$$\begin{array}{rcl} f^{*} = & \min & f(\mathbf{x}) \\ & \text{s.t.} & g_{i}(\mathbf{x}) \leq 0, i = 1, 2, \dots, m \\ & & h_{j}(\mathbf{x}) = 0, j = 1, 2, \dots, p, \\ & & \mathbf{x} \in X, \end{array}$$
(1)

• $f, g_i, h_j (i = 1, 2, ..., m, j = 1, 2, ..., p)$ are functions defined on the set $X \subset \mathbb{R}^n$.

$$\begin{array}{rcl} f^{*} = & \min & f(\mathbf{x}) \\ & \text{s.t.} & g_{i}(\mathbf{x}) \leq 0, i = 1, 2, \dots, m \\ & & h_{j}(\mathbf{x}) = 0, j = 1, 2, \dots, p, \\ & & \mathbf{x} \in X, \end{array}$$
(1)

- $f, g_i, h_j (i = 1, 2, ..., m, j = 1, 2, ..., p)$ are functions defined on the set $X \subseteq \mathbb{R}^n$.
- Problem (1) will be referred to as the primal problem.

$$\begin{array}{ll} f^{*} = & \min & f(\mathbf{x}) \\ & \text{s.t.} & g_{i}(\mathbf{x}) \leq 0, i = 1, 2, \dots, m \\ & & h_{j}(\mathbf{x}) = 0, j = 1, 2, \dots, p, \\ & & \mathbf{x} \in X, \end{array}$$
 (1)

- ▶ $f, g_i, h_j (i = 1, 2, ..., m, j = 1, 2, ..., p)$ are functions defined on the set $X \subseteq \mathbb{R}^n$.
- Problem (1) will be referred to as the primal problem.
- The Lagrangian is

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\mathbf{x}) + \sum_{i=1}^m \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^p \mu_j h_j(\mathbf{x}) \quad (\mathbf{x} \in X, \boldsymbol{\lambda} \in \mathbb{R}^m_+, \boldsymbol{\mu} \in \mathbb{R}^p)$$

$$\begin{array}{ll} f^{*} = & \min & f(\mathbf{x}) \\ & \text{s.t.} & g_{i}(\mathbf{x}) \leq 0, i = 1, 2, \dots, m \\ & & h_{j}(\mathbf{x}) = 0, j = 1, 2, \dots, p, \\ & & \mathbf{x} \in X, \end{array}$$
 (1)

- ▶ $f, g_i, h_j (i = 1, 2, ..., m, j = 1, 2, ..., p)$ are functions defined on the set $X \subseteq \mathbb{R}^n$.
- Problem (1) will be referred to as the primal problem.
- The Lagrangian is

$$\mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{x}) \quad (\mathbf{x} \in X, \boldsymbol{\lambda} \in \mathbb{R}^m_+, \boldsymbol{\mu} \in \mathbb{R}^p)$$

▶ The dual objective function $q : \mathbb{R}^m_+ \times \mathbb{R}^p \to \mathbb{R} \cup \{-\infty\}$ is defined to be

$$q(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \min_{\mathbf{x} \in X} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}).$$
(2)

The Dual Problem

The domain of the dual objective function is

 $\mathsf{dom}(q) = \{(\boldsymbol{\lambda}, \boldsymbol{\mu}) \in \mathbb{R}^m_+ imes \mathbb{R}^p : q(\boldsymbol{\lambda}, \boldsymbol{\mu}) > -\infty\}.$

The dual problem is given by

$$egin{array}{rcl} q^* = & \max & q(oldsymbol{\lambda},oldsymbol{\mu}) \ & ext{ s.t. } & (oldsymbol{\lambda},oldsymbol{\mu}) \in ext{dom}(q) \end{array}$$

(3)

Convexity of the Dual Problem

Theorem. Consider problem (1) with $f, g_i, h_j (i = 1, 2, ..., m, j = 1, 2, ..., p)$ being functions defined on the set $X \subseteq \mathbb{R}^n$, and let q be the dual function defined in (2). Then

(a) dom(q) is a convex set.

(b) q is a concave function over dom(q).

Convexity of the Dual Problem

Theorem. Consider problem (1) with $f, g_i, h_j (i = 1, 2, ..., m, j = 1, 2, ..., p)$ being functions defined on the set $X \subseteq \mathbb{R}^n$, and let q be the dual function defined in (2). Then

(a) dom(q) is a convex set.

(b) q is a concave function over dom(q).

▶ (a) Take
$$(\lambda_1, \mu_1), (\lambda_2, \mu_2) \in \mathsf{dom}(q)$$
 and $\alpha \in [0, 1]$. Then

$$\min_{\mathbf{x}\in X} L(\mathbf{x}, \lambda_1, \mu_1) > -\infty,$$

$$\min_{\mathbf{x}\in X} L(\mathbf{x}, \lambda_2, \mu_2) > -\infty.$$
(4)
(5)

▶ Therefore, since the Lagrangian $L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$ is affine w.r.t. $\boldsymbol{\lambda}, \boldsymbol{\mu}$,

$$q(\alpha \lambda_{1} + (1 - \alpha)\lambda_{2}, \alpha \mu_{1} + (1 - \alpha)\mu_{2})$$

$$= \min_{\mathbf{x} \in X} L(\mathbf{x}, \alpha \lambda_{1} + (1 - \alpha)\lambda_{2}, \alpha \mu_{1} + (1 - \alpha)\mu_{2})$$

$$= \min_{\mathbf{x} \in X} \{\alpha L(\mathbf{x}, \lambda_{1}, \mu_{1}) + (1 - \alpha)L(\mathbf{x}, \lambda_{2}, \mu_{2})\}$$

$$\geq \alpha \min_{\mathbf{x} \in X} L(\mathbf{x}, \lambda, \mu_{1}) + (1 - \alpha)\min_{\mathbf{x} \in X} L(\mathbf{x}, \lambda_{2}, \mu_{2})$$

$$= \alpha q(\lambda_{1}, \mu_{1}) + (1 - \alpha)q(\lambda_{2}, \mu_{2})$$

$$> -\infty.$$

• Therefore, since the Lagrangian $L(\mathbf{x}, \lambda, \mu)$ is affine w.r.t. λ, μ ,

$$q(\alpha \lambda_{1} + (1 - \alpha)\lambda_{2}, \alpha \mu_{1} + (1 - \alpha)\mu_{2})$$

$$= \min_{\mathbf{x} \in X} L(\mathbf{x}, \alpha \lambda_{1} + (1 - \alpha)\lambda_{2}, \alpha \mu_{1} + (1 - \alpha)\mu_{2})$$

$$= \min_{\mathbf{x} \in X} \{\alpha L(\mathbf{x}, \lambda_{1}, \mu_{1}) + (1 - \alpha)L(\mathbf{x}, \lambda_{2}, \mu_{2})\}$$

$$\geq \alpha \min_{\mathbf{x} \in X} L(\mathbf{x}, \lambda, \mu_{1}) + (1 - \alpha)\min_{\mathbf{x} \in X} L(\mathbf{x}, \lambda_{2}, \mu_{2})$$

$$= \alpha q(\lambda_{1}, \mu_{1}) + (1 - \alpha)q(\lambda_{2}, \mu_{2})$$

$$> -\infty.$$

Hence, α(λ₁, μ₁) + (1 − α)(λ₂, μ₂) ∈ dom(q), and the convexity of dom(q) is established.

• Therefore, since the Lagrangian $L(\mathbf{x}, \lambda, \mu)$ is affine w.r.t. λ, μ ,

$$q(\alpha \lambda_{1} + (1 - \alpha)\lambda_{2}, \alpha \mu_{1} + (1 - \alpha)\mu_{2})$$

$$= \min_{\mathbf{x} \in X} L(\mathbf{x}, \alpha \lambda_{1} + (1 - \alpha)\lambda_{2}, \alpha \mu_{1} + (1 - \alpha)\mu_{2})$$

$$= \min_{\mathbf{x} \in X} \{\alpha L(\mathbf{x}, \lambda_{1}, \mu_{1}) + (1 - \alpha)L(\mathbf{x}, \lambda_{2}, \mu_{2})\}$$

$$\geq \alpha \min_{\mathbf{x} \in X} L(\mathbf{x}, \lambda, \mu_{1}) + (1 - \alpha)\min_{\mathbf{x} \in X} L(\mathbf{x}, \lambda_{2}, \mu_{2})$$

$$= \alpha q(\lambda_{1}, \mu_{1}) + (1 - \alpha)q(\lambda_{2}, \mu_{2})$$

$$> -\infty.$$

- Hence, α(λ₁, μ₁) + (1 − α)(λ₂, μ₂) ∈ dom(q), and the convexity of dom(q) is established.
- (b) $L(\mathbf{x}, \lambda, \mu)$ is an affine function w.r.t. (λ, μ) .

• Therefore, since the Lagrangian $L(\mathbf{x}, \lambda, \mu)$ is affine w.r.t. λ, μ ,

$$q(\alpha \lambda_{1} + (1 - \alpha)\lambda_{2}, \alpha \mu_{1} + (1 - \alpha)\mu_{2})$$

$$= \min_{\mathbf{x} \in X} L(\mathbf{x}, \alpha \lambda_{1} + (1 - \alpha)\lambda_{2}, \alpha \mu_{1} + (1 - \alpha)\mu_{2})$$

$$= \min_{\mathbf{x} \in X} \{\alpha L(\mathbf{x}, \lambda_{1}, \mu_{1}) + (1 - \alpha)L(\mathbf{x}, \lambda_{2}, \mu_{2})\}$$

$$\geq \alpha \min_{\mathbf{x} \in X} L(\mathbf{x}, \lambda, \mu_{1}) + (1 - \alpha)\min_{\mathbf{x} \in X} L(\mathbf{x}, \lambda_{2}, \mu_{2})$$

$$= \alpha q(\lambda_{1}, \mu_{1}) + (1 - \alpha)q(\lambda_{2}, \mu_{2})$$

$$> -\infty.$$

- Hence, α(λ₁, μ₁) + (1 − α)(λ₂, μ₂) ∈ dom(q), and the convexity of dom(q) is established.
- (b) $L(\mathbf{x}, \lambda, \mu)$ is an affine function w.r.t. (λ, μ) .
- In particular, it is a concave function w.r.t. (λ, μ) .

