices)
(a) If \mathbf{A} is symmetric, diagonally dominant with nonnegative diagonal elements, then \mathbf{A} is positive semidefinite.
(b) If \mathbf{A} is symmetric, strictly diagonally dominant with positive diagonal elements, then \mathbf{A} is positive definite.

See proof of Theorem 2.25 on pages 22,23.

Necessary Second Order Optimality Conditions

Theorem. Let $f: U \rightarrow \mathbb{R}$ be a function defined on an open set $U \subseteq \mathbb{R}^{n}$. Suppose that f is twice continuously differentiable over U and that \mathbf{x}^{*} is a stationary point. Then

1. if \mathbf{x}^{*} is a local minimum point, then $\nabla^{2} f\left(\mathbf{x}^{*}\right) \succeq \mathbf{0}$.
2. if \mathbf{x}^{*} is a local maximum point, then $\nabla^{2} f\left(\mathbf{x}^{*}\right) \preceq \mathbf{0}$.

Proof. of 1:

- There exists a ball $B\left(\mathbf{x}^{*}, r\right) \subseteq U$ for which $f(\mathbf{x}) \geq f\left(\mathbf{x}^{*}\right)$ for all $\mathbf{x} \in B\left(\mathbf{x}^{*}, r\right)$.
- Let $\mathbf{d} \in \mathbb{R}^{n}$ be a nonzero vector. For any $0<\alpha<\frac{r}{\|\mathbf{d}\|}$, we have $\mathbf{x}_{\alpha}^{*} \equiv \mathbf{x}^{*}+\alpha \mathbf{d} \in B\left(\mathbf{x}^{*}, r\right)$,
- for any such $\alpha, f\left(\mathbf{x}_{\alpha}^{*}\right) \geq f\left(\mathbf{x}^{*}\right)$.
- On the other hand, there exists a vector $\mathbf{z}_{\alpha} \in\left[\mathbf{x}^{*}, \mathbf{x}_{\alpha}^{*}\right]$ such that

$$
\begin{equation*}
f\left(\mathbf{x}_{\alpha}^{*}\right)-f\left(\mathbf{x}^{*}\right)=\frac{\alpha^{2}}{2} \mathbf{d}^{T} \nabla^{2} f\left(\mathbf{z}_{\alpha}\right) \mathbf{d} . \tag{2}
\end{equation*}
$$

$-\Rightarrow$ for any $\alpha \in\left(0, \frac{r}{\|\mathbf{d}\|}\right)$ the inequality $\mathbf{d}^{T} \nabla^{2} f\left(\mathbf{z}_{\alpha}\right) \mathbf{d} \geq 0$ holds.

- Since $\mathbf{z}_{\alpha} \rightarrow \mathbf{x}^{*}$ as $\alpha \rightarrow 0^{+}$, we obtain that $\mathbf{d}^{T} \nabla f\left(\mathbf{x}^{*}\right) \mathbf{d} \geq 0$.
- $\Rightarrow \nabla^{2} f\left(\mathbf{x}^{*}\right) \succeq \mathbf{0}$.

Sufficient Second Order Optimality Conditions

Theorem. Let $f: U \rightarrow \mathbb{R}$ be a function defined on an open set $U \subseteq \mathbb{R}^{n}$. Suppose that f is twice continuously differentiable over U and that \mathbf{x}^{*} is a stationary point. Then

1. if $\nabla^{2} f\left(\mathbf{x}^{*}\right) \succ \mathbf{0}$, then \mathbf{x}^{*} is a strict local minimum point of f over U.
2. if $\nabla^{2} f\left(\mathbf{x}^{*}\right) \prec \mathbf{0}$, then \mathbf{x}^{*} is a strict local maximum point of f over U.

Proof. of 1: (2 directly follows)

- There exists a ball $B\left(\mathbf{x}^{*}, r\right) \subseteq U$ for which $\nabla^{2} f(\mathbf{x}) \succ \mathbf{0}$ for any $\mathbf{x} \in B\left(\mathbf{x}^{*}, r\right)$.
- By LAT, there exists a vector $\mathbf{z}_{\mathbf{x}} \in\left[\mathbf{x}^{*}, \mathbf{x}\right]$ (and hence $\left.\mathbf{z}_{\mathbf{x}} \in B\left(\mathbf{x}^{*}, r\right)\right)$ for which

$$
f(\mathbf{x})-f\left(\mathbf{x}^{*}\right)=\frac{1}{2}\left(\mathbf{x}-\mathbf{x}^{*}\right)^{T} \nabla^{2} f\left(\mathbf{z}_{\mathbf{x}}\right)\left(\mathbf{x}-\mathbf{x}^{*}\right) .
$$

- $\nabla^{2} f\left(\mathbf{z}_{\mathbf{x}}\right) \succ \mathbf{0} \Rightarrow$ for any $\mathbf{x} \in B\left(\mathbf{x}^{*}, r\right)$ such that $\mathbf{x} \neq \mathbf{x}^{*}$, the inequality $f(\mathbf{x})>f\left(\mathbf{x}^{*}\right)$ holds, implying that \mathbf{x}^{*} is a strict local minimum point of f over U.

