## Lecture 1 -Mathematical Preliminaries

The Space $\mathbb{R}^{n}$

- $\mathbb{R}^{n}$ - the set of $n$-dimensional column vectors with real components endowed with the component-wise addition operator:

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)+\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{c}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
\vdots \\
x_{n}+y_{n}
\end{array}\right)
$$

and the scalar-vector product

$$
\lambda\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
\lambda x_{1} \\
\lambda x_{2} \\
\vdots \\
\lambda x_{n}
\end{array}\right)
$$

$-\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ - standard/canonical basis.

- e and $\mathbf{0}$ - all ones and all zeros column vectors.


## Important Subsets of $\mathbb{R}^{n}$

- nonnegative orthant:

$$
\mathbb{R}_{+}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}: x_{1}, x_{2}, \ldots, x_{n} \geq 0\right\}
$$

- positive orthant:

$$
\mathbb{R}_{++}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}: x_{1}, x_{2}, \ldots, x_{n}>0\right\}
$$

- If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$, the closed line segment between $\mathbf{x}$ and $\mathbf{y}$ is given by

$$
[\mathbf{x}, \mathbf{y}]=\{\mathbf{x}+\alpha(\mathbf{y}-\mathbf{x}): \alpha \in[0,1]\} .
$$

- the open line segment $(\mathbf{x}, \mathbf{y})$ is similarly defined as

$$
(\mathbf{x}, \mathbf{y})=\{\mathbf{x}+\alpha(\mathbf{y}-\mathbf{x}): \alpha \in(0,1)\}
$$

for $\mathbf{x} \neq \mathbf{y}$ and $(\mathbf{x}, \mathbf{x})=\emptyset$

- unit-simplex:

$$
\Delta_{n}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{x} \geq \mathbf{0}, \mathbf{e}^{T} \mathbf{x}=1\right\} .
$$

## The Space $\mathbb{R}^{m \times n}$

- The set of all real valued matrices is denoted by $\mathbb{R}^{m \times n}$.
- $\mathbf{I}_{n}-n \times n$ identity matrix.
- $\mathbf{0}_{m \times n}-m \times n$ zeros matrix.


## Inner Products

Definition An inner product on $\mathbb{R}^{n}$ is a $\operatorname{map}\langle\cdot, \cdot\rangle: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ with the following properties:

1. (symmetry) $\langle\mathbf{x}, \mathbf{y}\rangle=\langle\mathbf{y}, \mathbf{x}\rangle$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.
2. (additivity) $\langle\mathbf{x}, \mathbf{y}+\mathbf{z}\rangle=\langle\mathbf{x}, \mathbf{y}\rangle+\langle\mathbf{x}, \mathbf{z}\rangle$ for any $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^{n}$.
3. (homogeneity) $\langle\lambda \mathbf{x}, \mathbf{y}\rangle=\lambda\langle\mathbf{x}, \mathbf{y}\rangle$ for any $\lambda \in \mathbb{R}$ and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.
4. (positive definiteness) $\langle\mathbf{x}, \mathbf{x}\rangle \geq 0$ for any $\mathbf{x} \in \mathbb{R}^{n}$ and $\langle\mathbf{x}, \mathbf{x}\rangle=0$ if and only if $\mathbf{x}=\mathbf{0}$.

## Examples

- the "dot product"

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\mathbf{x}^{T} \mathbf{y}=\sum_{i=1}^{n} x_{i} y_{i} \text { for any } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

- the "weighted dot product"

$$
\langle\mathbf{x}, \mathbf{y}\rangle_{\mathbf{w}}=\sum_{i=1}^{n} w_{i} x_{i} y_{i}
$$

where $\mathbf{w} \in \mathbb{R}_{++}^{n}$.

## Vector Norms

Definition. A norm $\|\cdot\|$ on $\mathbb{R}^{n}$ is a function $\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfying

- (Nonnegativity) $\|\mathbf{x}\| \geq 0$ for any $\mathbf{x} \in \mathbb{R}^{n}$ and $\|\mathbf{x}\|=0$ if and only if $\mathbf{x}=\mathbf{0}$.
- (positive homogeneity) $\|\lambda \mathbf{x}\|=|\lambda|\|\mathbf{x}\|$ for any $\mathbf{x} \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$.
- (triangle inequality) $\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.
- One natural way to generate a norm on $\mathbb{R}^{n}$ is to take any inner product $\langle\cdot, \cdot\rangle$ defined on $\mathbb{R}^{n}$, and define the associated norm

$$
\|\mathbf{x}\| \equiv \sqrt{\langle\mathbf{x}, \mathbf{x}\rangle}, \text { for all } \mathbf{x} \in \mathbb{R}^{n},
$$

