
Lecture 1 -Mathematical Preliminaries
The Space Rn

I Rn - the set of n-dimensional column vectors with real components endowed
with the component-wise addition operator:

x1
x2
...
xn

+


y1
y2
...
yn

 =


x1 + y1
x2 + y2

...
xn + yn

 ,

and the scalar-vector product

λ


x1
x2
...
xn

 =


λx1
λx2

...
λxn

 ,

I e1, e2, . . . , en - standard/canonical basis.

I e and 0 - all ones and all zeros column vectors.
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Important Subsets of Rn

I nonnegative orthant:

Rn
+ =

{
(x1, x2, . . . , xn)T : x1, x2, . . . , xn ≥ 0

}
.

I positive orthant:

Rn
++ =

{
(x1, x2, . . . , xn)T : x1, x2, . . . , xn > 0

}
.

I If x, y ∈ Rn, the closed line segment between x and y is given by

[x, y] = {x + α(y − x) : α ∈ [0, 1]} .

I the open line segment (x, y) is similarly defined as

(x, y) = {x + α(y − x) : α ∈ (0, 1)}

for x 6= y and (x, x) = ∅
I unit-simplex:

∆n =
{

x ∈ Rn : x ≥ 0, eTx = 1
}
.
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The Space Rm×n

I The set of all real valued matrices is denoted by Rm×n.

I In - n × n identity matrix.

I 0m×n - m × n zeros matrix.
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Inner Products
Definition An inner product on Rn is a map 〈·, ·〉 : Rn × Rn → R with the
following properties:

1. (symmetry) 〈x, y〉 = 〈y, x〉 for any x, y ∈ Rn.

2. (additivity) 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉 for any x, y, z ∈ Rn.

3. (homogeneity) 〈λx, y〉 = λ〈x, y〉 for any λ ∈ R and x, y ∈ Rn.

4. (positive definiteness) 〈x, x〉 ≥ 0 for any x ∈ Rn and 〈x, x〉 = 0 if and only
if x = 0.

Examples
I the “dot product”

〈x, y〉 = xTy =
n∑

i=1

xiyi for any x, y ∈ Rn.

I the “weighted dot product”

〈x, y〉w =
n∑

i=1

wixiyi ,

where w ∈ Rn
++.

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Mathematical Preliminaries 4 / 24



Inner Products
Definition An inner product on Rn is a map 〈·, ·〉 : Rn × Rn → R with the
following properties:

1. (symmetry) 〈x, y〉 = 〈y, x〉 for any x, y ∈ Rn.

2. (additivity) 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉 for any x, y, z ∈ Rn.

3. (homogeneity) 〈λx, y〉 = λ〈x, y〉 for any λ ∈ R and x, y ∈ Rn.

4. (positive definiteness) 〈x, x〉 ≥ 0 for any x ∈ Rn and 〈x, x〉 = 0 if and only
if x = 0.

Examples
I the “dot product”

〈x, y〉 = xTy =
n∑

i=1

xiyi for any x, y ∈ Rn.

I the “weighted dot product”

〈x, y〉w =
n∑

i=1

wixiyi ,

where w ∈ Rn
++.

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - Mathematical Preliminaries 4 / 24



Vector Norms

Definition. A norm ‖ · ‖ on Rn is a function ‖ · ‖ : Rn → R satisfying

I (Nonnegativity) ‖x‖ ≥ 0 for any x ∈ Rn and ‖x‖ = 0 if and only if x = 0.

I (positive homogeneity) ‖λx‖ = |λ|‖x‖ for any x ∈ Rn and λ ∈ R.

I (triangle inequality) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for any x, y ∈ Rn.

I One natural way to generate a norm on Rn is to take any inner product 〈·, ·〉
defined on Rn, and define the associated norm

‖x‖ ≡
√
〈x, x〉, for all x ∈ Rn,

I The norm associated with the dot-product is the so-called Euclidean norm or
l2-norm:

‖x‖2 =

√√√√ n∑
i=1

x2i for all x ∈ Rn.
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lp-norms

I the lp-norm (p ≥ 1) is defined by ‖x‖p ≡ p

√∑n
i=1 |xi |p.

I The l∞-norm is
‖x‖∞ ≡ max

i=1,2,...,n
|xi |.

I It can be shown that
‖x‖∞ = lim

p→∞
‖x‖p.

Example: l1/2 is not a norm. why?
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The Cauchy-Schwartz Inequality

Lemma: For any x, y ∈ Rn:
|xTy| ≤ ‖x‖ · ‖y‖.