• Therefore, since the Lagrangian $L(\mathbf{x}, \lambda, \mu)$ is affine w.r.t. λ, μ ,

$$q(\alpha \lambda_{1} + (1 - \alpha)\lambda_{2}, \alpha \mu_{1} + (1 - \alpha)\mu_{2})$$

$$= \min_{\mathbf{x} \in X} L(\mathbf{x}, \alpha \lambda_{1} + (1 - \alpha)\lambda_{2}, \alpha \mu_{1} + (1 - \alpha)\mu_{2})$$

$$= \min_{\mathbf{x} \in X} \{\alpha L(\mathbf{x}, \lambda_{1}, \mu_{1}) + (1 - \alpha)L(\mathbf{x}, \lambda_{2}, \mu_{2})\}$$

$$\geq \alpha \min_{\mathbf{x} \in X} L(\mathbf{x}, \lambda, \mu_{1}) + (1 - \alpha)\min_{\mathbf{x} \in X} L(\mathbf{x}, \lambda_{2}, \mu_{2})$$

$$= \alpha q(\lambda_{1}, \mu_{1}) + (1 - \alpha)q(\lambda_{2}, \mu_{2})$$

$$> -\infty.$$

- Hence, α(λ₁, μ₁) + (1 − α)(λ₂, μ₂) ∈ dom(q), and the convexity of dom(q) is established.
- (b) $L(\mathbf{x}, \lambda, \mu)$ is an affine function w.r.t. (λ, μ) .
- In particular, it is a concave function w.r.t. (λ, μ) .
- ▶ Hence, since *q* is the minimum of concave functions, it must be concave.

Theorem. Consider the primal problem (1) and its dual problem (3). Then

 $q^* \leq f^*$,

where f^*, q^* are the primal and dual optimal values respectively.

Theorem. Consider the primal problem (1) and its dual problem (3). Then

 $q^* \leq f^*$,

where f^*, q^* are the primal and dual optimal values respectively.

Proof.

The feasible set of the primal problem is

 $S = \{ \mathbf{x} \in X : g_i(\mathbf{x}) \le 0, h_j(\mathbf{x}) = 0, i = 1, 2, \dots, m, j = 1, 2, \dots, p \}.$

Theorem. Consider the primal problem (1) and its dual problem (3). Then

 $q^* \leq f^*$,

where f^*, q^* are the primal and dual optimal values respectively.

Proof.

The feasible set of the primal problem is

 $S = \{ \mathbf{x} \in X : g_i(\mathbf{x}) \le 0, h_j(\mathbf{x}) = 0, i = 1, 2, \dots, m, j = 1, 2, \dots, p \}.$

▶ Then for any $(\lambda, \mu) \in \mathsf{dom}(q)$ we have

$$q(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \min_{\mathbf{x} \in X} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \leq \min_{\mathbf{x} \in S} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$$

$$= \min_{\mathbf{x} \in S} \left\{ f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{x}) \right\}$$

$$\leq \min_{\mathbf{x} \in S} f(\mathbf{x}) = f^*.$$

Theorem. Consider the primal problem (1) and its dual problem (3). Then

 $q^* \leq f^*,$

where f^*, q^* are the primal and dual optimal values respectively.

Proof.

The feasible set of the primal problem is

 $S = \{ \mathbf{x} \in X : g_i(\mathbf{x}) \leq 0, h_j(\mathbf{x}) = 0, i = 1, 2, \dots, m, j = 1, 2, \dots, p \}.$

▶ Then for any $(\lambda, \mu) \in \mathsf{dom}(q)$ we have

$$\begin{aligned} q(\boldsymbol{\lambda}, \boldsymbol{\mu}) &= \min_{\mathbf{x} \in \mathcal{X}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \leq \min_{\mathbf{x} \in \mathcal{S}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \\ &= \min_{\mathbf{x} \in \mathcal{S}} \left\{ f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{x}) \right\} \\ &\leq \min_{\mathbf{x} \in \mathcal{S}} f(\mathbf{x}) = f^*. \end{aligned}$$

▶ Taking the maximum over $(\lambda, \mu) \in \mathsf{dom}(q)$, the result follows.

Amir Beck

"Introduction to Nonlinear Optimization" Lecture Slides - Duality

Example

min
$$x_1^2 - 3x_2^2$$

s.t. $x_1 = x_2^3$.

In class

Supporting Hyperplane Theorem Let $C \subseteq \mathbb{R}^n$ be a convex set and let $\mathbf{y} \notin C$. Then there exists $\mathbf{0} \neq \mathbf{p} \in \mathbb{R}^n$ such that

 $\mathbf{p}^T \mathbf{x} \leq \mathbf{p}^T \mathbf{y}$ for any $\mathbf{x} \in C$.

Supporting Hyperplane Theorem Let $C \subseteq \mathbb{R}^n$ be a convex set and let $\mathbf{y} \notin C$. Then there exists $\mathbf{0} \neq \mathbf{p} \in \mathbb{R}^n$ such that

 $\mathbf{p}^T \mathbf{x} \leq \mathbf{p}^T \mathbf{y}$ for any $\mathbf{x} \in C$.

Proof.

Although the theorem holds for any convex set C, we will prove it only for sets with a nonempty interior.

Supporting Hyperplane Theorem Let $C \subseteq \mathbb{R}^n$ be a convex set and let $\mathbf{y} \notin C$. Then there exists $\mathbf{0} \neq \mathbf{p} \in \mathbb{R}^n$ such that

 $\mathbf{p}^T \mathbf{x} \leq \mathbf{p}^T \mathbf{y}$ for any $\mathbf{x} \in C$.

- Although the theorem holds for any convex set C, we will prove it only for sets with a nonempty interior.
- Since $\mathbf{y} \notin \operatorname{int}(C)$, it follows that $\mathbf{y} \notin \operatorname{int}(\operatorname{cl}(C))$.

Supporting Hyperplane Theorem Let $C \subseteq \mathbb{R}^n$ be a convex set and let $\mathbf{y} \notin C$. Then there exists $\mathbf{0} \neq \mathbf{p} \in \mathbb{R}^n$ such that

 $\mathbf{p}^T \mathbf{x} \leq \mathbf{p}^T \mathbf{y}$ for any $\mathbf{x} \in C$.

- Although the theorem holds for any convex set C, we will prove it only for sets with a nonempty interior.
- Since $\mathbf{y} \notin \operatorname{int}(C)$, it follows that $\mathbf{y} \notin \operatorname{int}(\operatorname{cl}(C))$.
- ▶ Therefore, there exists a sequence $\{\mathbf{y}_k\}_{k\geq 1}$ such that $\mathbf{y}_k \notin cl(C)$ and $\mathbf{y}_k \to \mathbf{y}$.

Supporting Hyperplane Theorem Let $C \subseteq \mathbb{R}^n$ be a convex set and let $\mathbf{y} \notin C$. Then there exists $\mathbf{0} \neq \mathbf{p} \in \mathbb{R}^n$ such that

 $\mathbf{p}^T \mathbf{x} \leq \mathbf{p}^T \mathbf{y}$ for any $\mathbf{x} \in C$.

- Although the theorem holds for any convex set C, we will prove it only for sets with a nonempty interior.
- Since $\mathbf{y} \notin \operatorname{int}(C)$, it follows that $\mathbf{y} \notin \operatorname{int}(\operatorname{cl}(C))$.
- ▶ Therefore, there exists a sequence $\{\mathbf{y}_k\}_{k\geq 1}$ such that $\mathbf{y}_k \notin cl(C)$ and $\mathbf{y}_k \to \mathbf{y}$.
- By the separation theorem of a point from a closed and convex set, there exists 0 ≠ p_k ∈ ℝⁿ such that

$$\mathbf{p}_k^T \mathbf{x} < \mathbf{p}_k^T \mathbf{y}_k \quad \forall \mathbf{x} \in \mathrm{cl}(C)$$

Supporting Hyperplane Theorem Let $C \subseteq \mathbb{R}^n$ be a convex set and let $\mathbf{y} \notin C$. Then there exists $\mathbf{0} \neq \mathbf{p} \in \mathbb{R}^n$ such that

 $\mathbf{p}^T \mathbf{x} < \mathbf{p}^T \mathbf{y}$ for any $\mathbf{x} \in C$.

Proof.

- Although the theorem holds for any convex set C, we will prove it only for sets with a nonempty interior.
- Since $\mathbf{y} \notin \operatorname{int}(C)$, it follows that $\mathbf{y} \notin \operatorname{int}(\operatorname{cl}(C))$.
- ▶ Therefore, there exists a sequence $\{\mathbf{y}_k\}_{k>1}$ such that $\mathbf{y}_k \notin cl(C)$ and $\mathbf{y}_k \to \mathbf{y}$.
- By the separation theorem of a point from a closed and convex set, there exists $\mathbf{0} \neq \mathbf{p}_k \in \mathbb{R}^n$ such that

$$\mathbf{p}_k^T \mathbf{x} < \mathbf{p}_k^T \mathbf{y}_k \quad \forall \mathbf{x} \in \mathrm{cl}(C)$$

$$\frac{\mathbf{p}_{k}^{T}}{\|\mathbf{p}_{k}\|}(\mathbf{x} - \mathbf{y}_{k}) < 0 \text{ for any } \mathbf{x} \in cl(C).$$
(6)

"Introduction to Nonlinear Optimization" Lecture Slides - Duality

7 / 46

Amir Beck

"Introduction to Nonlinear Optimization" Lecture Slides - Duality

▶ Since the sequence $\left\{\frac{\mathbf{p}_k}{\|\mathbf{p}_k\|}\right\}$ is bounded, it follows that there exists a subsequence $\left\{\frac{\mathbf{p}_k}{\|\mathbf{p}_k\|}\right\}_{k \in \mathcal{T}}$ such that $\frac{\mathbf{p}_k}{\|\mathbf{p}_k\|} \to \mathbf{p}$ as $k \xrightarrow{\mathcal{T}} \infty$ for some $\mathbf{p} \in \mathbb{R}^n$.

Since the sequence { p_k/||p_k|| } is bounded, it follows that there exists a subsequence { p_k/||p_k|| } such that p_k/||p_k|| → p as k → ∞ for some p ∈ ℝⁿ.
 Obviously, ||p|| = 1 and hence in particular p ≠ 0.