- The norm associated with the dot-product is the so-called Euclidean norm or $I_{2}$-norm:

$$
\|\mathbf{x}\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}} \text { for all } \mathbf{x} \in \mathbb{R}^{n} .
$$

- the $I_{p}$-norm $(p \geq 1)$ is defined by $\|\mathbf{x}\|_{p} \equiv \sqrt[p]{\sum_{i=1}^{n}\left|x_{i}\right|^{p}}$.
- The $I_{\infty}$-norm is

$$
\|\mathbf{x}\|_{\infty} \equiv \max _{i=1,2, \ldots, n}\left|x_{i}\right|
$$

- It can be shown that

$$
\|\mathbf{x}\|_{\infty}=\lim _{p \rightarrow \infty}\|\mathbf{x}\|_{p}
$$

Example: $I_{1 / 2}$ is not a norm. why?

## The Cauchy-Schwartz Inequality

Lemma: For any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ :

$$
\left|\mathbf{x}^{T} \mathbf{y}\right| \leq\|\mathbf{x}\| \cdot\|\mathbf{y}\|
$$

Proof: For any $\lambda \in \mathbb{R}$ :

$$
\|\mathbf{x}+\lambda \mathbf{y}\|^{2}=\|\mathbf{x}\|^{2}+2 \lambda\langle\mathbf{x}, \mathbf{y}\rangle+\lambda^{2}\|\mathbf{y}\|^{2}
$$

Therefore (why?),

$$
4\langle\mathbf{x}, \mathbf{y}\rangle^{2}-4\|\mathbf{x}\|^{2}\|\mathbf{y}\|^{2} \leq 0
$$

establishing the desired result.

## Matrix Norms

Definition. A norm $\|\cdot\|$ on $\mathbb{R}^{m \times n}$ is a function $\|\cdot\|: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ satisfying

1. (Nonnegativity) $\|\mathbf{A}\| \geq 0$ for any $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\|\mathbf{A}\|=0$ if and only if $\mathrm{A}=0$.
2. (positive homogeneity) $\|\lambda \mathbf{A}\|=|\lambda|\|\mathbf{A}\|$ for any $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\lambda \in \mathbb{R}$.
3. (triangle inequality) $\|\mathbf{A}+\mathbf{B}\| \leq\|\mathbf{A}\|+\|\mathbf{B}\|$ for any $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n}$.

## Induced Norms

- Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ and two norms $\|\cdot\|_{a}$ and $\|\cdot\|_{b}$ on $\mathbb{R}^{n}$ and $\mathbb{R}^{m}$ respectively, the induced matrix norm $\|\mathbf{A}\|_{a, b}$ (called $(a, b)$-norm) is defined by

$$
\|\mathbf{A}\|_{a, b}=\max _{\mathbf{x}}\left\{\|\mathbf{A} \mathbf{x}\|_{b}:\|\mathbf{x}\|_{a} \leq 1\right\}
$$

- conclusion:

$$
\|\mathbf{A} \mathbf{x}\|_{b} \leq\|\mathbf{A}\|_{a, b}\|\mathbf{x}\|_{a}
$$

- An induced norm is a norm (satisfies nonnegativity, positive homogeneity and triangle inequality).
- We refer to the matrix-norm $\|\cdot\|_{a, b}$ as the $(a, b)$-norm. When $a=b$, we will simply refer to it as an a-norm.


## Matrix Norms Contd

- spectral norm: If $\|\cdot\|_{a}=\|\cdot\|_{b}=\|\cdot\|_{2}$, the induced (2,2)-norm of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the maximum singular value of $\mathbf{A}$

$$
\|\mathbf{A}\|_{2}=\|\mathbf{A}\|_{2,2}=\sqrt{\lambda_{\max }\left(\mathbf{A}^{T} \mathbf{A}\right)} \equiv \sigma_{\max }(\mathbf{A})
$$

This norm is called the spectral norm.