Proof: For any λ ∈ R:

‖x + λy‖2 = ‖x‖2 + 2λ〈x, y〉+ λ2‖y‖2

Therefore (why?),
4〈x, y〉2 − 4‖x‖2‖y‖2 ≤ 0,

establishing the desired result.
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Matrix Norms

Definition. A norm ‖ · ‖ on Rm×n is a function ‖ · ‖ : Rm×n → R satisfying

1. (Nonnegativity) ‖A‖ ≥ 0 for any A ∈ Rm×n and ‖A‖ = 0 if and only if
A = 0.

2. (positive homogeneity) ‖λA‖ = |λ|‖A‖ for any A ∈ Rm×n and λ ∈ R.

3. (triangle inequality) ‖A + B‖ ≤ ‖A‖+ ‖B‖ for any A,B ∈ Rn.
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Induced Norms

I Given a matrix A ∈ Rm×n and two norms ‖ · ‖a and ‖ · ‖b on Rn and Rm

respectively, the induced matrix norm ‖A‖a,b (called (a, b)-norm) is defined
by

‖A‖a,b = max
x
{‖Ax‖b : ‖x‖a ≤ 1}.

I conclusion:
‖Ax‖b ≤ ‖A‖a,b‖x‖a

I An induced norm is a norm (satisfies nonnegativity, positive homogeneity and
triangle inequality).

I We refer to the matrix-norm ‖ · ‖a,b as the (a, b)-norm. When a = b, we will
simply refer to it as an a-norm.
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Matrix Norms Contd
I spectral norm: If ‖ · ‖a = ‖ · ‖b = ‖ · ‖2, the induced (2,2)-norm of a matrix

A ∈ Rm×n is the maximum singular value of A

‖A‖2 = ‖A‖2,2 =
√
λmax(ATA) ≡ σmax(A),

This norm is called the spectral norm.

I l1-norm: when ‖ · ‖a = ‖ · ‖b = ‖ · ‖1, the induced (1,1)-matrix norm of a
matrix A ∈ Rm×n is given by

‖A‖1 = max
j=1,2,...,n

m∑
i=1

|Ai,j |.

I l∞-norm: when ‖ · ‖a = ‖ · ‖b = ‖ · ‖∞, the induced (∞,∞)-matrix norm of a
matrix A ∈ Rm×n is given by

‖A‖∞ = max
i=1,2,...,m

n∑
j=1

|Ai,j |.
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The Frobenius norm

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

A2
ij , A ∈ Rm×n

The Frobenius norm is not an induced norm.
Why is it a norm?
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Eigenvalues and Eigenvectors

I Let A ∈ Rn×n. Then a nonzero vector v ∈ Rn is called an eigenvector of A if
there exists a λ ∈ C for which

Av = λv.

The scalar λ is the eigenvalue corresponding to the eigenvector v.

I In general, real-valued matrices can have complex eigenvalues, but when the
matrix is symmetric the eigenvalues are necessarily real.

I The eigenvalues of a symmetric n × n matrix A are denoted by

λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A).

I The maximum eigenvalue is also denote by λmax(A)(= λ1(A)) and the
minimum eigenvalue is also denote by λmin(A)(= λn(A)).
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The Spectral Factorization Theorem

Theorem. Let A ∈ Rn×n be an n × n symmetric matrix. Then there exists
an orthogonal matrix U ∈ Rn×n (UTU = UUT = I) and a diagonal matrix
D = diag(d1, d2, . . . , dn) for which

UTAU = D.

I The columns of the matrix U constitute an orthogonal basis comprising
eigenvectors of A and the diagonal elements of D are the corresponding
eigenvalues.

I A direct result is that Tr(A) =
∑n

i=1 λi (A) and det(A) = Πn
i=1λi (A).
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Basic Topological Concepts
I the open ball with center c ∈ Rn and radius r :

B(c, r) = {x : ‖x− c‖ < r} .

I the closed ball with center c and radius r :

B[c, r ] = {x : ‖x− c‖ ≤ r} .

Definition. Given a set U ⊆ Rn, a point c ∈ U is called an interior point of U if
there exists r > 0 for which B(c, r) ⊆ U.
The set of all interior points of a given set U is called the interior of the set and is
denoted by int(U):

int(U) = {x ∈ U : B(x, r) ⊆ U for some r > 0}.
Examples.

int(Rn
+) = Rn

++,

int(B[c, r ]) = B(c, r) (c ∈ Rn, r ∈ R++),

int([x, y]) = ?
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open and closed sets

I an open set is a set that contains only interior points. Meaning that
U = int(U).

I examples of open sets are open balls (hence the name...) and the positive
orthant Rn

++.

Result: a union of any number of open sets is an open set and the intersection of
a finite number of open sets is open.

I a set U ⊆ Rn is closed if it contains all the limits of convergent sequences of
vectors in U, that is, if {xi}∞i=1 ⊆ U satisfies xi → x∗ as i →∞, then x∗ ∈ U.