- ▶ Since the sequence $\left\{\frac{\mathbf{p}_k}{\|\mathbf{p}_k\|}\right\}$ is bounded, it follows that there exists a subsequence $\left\{\frac{\mathbf{p}_k}{\|\mathbf{p}_k\|}\right\}_{k\in T}$ such that $\frac{\mathbf{p}_k}{\|\mathbf{p}_k\|} \to \mathbf{p}$ as $k \xrightarrow{T} \infty$ for some $\mathbf{p} \in \mathbb{R}^n$.
- Obviously, $\|\mathbf{p}\| = 1$ and hence in particular $\mathbf{p} \neq \mathbf{0}$.
- ▶ Taking the limit as $k \xrightarrow{T} \infty$ in inequality (6) we obtain that

 $\mathbf{p}^{T}(\mathbf{x} - \mathbf{y}) \leq 0$ for any $\mathbf{x} \in cl(C)$,

which readily implies the result since $C \subseteq cl(C)$.

Separation of Two Convex Sets

Theorem. Let $C_1, C_2 \subseteq \mathbb{R}^n$ be two nonempty convex sets such that $C_1 \cap C_2 = \emptyset$. Then there exists $\mathbf{0} \neq \mathbf{p} \in \mathbb{R}^n$ for which

$$\mathbf{p}^T \mathbf{x} \leq \mathbf{p}^T \mathbf{y}$$
 for any $\mathbf{x} \in C_1, \mathbf{y} \in C_2$.

Proof.

• The set $C_1 - C_2$ is a convex set.

Separation of Two Convex Sets

Theorem. Let $C_1, C_2 \subseteq \mathbb{R}^n$ be two nonempty convex sets such that $C_1 \cap C_2 = \emptyset$. Then there exists $\mathbf{0} \neq \mathbf{p} \in \mathbb{R}^n$ for which

$$\mathbf{p}^T \mathbf{x} \leq \mathbf{p}^T \mathbf{y}$$
 for any $\mathbf{x} \in C_1, \mathbf{y} \in C_2$.

- The set $C_1 C_2$ is a convex set.
- $\triangleright \ C_1 \cap C_2 = \emptyset \Rightarrow \mathbf{0} \notin C_1 C_2.$

Separation of Two Convex Sets

Theorem. Let $C_1, C_2 \subseteq \mathbb{R}^n$ be two nonempty convex sets such that $C_1 \cap C_2 = \emptyset$. Then there exists $\mathbf{0} \neq \mathbf{p} \in \mathbb{R}^n$ for which

 $\mathbf{p}^T \mathbf{x} \leq \mathbf{p}^T \mathbf{y}$ for any $\mathbf{x} \in C_1, \mathbf{y} \in C_2$.

Proof.

- The set $C_1 C_2$ is a convex set.
- $\bullet \ C_1 \cap C_2 = \emptyset \Rightarrow \mathbf{0} \notin C_1 C_2.$
- ▶ By the supporting hyperplane theorem, there exists $\mathbf{0} \neq \mathbf{p} \in \mathbb{R}^n$ such that

 $\mathbf{p}^{T}(\mathbf{x} - \mathbf{y}) \leq \mathbf{p}^{T}\mathbf{0}$ for any $\mathbf{x} \in C_{1}, \mathbf{y} \in C_{2}$,

The Nonlinear Farkas Lemma

Theorem. Let $X \subseteq \mathbb{R}^n$ be a convex set and let f, g_1, g_2, \ldots, g_m be convex functions over X. Assume that there exists $\hat{\mathbf{x}} \in X$ such that

$$g_1(\hat{\mathbf{x}}) < 0, g_2(\hat{\mathbf{x}}) < 0, \dots, g_m(\hat{\mathbf{x}}) < 0.$$

Let $c \in \mathbb{R}$. Then the following two claims are equivalent: (a) the following implication holds:

$$\mathbf{x} \in X, g_i(\mathbf{x}) \leq 0, i = 1, 2, \dots, m \Rightarrow f(\mathbf{x}) \geq c.$$

(b) there exist $\lambda_1, \lambda_2, \ldots, \lambda_m \geq 0$ such that

$$\min_{\mathbf{x}\in X}\left\{f(\mathbf{x})+\sum_{i=1}^{m}\lambda_{i}g_{i}(\mathbf{x})\right\}\geq c.$$
(7)

Proof of (b) \Rightarrow (a)

Suppose that there exist $\lambda_1, \lambda_2, \ldots, \lambda_m \ge 0$ such that (7) holds, and let $\mathbf{x} \in X$ satisfy $g_i(\mathbf{x}) \le 0, i = 1, 2, \ldots, m$.

Proof of (b) \Rightarrow (a)

- Suppose that there exist $\lambda_1, \lambda_2, \ldots, \lambda_m \ge 0$ such that (7) holds, and let $\mathbf{x} \in X$ satisfy $g_i(\mathbf{x}) \le 0, i = 1, 2, \ldots, m$.
- ▶ By (7) we have

$$f(\mathbf{x}) + \sum_{i=1}^m \lambda_i g_i(\mathbf{x}) \ge c,$$

Proof of (b) \Rightarrow (a)

- Suppose that there exist λ₁, λ₂,..., λ_m ≥ 0 such that (7) holds, and let x ∈ X satisfy g_i(x) ≤ 0, i = 1, 2, ..., m.
- ▶ By (7) we have

$$f(\mathbf{x}) + \sum_{i=1}^m \lambda_i g_i(\mathbf{x}) \ge c,$$

Hence,

$$f(\mathbf{x}) \geq c - \sum_{i=1}^m \lambda_i g_i(\mathbf{x}) \geq c.$$

Proof of (a) \Rightarrow (b)

• Assume that the implication (a) holds.

Proof of (a) \Rightarrow (b)

- Assume that the implication (a) holds.
- Consider the following two sets:

$$S = \{\mathbf{u} = (u_0, u_1, \dots, u_m) : \exists \mathbf{x} \in X, f(\mathbf{x}) \le u_0, g_i(\mathbf{x}) \le u_i, i = 1, 2, \dots, m\},\$$

$$T = \{(u_0, u_1, \ldots, u_m) : u_0 < c, u_1 \le 0, u_2 \le 0, \ldots, u_m \le 0\}.$$

Proof of (a) \Rightarrow (b)

- Assume that the implication (a) holds.
- Consider the following two sets:

$$S = \{\mathbf{u} = (u_0, u_1, \dots, u_m) : \exists \mathbf{x} \in X, f(\mathbf{x}) \le u_0, g_i(\mathbf{x}) \le u_i, i = 1, 2, \dots, m\},\$$

$$T = \{(u_0, u_1, \ldots, u_m) : u_0 < c, u_1 \le 0, u_2 \le 0, \ldots, u_m \le 0\}.$$

▶ *S*, *T* are nonempty and convex and in addition $S \cap T = \emptyset$.

Proof of (a) \Rightarrow (b)

- Assume that the implication (a) holds.
- Consider the following two sets:

$$S = \{\mathbf{u} = (u_0, u_1, \dots, u_m) : \exists \mathbf{x} \in X, f(\mathbf{x}) \le u_0, g_i(\mathbf{x}) \le u_i, i = 1, 2, \dots, m\}, \\ T = \{(u_0, u_1, \dots, u_m) : u_0 < c, u_1 \le 0, u_2 \le 0, \dots, u_m \le 0\}.$$

- ▶ *S*, *T* are nonempty and convex and in addition $S \cap T = \emptyset$.
- ▶ By the supporting hyperplane theorem, there exists a vector $\mathbf{a} = (a_0, a_1, \dots, a_m) \neq \mathbf{0}$, such that

$$\min_{(u_0, u_1, \dots, u_m) \in S} \sum_{j=0}^m a_j u_j \ge \max_{(u_0, u_1, \dots, u_m) \in T} \sum_{j=0}^m a_j u_j.$$
(8)

Proof of (a) \Rightarrow (b)

- Assume that the implication (a) holds.
- Consider the following two sets:

$$S = \{\mathbf{u} = (u_0, u_1, \dots, u_m) : \exists \mathbf{x} \in X, f(\mathbf{x}) \le u_0, g_i(\mathbf{x}) \le u_i, i = 1, 2, \dots, m\}, \\ T = \{(u_0, u_1, \dots, u_m) : u_0 < c, u_1 \le 0, u_2 \le 0, \dots, u_m \le 0\}.$$

- ▶ *S*, *T* are nonempty and convex and in addition *S* \cap *T* = \emptyset .
- ▶ By the supporting hyperplane theorem, there exists a vector $\mathbf{a} = (a_0, a_1, \dots, a_m) \neq \mathbf{0}$, such that

$$\min_{(u_0,u_1,...,u_m)\in S} \sum_{j=0}^m a_j u_j \ge \max_{(u_0,u_1,...,u_m)\in T} \sum_{j=0}^m a_j u_j.$$
 (8)

▶ a ≥ 0.

Proof of (a) \Rightarrow (b)

- Assume that the implication (a) holds.
- Consider the following two sets:

$$S = \{\mathbf{u} = (u_0, u_1, \dots, u_m) : \exists \mathbf{x} \in X, f(\mathbf{x}) \le u_0, g_i(\mathbf{x}) \le u_i, i = 1, 2, \dots, m\}, \\ T = \{(u_0, u_1, \dots, u_m) : u_0 < c, u_1 \le 0, u_2 \le 0, \dots, u_m \le 0\}.$$

- ▶ *S*, *T* are nonempty and convex and in addition $S \cap T = \emptyset$.
- ▶ By the supporting hyperplane theorem, there exists a vector $\mathbf{a} = (a_0, a_1, \dots, a_m) \neq \mathbf{0}$, such that

$$\min_{(u_0, u_1, \dots, u_m) \in S} \sum_{j=0}^m a_j u_j \ge \max_{(u_0, u_1, \dots, u_m) \in T} \sum_{j=0}^m a_j u_j.$$
(8)

- ▶ a ≥ 0.
- Since $\mathbf{a} \ge 0$, it follows that the right-hand side is a_0c , and we thus obtained

$$\min_{(u_0,u_1,\ldots,u_m)\in S}\sum_{j=0}^m a_j u_j \ge a_0 c.$$
(9)

▶ We will show that $a_0 > 0$. Suppose in contradiction that $a_0 = 0$. Then $\min_{(u_0, u_1, ..., u_m) \in S} \sum_{j=1}^m a_j u_j \ge 0$.

- ▶ We will show that $a_0 > 0$. Suppose in contradiction that $a_0 = 0$. Then $\min_{(u_0, u_1, ..., u_m) \in S} \sum_{j=1}^m a_j u_j \ge 0$.
- Since we can take $u_i = g_i(\hat{\mathbf{x}})$, we can deduce that $\sum_{j=1}^m a_j g_j(\hat{\mathbf{x}}) \ge 0$, which is impossible since $g_j(\hat{\mathbf{x}}) < 0$ and $\mathbf{a} \neq \mathbf{0}$.