- $l_{1}$-norm: when $\|\cdot\|_{a}=\|\cdot\|_{b}=\|\cdot\|_{1}$, the induced (1,1)-matrix norm of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is given by

$$
\|\mathbf{A}\|_{1}=\max _{j=1,2, \ldots, n} \sum_{i=1}^{m}\left|A_{i, j}\right| .
$$

- I ${ }_{\infty}$-norm: when $\|\cdot\|_{a}=\|\cdot\|_{b}=\|\cdot\|_{\infty}$, the induced $(\infty, \infty)$-matrix norm of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is given by

$$
\|\mathbf{A}\|_{\infty}=\max _{i=1,2, \ldots, m} \sum_{j=1}^{n}\left|A_{i, j}\right| .
$$

## The Frobenius norm

$$
\|\mathbf{A}\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{i j}^{2}}, \quad \mathbf{A} \in \mathbb{R}^{m \times n}
$$

The Frobenius norm is not an induced norm. Why is it a norm?

## Eigenvalues and Eigenvectors

- Let $\mathbf{A} \in \mathbb{R}^{n \times n}$. Then a nonzero vector $\mathbf{v} \in \mathbb{R}^{n}$ is called an eigenvector of $\mathbf{A}$ if there exists a $\lambda \in \mathbb{C}$ for which

$$
\mathbf{A} \mathbf{v}=\lambda \mathbf{v} .
$$

The scalar $\lambda$ is the eigenvalue corresponding to the eigenvector $\mathbf{v}$.

- In general, real-valued matrices can have complex eigenvalues, but when the matrix is symmetric the eigenvalues are necessarily real.
- The eigenvalues of a symmetric $n \times n$ matrix $\mathbf{A}$ are denoted by

$$
\lambda_{1}(\mathbf{A}) \geq \lambda_{2}(\mathbf{A}) \geq \ldots \geq \lambda_{n}(\mathbf{A}) .
$$

- The maximum eigenvalue is also denote by $\lambda_{\max }(\mathbf{A})\left(=\lambda_{1}(\mathbf{A})\right)$ and the minimum eigenvalue is also denote by $\lambda_{\text {min }}(\mathbf{A})\left(=\lambda_{n}(\mathbf{A})\right)$.


## The Spectral Factorization Theorem

Theorem. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be an $n \times n$ symmetric matrix. Then there exists an orthogonal matrix $\mathbf{U} \in \mathbb{R}^{n \times n}\left(\mathbf{U}^{T} \mathbf{U}=\mathbf{U} \mathbf{U}^{T}=\mathbf{I}\right)$ and a diagonal matrix $\mathbf{D}=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ for which

$$
\mathbf{U}^{T} \mathbf{A} \mathbf{U}=\mathbf{D} .
$$

- The columns of the matrix $\mathbf{U}$ constitute an orthogonal basis comprising eigenvectors of $\mathbf{A}$ and the diagonal elements of $\mathbf{D}$ are the corresponding eigenvalues.
- A direct result is that $\operatorname{Tr}(\mathbf{A})=\sum_{i=1}^{n} \lambda_{i}(\mathbf{A})$ and $\operatorname{det}(\mathbf{A})=\Pi_{i=1}^{n} \lambda_{i}(\mathbf{A})$.


## Basic Topological Concepts

- the open ball with center $\mathbf{c} \in \mathbb{R}^{n}$ and radius $r$ :

$$
B(\mathbf{c}, r)=\{\mathbf{x}:\|\mathbf{x}-\mathbf{c}\|<r\} .
$$

- the closed ball with center $\mathbf{c}$ and radius $r$ :

$$
B[\mathbf{c}, r]=\{\mathbf{x}:\|\mathbf{x}-\mathbf{c}\| \leq r\} .
$$

Definition. Given a set $U \subseteq \mathbb{R}^{n}$, a point $\mathbf{c} \in U$ is called an interior point of $U$ if there exists $r>0$ for which $B(\mathbf{c}, r) \subseteq U$.
The set of all interior points of a given set $U$ is called the interior of the set and is denoted by $\operatorname{int}(U)$ :

$$
\operatorname{int}(U)=\{\mathbf{x} \in U: B(\mathbf{x}, r) \subseteq U \text { for some } r>0\}
$$

Examples.

$$
\begin{aligned}
\operatorname{int}\left(\mathbb{R}_{+}^{n}\right) & =\mathbb{R}_{++}^{n} \\
\operatorname{int}(B[\mathbf{c}, r]) & =B(\mathbf{c}, r) \quad\left(\mathbf{c} \in \mathbb{R}^{n}, r \in \mathbb{R}_{++}\right) \\
\operatorname{int}([\mathbf{x}, \mathbf{y}]) & =?
\end{aligned}
$$

## open and closed sets

- an open set is a set that contains only interior points. Meaning that $U=\operatorname{int}(U)$.
- examples of open sets are open balls (hence the name...) and the positive orthant $\mathbb{R}_{++}^{n}$.