I a known result states that U is closed iff its complement Uc is open.

I examples of closed sets are the closed ball B[c, r ], closed lines segments, the
nonnegative orthant Rn

+ and the unit simplex ∆n.

What about Rn?∅?
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Boundary Points

Definition. Given a set U ⊆ Rn, a boundary point of U is a vector x ∈ Rn

satisfying the following: any neighborhood of x contains at least one point in U
and at least one point in its complement Uc .

I The set of all boundary points of a set U is denoted by bd(U).

Examples:

(c ∈ Rn, r ∈ R++),bd(B(c, r)) = ksjdhfsdkfjhsdfkjhsdfkjh

(c ∈ Rn, r ∈ R++),bd(B[c, r ]) =

bd(Rn
++) =

bd(Rn
+) =

bd(Rn) =

bd(∆n) =
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Closure

I the closure of a set U ⊆ Rn is denoted by cl(U) and is defined to be the
smallest closed set containing U:

cl(U) =
⋂
{T : U ⊆ T ,T is closed }.

I another equivalent definition of cl(U) is:

cl(U) = U ∪ bd(U).

Examples.

cl(Rn
++) = ksjdhfksdfkjhsdfkjhdsfsdkfjhsdkf ,

(c ∈ Rn, r ∈ R++), cl(B(c, r)) =

(x 6= y), cl((x, y)) =
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Boundedness and Compactness

I A set U ⊆ Rn is called bounded if there exists M > 0 for which U ⊆ B(0,M).

I A set U ⊆ Rn is called compact if it is closed and bounded.

I Examples of compact sets: closed balls, unit simplex, closed line segments.
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Directional Derivatives and Gradients
Definition. Let f be a function defined on a set S ⊆ Rn. Let x ∈ int(S) and let
d ∈ Rn. If the limit

lim
t→0+

f (x + td)− f (x)

t
exists, then it is called the directional derivative of f at x along the direction d

and is denoted by f ′(x; d).
I For any i = 1, 2, . . . , n, if the limit

lim
t→0

f (x + tei )− f (x)

t

exists, then its value is called the i-th partial derivative and is denoted by
∂f
∂xi

(x).
I If all the partial derivatives of a function f exist at a point x ∈ Rn, then the

gradient of f at x is

∇f (x) =


∂f
∂x1

(x)
∂f
∂x2

(x)
...

∂f
∂xn

(x)

 .
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Continuous Differentiability

A function f defined on an open set U ⊆ Rn is called continuously differentiable
over U if all the partial derivatives exist and are continuous on U. In that case,

f ′(x; d) = ∇f (x)Td, x ∈ U,d ∈ Rn

Proposition Let f : U → R be defined on an open set U ⊆ Rn. Suppose
that f is continuously differentiable over U. Then

lim
d→0

f (x + d)− f (x)−∇f (x)Td

‖d‖
= 0 for all x ∈ U.

Another way to write the above result is as follows:

f (y) = f (x) +∇f (x)T (y − x) + o(‖y − x‖),

where o(·) : Rn
+ → R is a one-dimensional function satisfying o(t)

t → 0 as t → 0+.
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Twice Differentiability

I The partial derivatives ∂f
∂xi

are themselves real-valued functions that can be
partially differentiated. The (i , j)-partial derivatives of f at x ∈ U (if exists)
is defined by

∂2f

∂xi∂xj
(x) =

∂
(

∂f
∂xj

)
∂xi

(x).

I A function f defined on an open set U ⊆ Rn is called twice continuously
differentiable over U if all the second order partial derivatives exist and are
continuous over U. In that case, for any i 6= j and any x ∈ U:

∂2f

∂xi∂xj
(x) =

∂2f

∂xj∂xi
(x).
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The Hessian

The Hessian of f at a point x ∈ U is the n × n matrix:

∇2f (x) =



∂2f
∂x21

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x22

...

...
...

...
∂2f

∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2n

 ,

I For twice continuously differentiable functions, the Hessian is a symmetric
matrix.
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Linear Approximation Theorem

Theorem. Let f : U → R be defined on an open set U ⊆ Rn. Suppose that
f is twice continuously differentiable over U. Let x ∈ U and r > 0 satisfy
B(x, r) ⊆ U. Then for any y ∈ B(x, r) there exists ξ ∈ [x, y] such that:

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (ξ)(y − x).
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Quadratic Approximation Theorem

Theorem. Let f : U → R be defined on an open set U ⊆ Rn. Suppose that
f is twice continuously differentiable over U. Let x ∈ U and r > 0 satisfy
B(x, r) ⊆ U. Then for any y ∈ B(x, r):

f (y) = f (x) +∇f (x)T (y − x) +
1

2
(y − x)T∇2f (x)(y − x) + o(‖y − x‖2).
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