- ▶ We will show that $a_0 > 0$. Suppose in contradiction that $a_0 = 0$. Then $\min_{(u_0, u_1, ..., u_m) \in S} \sum_{j=1}^m a_j u_j \ge 0$.
- ▶ Since we can take $u_i = g_i(\hat{\mathbf{x}})$, we can deduce that $\sum_{j=1}^m a_j g_j(\hat{\mathbf{x}}) \ge 0$, which is impossible since $g_j(\hat{\mathbf{x}}) < 0$ and $\mathbf{a} \neq \mathbf{0}$.
- Since $a_0 > 0$, we can divide (9) by a_0 to obtain

$$\min_{u_0,u_1,\ldots,u_m)\in S}\left\{u_0+\sum_{j=1}^m \tilde{a}_j u_j\right\}\geq c,$$
(10)

where $\tilde{a}_j = \frac{a_j}{a_0}$.

- ▶ We will show that $a_0 > 0$. Suppose in contradiction that $a_0 = 0$. Then $\min_{(u_0, u_1, ..., u_m) \in S} \sum_{j=1}^m a_j u_j \ge 0$.
- ▶ Since we can take $u_i = g_i(\hat{\mathbf{x}})$, we can deduce that $\sum_{j=1}^m a_j g_j(\hat{\mathbf{x}}) \ge 0$, which is impossible since $g_j(\hat{\mathbf{x}}) < 0$ and $\mathbf{a} \neq \mathbf{0}$.
- Since $a_0 > 0$, we can divide (9) by a_0 to obtain

$$\min_{u_0,u_1,\ldots,u_m\}\in S}\left\{u_0+\sum_{j=1}^m \tilde{a}_j u_j\right\}\geq c,$$
(10)

where $\tilde{a}_j = \frac{a_j}{a_0}$. • By the definition of *S* we have

$$\min_{(u_0,u_1,\ldots,u_m)\in S}\left\{u_0+\sum_{j=1}^m \tilde{a}_j u_j\right\}\leq \min_{\mathbf{x}\in X}\left\{f(\mathbf{x})+\sum_{j=1}^m \tilde{a}_j g_j(\mathbf{x})\right\},$$

which combined with (10) yields the desired result

$$\min_{\mathbf{x}\in X}\left\{f(\mathbf{x})+\sum_{j=1}^m \tilde{a}_j g_j(\mathbf{x})\right\}\geq c.$$

Amir Beck

"Introduction to Nonlinear Optimization" Lecture Slides - Duality

Strong Duality of Convex Problems with Inequality Constraints

Theorem. Consider the optimization problem

$$f^* = \min_{\substack{\mathbf{x} \in X, \\ \mathbf{x} \in X, }} f(\mathbf{x}) \leq 0, \quad i = 1, 2, \dots, m, , \quad (11)$$

where X is a convex set and $f, g_i, i = 1, 2, ..., m$ are convex functions over X. Suppose that there exists $\hat{\mathbf{x}} \in X$ for which $g_i(\hat{\mathbf{x}}) < 0, i = 1, 2, ..., m$. If problem (11) has a finite optimal value, then

(a) the optimal value of the dual problem is attained.
(b) f* = q*.

► Since f* > -∞ is the optimal value of (11), it follows that the following implication holds:

 $\mathbf{x} \in X, g_i(\mathbf{x}) \leq 0, i = 1, 2, \dots, m \Rightarrow f(\mathbf{x}) \geq f^*,$

Since f^{*} > −∞ is the optimal value of (11), it follows that the following implication holds:

$$\mathbf{x} \in X, g_i(\mathbf{x}) \leq 0, i = 1, 2, \dots, m \Rightarrow f(\mathbf{x}) \geq f^*,$$

▶ By the nonlinear Farkas Lemma there exists $\tilde{\lambda}_1, \tilde{\lambda}_2, \ldots, \tilde{\lambda}_m \ge 0$ such that

$$q(\tilde{\boldsymbol{\lambda}}) = \min_{\mathbf{x}\in X} \left\{ f(\mathbf{x}) + \sum_{j=1}^m \tilde{\lambda}_j g_j(\mathbf{x}) \right\} \ge f^*.$$

Since f^{*} > −∞ is the optimal value of (11), it follows that the following implication holds:

$$\mathbf{x} \in X, g_i(\mathbf{x}) \leq 0, i = 1, 2, \dots, m \Rightarrow f(\mathbf{x}) \geq f^*,$$

▶ By the nonlinear Farkas Lemma there exists $\tilde{\lambda}_1, \tilde{\lambda}_2, \dots, \tilde{\lambda}_m \ge 0$ such that

$$q(ilde{oldsymbol{\lambda}}) = \min_{\mathbf{x}\in X} \left\{ f(\mathbf{x}) + \sum_{j=1}^m ilde{\lambda}_j g_j(\mathbf{x})
ight\} \geq f^*.$$

By the weak duality theorem,

$$q^* \geq q(ilde{oldsymbol{\lambda}}) \geq f^* \geq q^*,$$

Since f^{*} > −∞ is the optimal value of (11), it follows that the following implication holds:

$$\mathbf{x} \in X, g_i(\mathbf{x}) \leq 0, i = 1, 2, \dots, m \Rightarrow f(\mathbf{x}) \geq f^*,$$

▶ By the nonlinear Farkas Lemma there exists $\tilde{\lambda}_1, \tilde{\lambda}_2, \dots, \tilde{\lambda}_m \ge 0$ such that

$$q(ilde{oldsymbol{\lambda}}) = \min_{\mathbf{x}\in X} \left\{ f(\mathbf{x}) + \sum_{j=1}^m ilde{\lambda}_j g_j(\mathbf{x})
ight\} \geq f^*.$$

By the weak duality theorem,

$$q^* \geq q(ilde{oldsymbol{\lambda}}) \geq f^* \geq q^*,$$

• Hence $f^* = q^*$ and $\tilde{\lambda}$ is an optimal solution of the dual problem.

Example

min
$$x_1^2 - x_2$$

s.t. $x_2^2 \le 0$.

In class

$$\min\left\{e^{-x_2}: \sqrt{x_1^2 + x_2^2} - x_1 \le 0\right\}.$$

▶ The feasible set is in fact $F = \{(x_1, x_2) : x_1 \ge 0, x_2 = 0\} \Rightarrow f^* = 1$

$$\min\left\{e^{-x_2}: \sqrt{x_1^2 + x_2^2} - x_1 \le 0\right\}.$$

- The feasible set is in fact $F = \{(x_1, x_2) : x_1 \ge 0, x_2 = 0\} \Rightarrow f^* = 1$
- Slater condition is not satisfied.

$$\min\left\{e^{-x_2}: \sqrt{x_1^2 + x_2^2} - x_1 \le 0\right\}.$$

- The feasible set is in fact $F = \{(x_1, x_2) : x_1 \ge 0, x_2 = 0\} \Rightarrow f^* = 1$
- Slater condition is not satisfied.
- Lagrangian: $L(x_1, x_2, \lambda) = e^{-x_2} + \lambda(\sqrt{x_1^2 + x_2^2} x_1) \quad (\lambda > 0).$

$$\min\left\{e^{-x_2}: \sqrt{x_1^2 + x_2^2} - x_1 \le 0\right\}.$$

- ▶ The feasible set is in fact $F = \{(x_1, x_2) : x_1 \ge 0, x_2 = 0\} \Rightarrow f^* = 1$
- Slater condition is not satisfied.
- Lagrangian: $L(x_1, x_2, \lambda) = e^{-x_2} + \lambda(\sqrt{x_1^2 + x_2^2} x_1) \quad (\lambda > 0).$
- $q(\lambda) = \min_{x_1, x_2} L(x_1, x_2, \lambda) \ge 0$

$$\min\left\{e^{-x_2}: \sqrt{x_1^2 + x_2^2} - x_1 \le 0\right\}.$$

• The feasible set is in fact $F = \{(x_1, x_2) : x_1 \ge 0, x_2 = 0\} \Rightarrow f^* = 1$

- Slater condition is not satisfied.
- Lagrangian: $L(x_1, x_2, \lambda) = e^{-x_2} + \lambda(\sqrt{x_1^2 + x_2^2} x_1) \quad (\lambda > 0).$
- $q(\lambda) = \min_{x_1, x_2} L(x_1, x_2, \lambda) \ge 0$
- For any $\varepsilon > 0$, take $x_2 = -\log \varepsilon, x_1 = \frac{x_2^2 \varepsilon^2}{2\varepsilon}$.

$$\begin{split} \sqrt{x_1^2 + x_2^2} - x_1 &= \sqrt{\frac{(x_2^2 - \varepsilon^2)}{4\varepsilon^2} + x_2^2} - \frac{x_2^2 - \varepsilon^2}{2\varepsilon} = \sqrt{\frac{(x_2^2 + \varepsilon^2)^2}{4\varepsilon^2} - \frac{x_2^2 - \varepsilon^2}{2\varepsilon}} \\ &= \frac{x_2^2 + \varepsilon^2}{2\varepsilon} - \frac{x_2^2 - \varepsilon^2}{2\varepsilon} = \varepsilon. \end{split}$$

$$\min\left\{e^{-x_2}: \sqrt{x_1^2 + x_2^2} - x_1 \le 0\right\}.$$

▶ The feasible set is in fact $F = \{(x_1, x_2) : x_1 \ge 0, x_2 = 0\} \Rightarrow f^* = 1$

- Slater condition is not satisfied.
- Lagrangian: $L(x_1, x_2, \lambda) = e^{-x_2} + \lambda(\sqrt{x_1^2 + x_2^2} x_1) \quad (\lambda > 0).$
- $q(\lambda) = \min_{x_1, x_2} L(x_1, x_2, \lambda) \geq 0$
- For any $\varepsilon > 0$, take $x_2 = -\log \varepsilon, x_1 = \frac{x_2^2 \varepsilon^2}{2\varepsilon}$.

$$\begin{split} \sqrt{x_1^2 + x_2^2} - x_1 &= \sqrt{\frac{(x_2^2 - \varepsilon^2)}{4\varepsilon^2} + x_2^2} - \frac{x_2^2 - \varepsilon^2}{2\varepsilon} = \sqrt{\frac{(x_2^2 + \varepsilon^2)^2}{4\varepsilon^2}} - \frac{x_2^2 - \varepsilon^2}{2\varepsilon} \\ &= \frac{x_2^2 + \varepsilon^2}{2\varepsilon} - \frac{x_2^2 - \varepsilon^2}{2\varepsilon} = \varepsilon. \end{split}$$