Result: a union of any number of open sets is an open set and the intersection of a finite number of open sets is open.

- a set $U \subseteq \mathbb{R}^{n}$ is closed if it contains all the limits of convergent sequences of vectors in $U$, that is, if $\left\{\mathbf{x}_{i}\right\}_{i=1}^{\infty} \subseteq U$ satisfies $\mathbf{x}_{i} \rightarrow \mathbf{x}^{*}$ as $i \rightarrow \infty$, then $\mathbf{x}^{*} \in U$.
- a known result states that $U$ is closed iff its complement $U^{c}$ is open.
- examples of closed sets are the closed ball $B[\mathbf{c}, r]$, closed lines segments, the nonnegative orthant $\mathbb{R}_{+}^{n}$ and the unit simplex $\Delta_{n}$.
What about $\mathbb{R}^{n}$ ? $\emptyset$ ?


## Boundary Points

Definition. Given a set $U \subseteq \mathbb{R}^{n}$, a boundary point of $U$ is a vector $\mathbf{x} \in \mathbb{R}^{n}$ satisfying the following: any neighborhood of $\mathbf{x}$ contains at least one point in $U$ and at least one point in its complement $U^{c}$.

- The set of all boundary points of a set $U$ is denoted by $\operatorname{bd}(U)$.


## Examples:

$$
\begin{aligned}
\left(\mathbf{c} \in \mathbb{R}^{n}, r \in \mathbb{R}_{++}\right), \operatorname{bd}(B(\mathbf{c}, r)) & = \\
\left(\mathbf{c} \in \mathbb{R}^{n}, r \in \mathbb{R}_{++}\right), \operatorname{bd}(B[\mathbf{c}, r]) & = \\
\operatorname{bd}\left(\mathbb{R}_{++}^{n}\right) & = \\
\operatorname{bd}\left(\mathbb{R}_{+}^{n}\right) & = \\
\operatorname{bd}\left(\mathbb{R}^{n}\right) & = \\
\operatorname{bd}\left(\Delta_{n}\right) & =
\end{aligned}
$$

## Closure

- the closure of a set $U \subseteq \mathbb{R}^{n}$ is denoted by $\operatorname{cl}(U)$ and is defined to be the smallest closed set containing $U$ :

$$
\operatorname{cl}(U)=\bigcap\{T: U \subseteq T, T \text { is closed }\} .
$$

- another equivalent definition of $\operatorname{cl}(U)$ is:

$$
\operatorname{cl}(U)=U \cup \operatorname{bd}(U) .
$$

## Examples.

$$
\begin{aligned}
\operatorname{cl}\left(\mathbb{R}_{++}^{n}\right) & = \\
\left(\mathbf{c} \in \mathbb{R}^{n}, r \in \mathbb{R}_{++}\right), \operatorname{cl}(B(\mathbf{c}, r)) & = \\
(\mathbf{x} \neq \mathbf{y}), \operatorname{cl}((\mathbf{x}, \mathbf{y})) & =
\end{aligned}
$$

## Boundedness and Compactness

- A set $U \subseteq \mathbb{R}^{n}$ is called bounded if there exists $M>0$ for which $U \subseteq B(\mathbf{0}, M)$.
- A set $U \subseteq \mathbb{R}^{n}$ is called compact if it is closed and bounded.
- Examples of compact sets: closed balls, unit simplex, closed line segments.


## Directional Derivatives and Gradients

Definition. Let $f$ be a function defined on a set $S \subseteq \mathbb{R}^{n}$. Let $\mathbf{x} \in \operatorname{int}(S)$ and let $d \in \mathbb{R}^{n}$. If the limit

$$
\lim _{t \rightarrow 0^{+}} \frac{f(\mathbf{x}+t \mathbf{d})-f(\mathbf{x})}{t}
$$

exists, then it is called the directional derivative of $f$ at $\mathbf{x}$ along the direction $\mathbf{d}$ and is denoted by $f^{\prime}(\mathbf{x} ; \mathbf{d})$.

- For any $i=1,2, \ldots, n$, if the limit

$$
\lim _{t \rightarrow 0} \frac{f\left(\mathbf{x}+t \mathbf{e}_{i}\right)-f(\mathbf{x})}{t}
$$

exists, then its value is called the $i$-th partial derivative and is denoted by $\frac{\partial f}{\partial x_{i}}(x)$.