Saddle Points

Definition Let $f: U \rightarrow \mathbb{R}$ be a continuously differentiable function defined on an open set $U \subseteq \mathbb{R}^{n}$. A stationary point $\mathbf{x}^{*} \in U$ is called a saddle point of f over U if it is neither a local minimum point nor a local maximum point of f over U.

Sufficient Condition for Saddle Points

Theorem Let $f: U \rightarrow \mathbb{R}$ be a function defined on an open set $U \subseteq \mathbb{R}^{n}$. Suppose that f is twice continuously differentiable over U and that \mathbf{x}^{*} is a stationary point. If $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ is an indefinite matrix, then \mathbf{x}^{*} is a saddle point of f over U.

Proof.

- $\nabla^{2} f\left(\mathbf{x}^{*}\right)$ has at least one positive eigenvalue $\lambda>0$, corresponding to a normalized eigenvector denoted by \mathbf{v}.
- $\exists r>0$ such that $\mathbf{x}^{*}+\alpha \mathbf{v} \in U$ for any $\alpha \in(0, r)$.
- BY QAT ${ }^{1}$ There exists a function $g: \mathbb{R}_{++} \rightarrow \mathbb{R}$ satisfying

$$
\frac{g(t)}{t} \rightarrow 0 \text { as } t \rightarrow 0
$$

such that for any $\alpha \in(0, r)$

$$
f\left(\mathbf{x}^{*}+\alpha \mathbf{v}\right)=f\left(\mathbf{x}^{*}\right)+\frac{\lambda \alpha^{2}}{2}\|\mathbf{v}\|^{2}+g\left(\|\mathbf{v}\|^{2} \alpha^{2}\right)
$$

[^0]
Proof Contd.

- $f\left(\mathbf{x}^{*}+\alpha \mathbf{v}\right)=f\left(\mathbf{x}^{*}\right)+\frac{\lambda \alpha^{2}}{2}+g\left(\alpha^{2}\right)$.
- $\exists \varepsilon_{1} \in(0, r)$ such that $g\left(\alpha^{2}\right)>-\frac{\lambda}{2} \alpha^{2}$ for all $\alpha \in\left(0, \varepsilon_{1}\right)$.
- $\Rightarrow f\left(\mathbf{x}^{*}+\alpha \mathbf{v}\right)>f\left(\mathbf{x}^{*}\right)$ for all $\alpha \in\left(0, \varepsilon_{1}\right)$.
- \mathbf{x}^{*} cannot be a local maximum point of f over U.
- Similarly, cannot be a local minimum point of f over $U \Rightarrow$ saddle point.

Attainment of Minimal/Maximal Points

Weierstrass Theorem Let f be a continuous function defined over a nonempty compact set $C \subseteq \mathbb{R}^{n}$. Then there exists a global minimum point of f over C and a global maximum point of f over C.

- When the underlying set is not compact, Weierstrass theorem does not guarantee the attainment of the solution, but certain properties of the function f can imply attainment of the solution.
Definition Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous function over \mathbb{R}^{n}. f is called coercive if

$$
\lim _{\|x\| \rightarrow \infty} f(\mathbf{x})=\infty
$$

> Theorem[Attainment of Global Optima Points for Coercive Functions] Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous and coercive function and let $S \subseteq \mathbb{R}^{n}$ be a nonempty closed set. Then f attains a global minimum point on S.

Proof. In class

Example

Classify the stationary points of the function $f\left(x_{1}, x_{2}\right)=-2 x_{1}^{2}+x_{1} x_{2}^{2}+4 x_{1}^{4}$.

$$
\nabla f(\mathbf{x})=\binom{-4 x_{1}+x_{2}^{2}+16 x_{1}^{3}}{2 x_{1} x_{2}}
$$

\Rightarrow Stationary points are the solutions to

$$
\begin{aligned}
-4 x_{1}+x_{2}^{2}+16 x_{1}^{3} & =0 \\
2 x_{1} x_{2} & =0
\end{aligned}
$$