► Hence, $L(x_1, x_2, \lambda) = e^{-x_2} + \lambda(\sqrt{x_1^2 + x_2^2} - x_1) = \varepsilon + \lambda \varepsilon = (1 + \lambda)\varepsilon$,

$$\min\left\{e^{-x_2}: \sqrt{x_1^2 + x_2^2} - x_1 \le 0\right\}.$$

• The feasible set is in fact $F = \{(x_1, x_2) : x_1 \ge 0, x_2 = 0\} \Rightarrow f^* = 1$

- Slater condition is not satisfied.
- Lagrangian: $L(x_1, x_2, \lambda) = e^{-x_2} + \lambda(\sqrt{x_1^2 + x_2^2} x_1) \quad (\lambda > 0).$
- $q(\lambda) = \min_{x_1, x_2} L(x_1, x_2, \lambda) \geq 0$
- For any $\varepsilon > 0$, take $x_2 = -\log \varepsilon, x_1 = \frac{x_2^2 \varepsilon^2}{2\varepsilon}$.

$$\begin{split} \sqrt{x_1^2 + x_2^2} - x_1 &= \sqrt{\frac{(x_2^2 - \varepsilon^2)}{4\varepsilon^2} + x_2^2} - \frac{x_2^2 - \varepsilon^2}{2\varepsilon} = \sqrt{\frac{(x_2^2 + \varepsilon^2)^2}{4\varepsilon^2}} - \frac{x_2^2 - \varepsilon^2}{2\varepsilon} \\ &= \frac{x_2^2 + \varepsilon^2}{2\varepsilon} - \frac{x_2^2 - \varepsilon^2}{2\varepsilon} = \varepsilon. \end{split}$$

▶ Hence, $L(x_1, x_2, \lambda) = e^{-x_2} + \lambda(\sqrt{x_1^2 + x_2^2} - x_1) = \varepsilon + \lambda \varepsilon = (1 + \lambda)\varepsilon$, ▶ $q(\lambda) = 0$ for all $\lambda \ge 0$.

$$\min\left\{e^{-x_2}: \sqrt{x_1^2 + x_2^2} - x_1 \le 0\right\}.$$

- The feasible set is in fact $F = \{(x_1, x_2) : x_1 \ge 0, x_2 = 0\} \Rightarrow f^* = 1$
- Slater condition is not satisfied.
- Lagrangian: $L(x_1, x_2, \lambda) = e^{-x_2} + \lambda(\sqrt{x_1^2 + x_2^2} x_1) \quad (\lambda > 0).$
- $q(\lambda) = \min_{x_1, x_2} L(x_1, x_2, \lambda) \geq 0$
- For any $\varepsilon > 0$, take $x_2 = -\log \varepsilon, x_1 = \frac{x_2^2 \varepsilon^2}{2\varepsilon}$.

$$\begin{split} \sqrt{x_1^2 + x_2^2} - x_1 &= \sqrt{\frac{(x_2^2 - \varepsilon^2)}{4\varepsilon^2} + x_2^2} - \frac{x_2^2 - \varepsilon^2}{2\varepsilon} = \sqrt{\frac{(x_2^2 + \varepsilon^2)^2}{4\varepsilon^2}} - \frac{x_2^2 - \varepsilon^2}{2\varepsilon} \\ &= \frac{x_2^2 + \varepsilon^2}{2\varepsilon} - \frac{x_2^2 - \varepsilon^2}{2\varepsilon} = \varepsilon. \end{split}$$

- ► Hence, $L(x_1, x_2, \lambda) = e^{-x_2} + \lambda(\sqrt{x_1^2 + x_2^2} x_1) = \varepsilon + \lambda \varepsilon = (1 + \lambda)\varepsilon$,
- $q(\lambda) = 0$ for all $\lambda \ge 0$.
- $q^* = 0 \Rightarrow f^* q^* = 1 \Rightarrow$ duality gap of 1.

Amir Beck

"Introduction to Nonlinear Optimization" Lecture Slides - Duality

Theorem. Consider the optimization problem

$$f^* = \min\{f(\mathbf{x}) : g_i(\mathbf{x}) \le 0, i = 1, 2, \dots, m, \mathbf{x} \in X\},$$
(12)

and assume that $f^* = q^*$ where q^* is the optimal value of the dual problem. Let $\mathbf{x}^*, \boldsymbol{\lambda}^*$ be feasible solutions of the primal and dual problems. Then $\mathbf{x}^*, \boldsymbol{\lambda}^*$ are optimal solutions of the primal and dual problems iff

$$\mathbf{x}^* \in \operatorname{argmin} L_{\mathbf{x} \in X}(\mathbf{x}, \boldsymbol{\lambda}^*),$$
 (13)

$$\lambda_i^* g_i(\mathbf{x}^*) = 0, i = 1, 2, \dots, m.$$
 (14)

Theorem. Consider the optimization problem

$$f^* = \min\{f(\mathbf{x}) : g_i(\mathbf{x}) \le 0, i = 1, 2, \dots, m, \mathbf{x} \in X\},$$
(12)

and assume that $f^* = q^*$ where q^* is the optimal value of the dual problem. Let $\mathbf{x}^*, \boldsymbol{\lambda}^*$ be feasible solutions of the primal and dual problems. Then $\mathbf{x}^*, \boldsymbol{\lambda}^*$ are optimal solutions of the primal and dual problems iff

$$\mathbf{x}^* \in \operatorname{argmin} L_{\mathbf{x} \in X}(\mathbf{x}, \boldsymbol{\lambda}^*),$$
 (13)

$$\lambda_i^* g_i(\mathbf{x}^*) = 0, i = 1, 2, \dots, m.$$
 (14)

$$\mathbf{P} \ q(\boldsymbol{\lambda}^*) = \min_{\mathbf{x} \in X} L(\mathbf{x}, \boldsymbol{\lambda}^*) \le L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i(\mathbf{x}^*) \le f(\mathbf{x}^*)$$

Theorem. Consider the optimization problem

$$f^* = \min\{f(\mathbf{x}) : g_i(\mathbf{x}) \le 0, i = 1, 2, \dots, m, \mathbf{x} \in X\},$$
(12)

and assume that $f^* = q^*$ where q^* is the optimal value of the dual problem. Let $\mathbf{x}^*, \boldsymbol{\lambda}^*$ be feasible solutions of the primal and dual problems. Then $\mathbf{x}^*, \boldsymbol{\lambda}^*$ are optimal solutions of the primal and dual problems iff

$$\mathbf{x}^* \in \operatorname{argmin} L_{\mathbf{x} \in X}(\mathbf{x}, \boldsymbol{\lambda}^*),$$
 (13)

$$\lambda_i^* g_i(\mathbf{x}^*) = 0, i = 1, 2, \dots, m.$$
 (14)

- $q(\lambda^*) = \min_{\mathbf{x} \in X} L(\mathbf{x}, \lambda^*) \le L(\mathbf{x}^*, \lambda^*) = f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i(\mathbf{x}^*) \le f(\mathbf{x}^*)$
- ▶ By strong duality, $\mathbf{x}^*, \boldsymbol{\lambda}^*$ are optimal iff $f(\mathbf{x}^*) = q(\boldsymbol{\lambda}^*)$

Theorem. Consider the optimization problem

$$f^* = \min\{f(\mathbf{x}) : g_i(\mathbf{x}) \le 0, i = 1, 2, \dots, m, \mathbf{x} \in X\},$$
(12)

and assume that $f^* = q^*$ where q^* is the optimal value of the dual problem. Let $\mathbf{x}^*, \boldsymbol{\lambda}^*$ be feasible solutions of the primal and dual problems. Then $\mathbf{x}^*, \boldsymbol{\lambda}^*$ are optimal solutions of the primal and dual problems iff

$$\mathbf{x}^* \in \operatorname{argmin} L_{\mathbf{x} \in X}(\mathbf{x}, \boldsymbol{\lambda}^*),$$
 (13)

$$\lambda_i^* g_i(\mathbf{x}^*) = 0, i = 1, 2, \dots, m.$$
 (14)

- $\mathbf{P} \ q(\boldsymbol{\lambda}^*) = \min_{\mathbf{x} \in X} L(\mathbf{x}, \boldsymbol{\lambda}^*) \le L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i(\mathbf{x}^*) \le f(\mathbf{x}^*)$
- ▶ By strong duality, $\mathbf{x}^*, \boldsymbol{\lambda}^*$ are optimal iff $f(\mathbf{x}^*) = q(\boldsymbol{\lambda}^*)$
- iff $\min_{\mathbf{x}\in X} L(\mathbf{x}, \boldsymbol{\lambda}^*) = L(\mathbf{x}^*, \boldsymbol{\lambda}^*), \sum_{i=1}^m \lambda_i^* g_i(\mathbf{x}^*) = 0.$

Theorem. Consider the optimization problem

$$f^* = \min\{f(\mathbf{x}) : g_i(\mathbf{x}) \le 0, i = 1, 2, \dots, m, \mathbf{x} \in X\},$$
(12)

and assume that $f^* = q^*$ where q^* is the optimal value of the dual problem. Let $\mathbf{x}^*, \boldsymbol{\lambda}^*$ be feasible solutions of the primal and dual problems. Then $\mathbf{x}^*, \boldsymbol{\lambda}^*$ are optimal solutions of the primal and dual problems iff

$$\mathbf{x}^* \in \operatorname{argmin} L_{\mathbf{x} \in X}(\mathbf{x}, \boldsymbol{\lambda}^*),$$
 (13)

$$\lambda_i^* g_i(\mathbf{x}^*) = 0, i = 1, 2, \dots, m.$$
 (14)

- $\mathbf{P} \ q(\boldsymbol{\lambda}^*) = \min_{\mathbf{x} \in X} L(\mathbf{x}, \boldsymbol{\lambda}^*) \le L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i(\mathbf{x}^*) \le f(\mathbf{x}^*)$
- ▶ By strong duality, $\mathbf{x}^*, \boldsymbol{\lambda}^*$ are optimal iff $f(\mathbf{x}^*) = q(\boldsymbol{\lambda}^*)$
- iff $\min_{\mathbf{x}\in X} L(\mathbf{x}, \boldsymbol{\lambda}^*) = L(\mathbf{x}^*, \boldsymbol{\lambda}^*), \sum_{i=1}^m \lambda_i^* g_i(\mathbf{x}^*) = 0.$
- iff (13), (14) hold.