- If all the partial derivatives of a function $f$ exist at a point $\mathbf{x} \in \mathbb{R}^{n}$, then the gradient of $f$ at $\mathbf{x}$ is

$$
\nabla f(\mathbf{x})=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}}(\mathbf{x}) \\
\frac{\partial f}{\partial x_{2}}(\mathbf{x}) \\
\vdots \\
\frac{\partial f}{\partial x_{n}}(\mathbf{x})
\end{array}\right) .
$$

## Continuous Differentiability

A function $f$ defined on an open set $U \subseteq \mathbb{R}^{n}$ is called continuously differentiable over $U$ if all the partial derivatives exist and are continuous on $U$. In that case,

$$
f^{\prime}(\mathbf{x} ; \mathbf{d})=\nabla f(\mathbf{x})^{T} \mathbf{d}, \quad \mathbf{x} \in U, \mathbf{d} \in \mathbb{R}^{n}
$$

Proposition Let $f: U \rightarrow \mathbb{R}$ be defined on an open set $U \subseteq \mathbb{R}^{n}$. Suppose that $f$ is continuously differentiable over $U$. Then

$$
\lim _{\mathbf{d} \rightarrow 0} \frac{f(\mathbf{x}+\mathbf{d})-f(\mathbf{x})-\nabla f(\mathbf{x})^{T} \mathbf{d}}{\|\mathbf{d}\|}=0 \text { for all } \mathbf{x} \in U .
$$

Another way to write the above result is as follows:

$$
f(\mathbf{y})=f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})+o(\|\mathbf{y}-\mathbf{x}\|),
$$

where $o(\cdot): \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ is a one-dimensional function satisfying $\frac{o(t)}{t} \rightarrow 0$ as $t \rightarrow 0^{+}$.

## Twice Differentiability

- The partial derivatives $\frac{\partial f}{\partial x_{i}}$ are themselves real-valued functions that can be partially differentiated. The ( $i, j$ )-partial derivatives of $f$ at $\mathbf{x} \in U$ (if exists) is defined by

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{x})=\frac{\partial\left(\frac{\partial f}{\partial x_{j}}\right)}{\partial x_{i}}(\mathbf{x}) .
$$

- A function $f$ defined on an open set $U \subseteq \mathbb{R}^{n}$ is called twice continuously differentiable over $U$ if all the second order partial derivatives exist and are continuous over $U$. In that case, for any $i \neq j$ and any $\mathbf{x} \in U$ :

$$
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\mathbf{x})=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}(\mathbf{x}) .
$$

## The Hessian

The Hessian of $f$ at a point $\mathbf{x} \in U$ is the $n \times n$ matrix:

$$
\nabla^{2} f(\mathbf{x})=\left(\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & & \vdots \\
\vdots & \vdots & & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right)
$$

- For twice continuously differentiable functions, the Hessian is a symmetric matrix.


## Linear Approximation Theorem

Theorem. Let $f: U \rightarrow \mathbb{R}$ be defined on an open set $U \subseteq \mathbb{R}^{n}$. Suppose that $f$ is twice continuously differentiable over $U$. Let $\mathbf{x} \in U$ and $r>0$ satisfy $B(\mathbf{x}, r) \subseteq U$. Then for any $\mathbf{y} \in B(\mathbf{x}, r)$ there exists $\xi \in[\mathbf{x}, \mathbf{y}]$ such that:

$$
f(\mathbf{y})=f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})+\frac{1}{2}(\mathbf{y}-\mathbf{x})^{T} \nabla^{2} f(\xi)(\mathbf{y}-\mathbf{x}) .
$$

## Quadratic Approximation Theorem

Theorem. Let $f: U \rightarrow \mathbb{R}$ be defined on an open set $U \subseteq \mathbb{R}^{n}$. Suppose that $f$ is twice continuously differentiable over $U$. Let $\mathbf{x} \in U$ and $r>0$ satisfy $B(\mathbf{x}, r) \subseteq U$. Then for any $\mathbf{y} \in B(\mathbf{x}, r)$ :

$$
f(\mathbf{y})=f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})+\frac{1}{2}(\mathbf{y}-\mathbf{x})^{T} \nabla^{2} f(\mathbf{x})(\mathbf{y}-\mathbf{x})+o\left(\|\mathbf{y}-\mathbf{x}\|^{2}\right) .
$$