\Rightarrow Stationary points are $(0,0),(0.5,0),(-0.5,0)$

$$
\nabla^{2} f\left(x_{1}, x_{2}\right)=\left(\begin{array}{cc}
-4+48 x_{1}^{2} & 2 x_{2} \\
2 x_{2} & 2 x_{1}
\end{array}\right)
$$

$$
\nabla^{2} f(0.5,0)=\left(\begin{array}{ll}
8 & 0 \\
0 & 1
\end{array}\right) \quad \nabla^{2} f(-0.5,0)=\left(\begin{array}{cc}
8 & 0 \\
0 & -1
\end{array}\right) \quad \nabla^{2} f(0,0)=\left(\begin{array}{cc}
-4 & 0 \\
0 & 0
\end{array}\right)
$$

strict local minimum
saddle point
saddle point (why?)

Illustration

Global Optimality Conditions

No free meals...
Theorem. Let f be a twice continuously defined over \mathbb{R}^{n}. Suppose that $\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0}$ for any $\mathbf{x} \in \mathbb{R}^{n}$. Let $\mathbf{x}^{*} \in \mathbb{R}^{n}$ be a stationary point of f. Then \mathbf{x}^{*} is a global minimum point of f.

Proof. In class

Example

$$
\begin{gathered}
f(\mathbf{x})=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}+\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{2} \\
\nabla f(\mathbf{x})=\left(\begin{array}{c}
2 x_{1}+x_{2}+x_{3}+4 x_{1}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) \\
2 x_{2}+x_{1}+x_{3}+4 x_{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) \\
2 x_{3}+x_{1}+x_{2}+4 x_{3}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)
\end{array}\right) \\
\nabla^{2} f(\mathbf{x})=\left(\begin{array}{ccc}
2+4\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)+8 x_{1}^{2} & 1+8 x_{1} x_{2} \\
1+8 x_{1} x_{2} & 2+4\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)+8 x_{2}^{2} & 1+8 x_{1} x_{3} \\
1+8 x_{1} x_{3} & 1+8 x_{2} x_{3} & 2+4\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)+8 x_{3}^{2}
\end{array}\right)
\end{gathered}
$$

- $\mathbf{x}=\mathbf{0}$ is a stationary point.
- $\nabla^{2} f(\mathbf{x}) \succeq \mathbf{0}$ for all \mathbf{x}. (why?)
- Consequence: $\mathbf{x}=\mathbf{0}$ is the global minimum point.

Quadratic Functions

- A quadratic function over \mathbb{R}^{n} is a function of the form

$$
f(\mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c,
$$

where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, $\mathbf{b} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$.

$$
\begin{aligned}
\nabla f(\mathbf{x}) & =2 \mathbf{A} \mathbf{x}+2 \mathbf{b}, \\
\nabla^{2} f(\mathbf{x}) & =2 \mathbf{A} .
\end{aligned}
$$

Consequently,
Lemma Let $f(\mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c\left(\mathbf{A} \in \mathbb{R}^{n \times n}\right.$ sym., $\left.\mathbf{b} \in \mathbb{R}^{n}, c \in \mathbb{R}\right)$.

1. \mathbf{x} is a stationary point of f iff $\mathbf{A x}=-\mathbf{b}$.
2. if $\mathbf{A} \succeq \mathbf{0}$, then \mathbf{x} is a global minimum point of f iff $\mathbf{A x}=-\mathbf{b}$.
3. if $\mathbf{A} \succ \mathbf{0}$, then $\mathbf{x}=-\mathbf{A}^{-1} \mathbf{b}$ is a strict global minimum point of f.

Proof. In class

Two Important Theorems on Quadratic Functions

Lemma [coerciveness of quadratic functions] Let $f(\mathbf{x})=\mathbf{x}^{\top} \mathbf{A} \mathbf{x}+2 \mathbf{b}^{\top} \mathbf{x}+c$ where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, $\mathbf{b} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$. Then f is coercive if and only if $\mathbf{A} \succ \mathbf{0}$.

Lemma 2.42 in the book (proof in page 33).
Theorem [characterization of the nonnegativity of quadratic functions] $f(\mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c$, where $\mathbf{A} \in \mathbb{R}^{n \times n}$ is symmetric, $\mathbf{b} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$. Then the following two claims are equivalent
(i) $f(\mathbf{x}) \equiv \mathbf{x}^{T} \mathbf{A} \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{n}$.
(ii) $\left(\begin{array}{cc}\mathbf{A} & \mathbf{b} \\ \mathbf{b}^{T} & c\end{array}\right) \succeq \mathbf{0}$.

Theorem 2.43 in the book (proof in pages 33,34).

[^0]: ${ }^{1}$ quadratic approximation theory