A More General Strong Duality Theorem

Theorem. Consider the optimization problem

$$f^{*} = \min f(\mathbf{x})$$

s.t. $g_{i}(\mathbf{x}) \leq 0, \quad i = 1, 2, ..., m,$
 $h_{j}(\mathbf{x}) \leq 0, \quad j = 1, 2, ..., p,$
 $s_{k}(\mathbf{x}) = 0, \quad k = 1, 2, ..., q,$
 $\mathbf{x} \in X,$ (15)

where X is a convex set and $f, g_i, i = 1, 2, ..., m$ are convex functions over X. The functions h_j, s_k are affine functions. Suppose that there exists $\hat{\mathbf{x}} \in \text{int}(X)$ for which $g_i(\hat{\mathbf{x}}) < 0, h_j(\hat{\mathbf{x}}) \le 0, s_k(\hat{\mathbf{x}}) = 0$. Then if problem (15) has a finite optimal value, then the optimal value of the dual problem

$$q^* = \max\{q(oldsymbol{\lambda},oldsymbol{\eta},oldsymbol{\mu}): (oldsymbol{\lambda},oldsymbol{\eta},oldsymbol{\mu}) \in \mathsf{dom}(q)\},$$

where

$$q(\boldsymbol{\lambda}, \boldsymbol{\eta}, \boldsymbol{\mu}) = \min_{\mathbf{x} \in X} \left[f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{p} \eta_j h_j(\mathbf{x}) + \sum_{k=1}^{q} \mu_k s_k(\mathbf{x}) \right]$$

is attained, and $f^* = q^*$.

Importance of the Underlying Set

(P) min
$$x_1^3 + x_2^3$$

s.t. $x_1 + x_2 \ge 1$,
 $x_1, x_2 \ge 0$.

- $(\frac{1}{2}, \frac{1}{2})$ is the optimal solution of (P) with an optimal value $f^* = \frac{1}{4}$.
- First dual problem is constructed by taking $X = \{(x_1, x_2) : x_1, x_2 \ge 0\}$.
- The primal problem is $\min\{x_1^3 + x_2^3 : x_1 + x_2 \ge 1, (x_1, x_2) \in X\}.$
- Strong duality holds for the problem and hence in particular $q^* = \frac{1}{4}$.

Importance of the Underlying Set

(P) min
$$x_1^3 + x_2^3$$

s.t. $x_1 + x_2 \ge 1$,
 $x_1, x_2 \ge 0$.

- $(\frac{1}{2}, \frac{1}{2})$ is the optimal solution of (P) with an optimal value $f^* = \frac{1}{4}$.
- First dual problem is constructed by taking $X = \{(x_1, x_2) : x_1, x_2 \ge 0\}$.
- The primal problem is $\min\{x_1^3 + x_2^3 : x_1 + x_2 \ge 1, (x_1, x_2) \in X\}.$
- Strong duality holds for the problem and hence in particular $q^* = \frac{1}{4}$.
- Second dual is constructed by taking $X = \mathbb{R}^2$.
- Objective function is not convex \Rightarrow strong duality is not necessarily satisfied.

Importance of the Underlying Set

(P) min
$$x_1^3 + x_2^3$$

(s.t. $x_1 + x_2 \ge 1$, $x_1, x_2 \ge 0$.

- $(\frac{1}{2}, \frac{1}{2})$ is the optimal solution of (P) with an optimal value $f^* = \frac{1}{4}$.
- First dual problem is constructed by taking $X = \{(x_1, x_2) : x_1, x_2 \ge 0\}$.
- The primal problem is $\min\{x_1^3 + x_2^3 : x_1 + x_2 \ge 1, (x_1, x_2) \in X\}.$
- Strong duality holds for the problem and hence in particular $q^* = \frac{1}{4}$.
- Second dual is constructed by taking $X = \mathbb{R}^2$.
- Objective function is not convex \Rightarrow strong duality is not necessarily satisfied.
- ► $L(x_1, x_2, \lambda, \eta_1, \eta_2) = x_1^3 + x_2^3 \lambda(x_1 + x_2 1) \eta_1 x_1 \eta_2 x_2.$
- $q(\lambda, \eta_1, \eta_2) = -\infty$ for all $(\lambda, \mu_1, \mu_2) \Rightarrow q^* = -\infty$.

Consider the linear programming problem

- ▶ $\mathbf{c} \in \mathbb{R}^n, \mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$.
- We assume that the problem is feasible \Rightarrow strong duality holds.

Consider the linear programming problem

- ▶ $\mathbf{c} \in \mathbb{R}^n, \mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$.
- We assume that the problem is feasible \Rightarrow strong duality holds.
- $L(\mathbf{x}, \lambda) = \mathbf{c}^T \mathbf{x} + \lambda^T (\mathbf{A}\mathbf{x} \mathbf{b}) = (\mathbf{c} + \mathbf{A}^T \lambda)^T \mathbf{x} \mathbf{b}^T \lambda.$

Consider the linear programming problem

- ▶ $\mathbf{c} \in \mathbb{R}^n, \mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$.
- We assume that the problem is feasible \Rightarrow strong duality holds.
- $L(\mathbf{x}, \lambda) = \mathbf{c}^T \mathbf{x} + \lambda^T (\mathbf{A}\mathbf{x} \mathbf{b}) = (\mathbf{c} + \mathbf{A}^T \lambda)^T \mathbf{x} \mathbf{b}^T \lambda.$
- Dual objective funvtion:

$$q(\boldsymbol{\lambda}) = \min_{\mathbf{x} \in \mathbb{R}^n} L(\mathbf{x}, \boldsymbol{\lambda}) = \min_{\mathbf{x} \in \mathbb{R}^n} (\mathbf{c} + \mathbf{A}^T \boldsymbol{\lambda})^T \mathbf{x} - \mathbf{b}^T \boldsymbol{\lambda} = \begin{cases} -\mathbf{b}^T \boldsymbol{\lambda} & \mathbf{c} + \mathbf{A}^T \boldsymbol{\lambda} = \mathbf{0}, \\ -\infty & \text{else.} \end{cases}$$

Consider the linear programming problem

- ▶ $\mathbf{c} \in \mathbb{R}^n, \mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$.
- We assume that the problem is feasible \Rightarrow strong duality holds.
- $L(\mathbf{x}, \lambda) = \mathbf{c}^{\mathsf{T}} \mathbf{x} + \lambda^{\mathsf{T}} (\mathbf{A} \mathbf{x} \mathbf{b}) = (\mathbf{c} + \mathbf{A}^{\mathsf{T}} \lambda)^{\mathsf{T}} \mathbf{x} \mathbf{b}^{\mathsf{T}} \lambda.$
- Dual objective funvtion:

$$q(\lambda) = \min_{\mathbf{x} \in \mathbb{R}^n} L(\mathbf{x}, \lambda) = \min_{\mathbf{x} \in \mathbb{R}^n} (\mathbf{c} + \mathbf{A}^T \lambda)^T \mathbf{x} - \mathbf{b}^T \lambda = \begin{cases} -\mathbf{b}^T \lambda & \mathbf{c} + \mathbf{A}^T \lambda = \mathbf{0}, \\ -\infty & \text{else.} \end{cases}$$

Dual problem:

$$\begin{array}{ll} \max & -\mathbf{b}^T \boldsymbol{\lambda} \\ \text{s.t.} & \mathbf{A}^T \boldsymbol{\lambda} = -\mathbf{c}, \\ \boldsymbol{\lambda} \geq \mathbf{0}. \end{array}$$

"Introduction to Nonlinear Optimization" Lecture Slides - Duality

Strictly Convex Quadratic Programming

Consider the strictly convex quadratic programming problem

 $\begin{array}{ll} \min & \mathbf{x}^T \mathbf{Q} \mathbf{x} + 2 \mathbf{f}^T \mathbf{x} \\ \text{s.t.} & \mathbf{A} \mathbf{x} \leq \mathbf{b}, \end{array}$

(16)

▶ $\mathbf{Q} \in \mathbb{R}^{n \times n}$ positive definite, $\mathbf{f} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$.

Strictly Convex Quadratic Programming

Consider the strictly convex quadratic programming problem

 $\begin{array}{l} \min \quad \mathbf{x}^{T}\mathbf{Q}\mathbf{x} + 2\mathbf{f}^{T}\mathbf{x} \\ \text{s.t.} \quad \mathbf{A}\mathbf{x} \leq \mathbf{b}, \end{array} \tag{16}$

- ▶ $\mathbf{Q} \in \mathbb{R}^{n \times n}$ positive definite, $\mathbf{f} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$.
- ► Lagrangian: $(\lambda \in \mathbb{R}^m_+)$ $L(\mathbf{x}, \lambda) = \mathbf{x}^T \mathbf{Q} \mathbf{x} + 2\mathbf{f}^T \mathbf{x} + 2\lambda^T (\mathbf{A} \mathbf{x} \mathbf{b}) = \mathbf{x}^T \mathbf{Q} \mathbf{x} + 2(\mathbf{A}^T \lambda + \mathbf{f})^T \mathbf{x} 2\mathbf{b}^T \lambda.$

Strictly Convex Quadratic Programming

Consider the strictly convex quadratic programming problem

 $\begin{array}{l} \min \quad \mathbf{x}^{T}\mathbf{Q}\mathbf{x} + 2\mathbf{f}^{T}\mathbf{x} \\ \text{s.t.} \quad \mathbf{A}\mathbf{x} \le \mathbf{b}, \end{array} \tag{16}$

- ▶ $\mathbf{Q} \in \mathbb{R}^{n \times n}$ positive definite, $\mathbf{f} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$.
- ► Lagrangian: $(\lambda \in \mathbb{R}^m_+)$ $L(\mathbf{x}, \lambda) = \mathbf{x}^T \mathbf{Q} \mathbf{x} + 2\mathbf{f}^T \mathbf{x} + 2\lambda^T (\mathbf{A} \mathbf{x} \mathbf{b}) = \mathbf{x}^T \mathbf{Q} \mathbf{x} + 2(\mathbf{A}^T \lambda + \mathbf{f})^T \mathbf{x} 2\mathbf{b}^T \lambda.$
- The minimizer of the Lagrangian is attained at $\mathbf{x}^* = -\mathbf{Q}^{-1}(\mathbf{f} + \mathbf{A}^T \boldsymbol{\lambda})$.

Strictly Convex Quadratic Programming

Consider the strictly convex quadratic programming problem

 $\begin{array}{l} \min \quad \mathbf{x}^{T}\mathbf{Q}\mathbf{x} + 2\mathbf{f}^{T}\mathbf{x} \\ \text{s.t.} \quad \mathbf{A}\mathbf{x} \leq \mathbf{b}, \end{array} \tag{16}$

- ▶ $\mathbf{Q} \in \mathbb{R}^{n \times n}$ positive definite, $\mathbf{f} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$.
- ► Lagrangian: $(\lambda \in \mathbb{R}^m_+)$ $L(\mathbf{x}, \lambda) = \mathbf{x}^T \mathbf{Q} \mathbf{x} + 2\mathbf{f}^T \mathbf{x} + 2\lambda^T (\mathbf{A} \mathbf{x} \mathbf{b}) = \mathbf{x}^T \mathbf{Q} \mathbf{x} + 2(\mathbf{A}^T \lambda + \mathbf{f})^T \mathbf{x} 2\mathbf{b}^T \lambda.$

The minimizer of the Lagrangian is attained at x^{*} = -Q⁻¹(f + A^Tλ).

$$q(\lambda) = L(\mathbf{x}^*, \lambda)$$

= $(\mathbf{f} + \mathbf{A}^T \lambda)^T \mathbf{Q}^{-1} \mathbf{Q} \mathbf{Q}^{-1} (\mathbf{f} + \mathbf{A}^T \lambda) - 2(\mathbf{f} + \mathbf{A}^T \lambda)^T \mathbf{Q}^{-1} (\mathbf{f} + \mathbf{A}^T \lambda) - 2\mathbf{b}^T \lambda$
= $-(\mathbf{f} + \mathbf{A}^T \lambda)^T \mathbf{Q}^{-1} (\mathbf{f} + \mathbf{A}^T \lambda) - 2\mathbf{b}^T \lambda$
= $-\lambda^T \mathbf{A} \mathbf{Q}^{-1} \mathbf{A}^T \lambda - 2\mathbf{f}^T \mathbf{Q}^{-1} \mathbf{A}^T \lambda - \mathbf{f}^T \mathbf{Q}^{-1} \mathbf{f} - 2\mathbf{b}^T \lambda$
= $-\lambda^T \mathbf{A} \mathbf{Q}^{-1} \mathbf{A}^T \lambda - 2(\mathbf{A} \mathbf{Q}^{-1} \mathbf{f} + \mathbf{b})^T \lambda - \mathbf{f}^T \mathbf{Q}^{-1} \mathbf{f}.$

Strictly Convex Quadratic Programming

Consider the strictly convex quadratic programming problem

 $\begin{array}{l} \min \quad \mathbf{x}^{T}\mathbf{Q}\mathbf{x} + 2\mathbf{f}^{T}\mathbf{x} \\ \text{s.t.} \quad \mathbf{A}\mathbf{x} \le \mathbf{b}, \end{array} \tag{16}$

- ▶ $\mathbf{Q} \in \mathbb{R}^{n \times n}$ positive definite, $\mathbf{f} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$.
- ► Lagrangian: $(\lambda \in \mathbb{R}^m_+)$ $L(\mathbf{x}, \lambda) = \mathbf{x}^T \mathbf{Q} \mathbf{x} + 2\mathbf{f}^T \mathbf{x} + 2\lambda^T (\mathbf{A} \mathbf{x} \mathbf{b}) = \mathbf{x}^T \mathbf{Q} \mathbf{x} + 2(\mathbf{A}^T \lambda + \mathbf{f})^T \mathbf{x} 2\mathbf{b}^T \lambda.$

The minimizer of the Lagrangian is attained at x^{*} = -Q⁻¹(f + A^Tλ).

$$q(\lambda) = L(\mathbf{x}^*, \lambda)$$

= $(\mathbf{f} + \mathbf{A}^T \lambda)^T \mathbf{Q}^{-1} \mathbf{Q} \mathbf{Q}^{-1} (\mathbf{f} + \mathbf{A}^T \lambda) - 2(\mathbf{f} + \mathbf{A}^T \lambda)^T \mathbf{Q}^{-1} (\mathbf{f} + \mathbf{A}^T \lambda) - 2\mathbf{b}^T \lambda$
= $-(\mathbf{f} + \mathbf{A}^T \lambda)^T \mathbf{Q}^{-1} (\mathbf{f} + \mathbf{A}^T \lambda) - 2\mathbf{b}^T \lambda$
= $-\lambda^T \mathbf{A} \mathbf{Q}^{-1} \mathbf{A}^T \lambda - 2\mathbf{f}^T \mathbf{Q}^{-1} \mathbf{A}^T \lambda - \mathbf{f}^T \mathbf{Q}^{-1} \mathbf{f} - 2\mathbf{b}^T \lambda$
= $-\lambda^T \mathbf{A} \mathbf{Q}^{-1} \mathbf{A}^T \lambda - 2(\mathbf{A} \mathbf{Q}^{-1} \mathbf{f} + \mathbf{b})^T \lambda - \mathbf{f}^T \mathbf{Q}^{-1} \mathbf{f}.$

• The dual problem is $\max\{q(\lambda) : \lambda \ge \mathbf{0}\}$.

Amir Beck

min
$$\mathbf{x}^T \mathbf{A}_0 \mathbf{x} + 2\mathbf{b}_0^T \mathbf{x} + c_0$$

s.t. $\mathbf{x}^T \mathbf{A}_i \mathbf{x} + 2\mathbf{b}_i^T \mathbf{x} + c_i \le 0, \quad i = 1, 2, \dots, m,$

where $\mathbf{A}_i \succeq \mathbf{0}$ is an $n \times n$ matrix, $\mathbf{b}_i \in \mathbb{R}^n$, $c_i \in \mathbb{R}$, i = 0, 1, ..., m. Assume that $\mathbf{A}_0 \succ \mathbf{0}$.

min
$$\mathbf{x}^T \mathbf{A}_0 \mathbf{x} + 2\mathbf{b}_0^T \mathbf{x} + c_0$$

s.t. $\mathbf{x}^T \mathbf{A}_i \mathbf{x} + 2\mathbf{b}_i^T \mathbf{x} + c_i \le 0, \quad i = 1, 2, ..., m$

where $\mathbf{A}_i \succeq \mathbf{0}$ is an $n \times n$ matrix, $\mathbf{b}_i \in \mathbb{R}^n$, $c_i \in \mathbb{R}$, i = 0, 1, ..., m. Assume that $\mathbf{A}_0 \succ \mathbf{0}$.

▶ Lagrangian ($\lambda \in \mathbb{R}^m_+$):

$$L(\mathbf{x}, \boldsymbol{\lambda}) = \mathbf{x}^{T} \mathbf{A}_{0} \mathbf{x} + 2\mathbf{b}_{0}^{T} \mathbf{x} + c_{0} + \sum_{i=1}^{m} \lambda_{i} (\mathbf{x}^{T} \mathbf{A}_{i} \mathbf{x} + 2\mathbf{b}_{i}^{T} \mathbf{x} + c_{i})$$

$$= \mathbf{x}^{T} (\mathbf{A}_{0} + \sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i}) \mathbf{x} + 2 (\mathbf{b}_{0} + \sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i})^{T} \mathbf{x} + c_{0} + \sum_{i=1}^{m} \lambda_{i} c_{i}.$$

min
$$\mathbf{x}^T \mathbf{A}_0 \mathbf{x} + 2\mathbf{b}_0^T \mathbf{x} + c_0$$

s.t. $\mathbf{x}^T \mathbf{A}_i \mathbf{x} + 2\mathbf{b}_i^T \mathbf{x} + c_i \le 0, \quad i = 1, 2, ..., m$

where $\mathbf{A}_i \succeq \mathbf{0}$ is an $n \times n$ matrix, $\mathbf{b}_i \in \mathbb{R}^n$, $c_i \in \mathbb{R}$, i = 0, 1, ..., m. Assume that $\mathbf{A}_0 \succ \mathbf{0}$.

▶ Lagrangian ($\lambda \in \mathbb{R}^m_+$):

$$L(\mathbf{x}, \boldsymbol{\lambda}) = \mathbf{x}^{T} \mathbf{A}_{0} \mathbf{x} + 2\mathbf{b}_{0}^{T} \mathbf{x} + c_{0} + \sum_{i=1}^{m} \lambda_{i} (\mathbf{x}^{T} \mathbf{A}_{i} \mathbf{x} + 2\mathbf{b}_{i}^{T} \mathbf{x} + c_{i})$$

$$= \mathbf{x}^{T} (\mathbf{A}_{0} + \sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i}) \mathbf{x} + 2 (\mathbf{b}_{0} + \sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i})^{T} \mathbf{x} + c_{0} + \sum_{i=1}^{m} \lambda_{i} c_{i}.$$

 \blacktriangleright The minimizer of the Lagrangian w.r.t. x is attained at \tilde{x} satisfying

$$2\left(\mathbf{A}_{0}+\sum_{i=1}^{m}\lambda_{i}\mathbf{A}_{i}\right)\tilde{\mathbf{x}}=-2\left(\mathbf{b}_{0}+\sum_{i=1}^{m}\lambda_{i}\mathbf{b}_{i}\right).$$

min
$$\mathbf{x}^T \mathbf{A}_0 \mathbf{x} + 2\mathbf{b}_0^T \mathbf{x} + c_0$$

s.t. $\mathbf{x}^T \mathbf{A}_i \mathbf{x} + 2\mathbf{b}_i^T \mathbf{x} + c_i \le 0, \quad i = 1, 2, \dots, m,$

where $\mathbf{A}_i \succeq \mathbf{0}$ is an $n \times n$ matrix, $\mathbf{b}_i \in \mathbb{R}^n$, $c_i \in \mathbb{R}$, i = 0, 1, ..., m. Assume that $\mathbf{A}_0 \succ \mathbf{0}$.

▶ Lagrangian ($\lambda \in \mathbb{R}^m_+$):

$$L(\mathbf{x}, \boldsymbol{\lambda}) = \mathbf{x}^{T} \mathbf{A}_{0} \mathbf{x} + 2\mathbf{b}_{0}^{T} \mathbf{x} + c_{0} + \sum_{i=1}^{m} \lambda_{i} (\mathbf{x}^{T} \mathbf{A}_{i} \mathbf{x} + 2\mathbf{b}_{i}^{T} \mathbf{x} + c_{i})$$

$$= \mathbf{x}^{T} (\mathbf{A}_{0} + \sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i}) \mathbf{x} + 2 (\mathbf{b}_{0} + \sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i})^{T} \mathbf{x} + c_{0} + \sum_{i=1}^{m} \lambda_{i} c_{i}.$$

 \blacktriangleright The minimizer of the Lagrangian w.r.t. x is attained at \tilde{x} satisfying

$$2\left(\mathbf{A}_{0}+\sum_{i=1}^{m}\lambda_{i}\mathbf{A}_{i}\right)\tilde{\mathbf{x}}=-2\left(\mathbf{b}_{0}+\sum_{i=1}^{m}\lambda_{i}\mathbf{b}_{i}\right).$$

• Thus,
$$\tilde{\mathbf{x}} = -\left(\mathbf{A}_0 + \sum_{i=1}^m \lambda_i \mathbf{A}_i\right)^{-1} \left(\mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i\right)$$
.

Amir Beck

"Introduction to Nonlinear Optimization" Lecture Slides - Duality

QCQP contd.

 Plugging this expression back into the Lagrangian, we obtain the following expression for the dual objective function

$$q(\lambda) = \min_{\mathbf{x}} L(\mathbf{x}, \lambda) = L(\tilde{\mathbf{x}}, \lambda)$$

= $\tilde{\mathbf{x}}^T \left(\mathbf{A}_0 + \sum_{i=1}^m \lambda_i \mathbf{A}_i \right) \tilde{\mathbf{x}} + 2 \left(\mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i \right)^T \tilde{\mathbf{x}} + c_0 + \sum_{i=1}^m \lambda_i c_i$
= $- \left(\mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i \right)^T \left(\mathbf{A}_0 + \sum_{i=1}^m \lambda_i \mathbf{A}_i \right)^{-1} \left(\mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i \right) + c_0 + \sum_{i=1}^m \lambda_i c_i.$

QCQP contd.

 Plugging this expression back into the Lagrangian, we obtain the following expression for the dual objective function

$$q(\lambda) = \min_{\mathbf{x}} L(\mathbf{x}, \lambda) = L(\tilde{\mathbf{x}}, \lambda)$$

= $\tilde{\mathbf{x}}^T \left(\mathbf{A}_0 + \sum_{i=1}^m \lambda_i \mathbf{A}_i \right) \tilde{\mathbf{x}} + 2 \left(\mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i \right)^T \tilde{\mathbf{x}} + c_0 + \sum_{i=1}^m \lambda_i c_i$
= $- \left(\mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i \right)^T \left(\mathbf{A}_0 + \sum_{i=1}^m \lambda_i \mathbf{A}_i \right)^{-1} \left(\mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i \right) + c_0 + \sum_{i=1}^m \lambda_i c_i.$

The dual problem is thus

$$\max - \left(\mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i \right)^T \left(\mathbf{A}_0 + \sum_{i=1}^m \lambda_i \mathbf{A}_i \right)^{-1} \left(\mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i \right) + c_0 + \sum_{i=1}^m \lambda_i c_i$$
s.t. $\lambda_i \ge 0, \quad i = 1, 2, \dots, m.$

A₀ is only assumed to be positive semidefinite.

► The previous dual is not well defined since the matrix A₀ + ∑_{i=1}^m λ_iA_i is not necessarily PD.

A₀ is only assumed to be positive semidefinite.

- ► The previous dual is not well defined since the matrix A₀ + ∑_{i=1}^m λ_iA_i is not necessarily PD.
- Decompose \mathbf{A}_i as $\mathbf{A}_i = \mathbf{D}_i^T \mathbf{D}_i$ ($\mathbf{D}_i \in \mathbb{R}^{n \times n}$) and rewrite the problem as

min
$$\mathbf{x}^T \mathbf{D}_0^T \mathbf{D}_0 \mathbf{x} + 2\mathbf{b}_0^T \mathbf{x} + c_0$$

s.t. $\mathbf{x}^T \mathbf{D}_i^T \mathbf{D}_i \mathbf{x} + 2\mathbf{b}_i^T \mathbf{x} + c_i \le 0, i = 1, 2, \dots, m,$

A₀ is only assumed to be positive semidefinite.

- ► The previous dual is not well defined since the matrix A₀ + ∑_{i=1}^m λ_iA_i is not necessarily PD.
- ▶ Decompose \mathbf{A}_i as $\mathbf{A}_i = \mathbf{D}_i^T \mathbf{D}_i$ ($\mathbf{D}_i \in \mathbb{R}^{n \times n}$) and rewrite the problem as

min
$$\mathbf{x}^T \mathbf{D}_0^T \mathbf{D}_0 \mathbf{x} + 2\mathbf{b}_0^T \mathbf{x} + c_0$$

s.t. $\mathbf{x}^T \mathbf{D}_i^T \mathbf{D}_i \mathbf{x} + 2\mathbf{b}_i^T \mathbf{x} + c_i \le 0, i = 1, 2, \dots, m,$

• Define additional variables $z_i = D_i x$, giving rise to the formulation

min
$$\|\mathbf{z}_0\|^2 + 2\mathbf{b}_0^T \mathbf{x} + c_0$$

s.t. $\|\mathbf{z}_i\|^2 + 2\mathbf{b}_i^T \mathbf{x} + c_i \le 0, i = 1, 2, ..., m,$
 $\mathbf{z}_i = \mathbf{D}_i \mathbf{x}, \quad i = 0, 1, ..., m.$

• The Lagrangian is $(\lambda \in \mathbb{R}^m_+, \mu_i \in \mathbb{R}^n, i = 0, 1, \dots, m)$:

$$L(\mathbf{x}, \mathbf{z}_{0}, \dots, \mathbf{z}_{m}, \lambda, \mu_{0}, \dots, \mu_{m})$$

$$= \|\mathbf{z}_{0}\|^{2} + 2\mathbf{b}_{0}^{T}\mathbf{x} + c_{0} + \sum_{i=1}^{m} \lambda_{i}(\|\mathbf{z}_{i}\|^{2} + 2\mathbf{b}_{i}^{T}\mathbf{x} + c_{i}) + 2\sum_{i=0}^{m} \mu_{i}^{T}(\mathbf{z}_{i} - \mathbf{D}_{i}\mathbf{x})$$

$$= \|\mathbf{z}_{0}\|^{2} + 2\mu_{0}^{T}\mathbf{z}_{0} + \sum_{i=1}^{m} (\lambda_{i}\|\mathbf{z}_{i}\|^{2} + 2\mu_{i}^{T}\mathbf{z}_{i}) + 2\left(\mathbf{b}_{0} + \sum_{i=1}^{m} \lambda_{i}\mathbf{b}_{i} - \sum_{i=0}^{m} \mathbf{D}_{i}^{T}\mu_{i}\right)^{T}\mathbf{x} + c_{0} + \sum_{i=1}^{m} c_{i}\lambda_{i}.$$

"Introduction to Nonlinear Optimization" Lecture Slides - Duality

▶ For any $\lambda \in \mathbb{R}_+, \mu \in \mathbb{R}^n$,

$$g(\lambda, \boldsymbol{\mu}) \equiv \min_{\mathbf{z}} \left\{ \lambda \|\mathbf{z}\|^2 + 2\boldsymbol{\mu}^T \mathbf{z} \right\} = \begin{cases} -\frac{\|\boldsymbol{\mu}\|^2}{\lambda} & \lambda > 0, \\ 0 & \lambda = 0, \boldsymbol{\mu} = \mathbf{0}, \\ -\infty & \lambda = 0, \boldsymbol{\mu} \neq \mathbf{0}. \end{cases}$$

▶ For any $\lambda \in \mathbb{R}_+, \mu \in \mathbb{R}^n$,

$$g(\lambda, \boldsymbol{\mu}) \equiv \min_{\mathbf{z}} \left\{ \lambda \|\mathbf{z}\|^2 + 2\boldsymbol{\mu}^T \mathbf{z} \right\} = \begin{cases} -\frac{\|\boldsymbol{\mu}\|^2}{\lambda} & \lambda > 0, \\ 0 & \lambda = 0, \boldsymbol{\mu} = \mathbf{0}, \\ -\infty & \lambda = 0, \boldsymbol{\mu} \neq \mathbf{0}. \end{cases}$$

Since the Lagrangian is separable with respect to z_i and x, we can perform the minimization with respect to each of the variables vectors:

$$\begin{split} \min_{\mathbf{z}_0} \left[\|\mathbf{z}_0\|^2 + 2\boldsymbol{\mu}_0^T \mathbf{z}_0 \right] &= g(1, \boldsymbol{\mu}_0) = -\|\boldsymbol{\mu}_0\|^2, \\ \min_{\mathbf{z}_i} \left[\lambda_i \|\mathbf{z}_i\|^2 + 2\boldsymbol{\mu}_i^T \mathbf{z}_i \right] &= g(\lambda_i, \boldsymbol{\mu}_i), \\ \min_{\mathbf{x}} \left(\mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i - \sum_{i=0}^m \mathbf{D}_i^T \boldsymbol{\mu}_i \right)^T \mathbf{x} = \begin{cases} 0 & \mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i - \sum_{i=0}^m \mathbf{D}_i^T \boldsymbol{\mu}_i = \mathbf{0}, \\ -\infty & \text{else}, \end{cases} \end{split}$$

▶ For any $\lambda \in \mathbb{R}_+, \mu \in \mathbb{R}^n$,

$$g(\lambda, \boldsymbol{\mu}) \equiv \min_{\mathbf{z}} \left\{ \lambda \|\mathbf{z}\|^2 + 2\boldsymbol{\mu}^T \mathbf{z} \right\} = \begin{cases} -\frac{\|\boldsymbol{\mu}\|^2}{\lambda} & \lambda > 0, \\ 0 & \lambda = 0, \boldsymbol{\mu} = \mathbf{0}, \\ -\infty & \lambda = 0, \boldsymbol{\mu} \neq \mathbf{0}. \end{cases}$$

Since the Lagrangian is separable with respect to z_i and x, we can perform the minimization with respect to each of the variables vectors:

$$\begin{split} \min_{\mathbf{z}_0} \left[\|\mathbf{z}_0\|^2 + 2\boldsymbol{\mu}_0^T \mathbf{z}_0 \right] &= g(1, \boldsymbol{\mu}_0) = -\|\boldsymbol{\mu}_0\|^2, \\ \min_{\mathbf{z}_i} \left[\lambda_i \|\mathbf{z}_i\|^2 + 2\boldsymbol{\mu}_i^T \mathbf{z}_i \right] &= g(\lambda_i, \boldsymbol{\mu}_i), \\ \min_{\mathbf{x}_i} \left(\mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i - \sum_{i=0}^m \mathbf{D}_i^T \boldsymbol{\mu}_i \right)^T \mathbf{x} = \begin{cases} 0 & \mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i - \sum_{i=0}^m \mathbf{D}_i^T \boldsymbol{\mu}_i = \mathbf{0}, \\ -\infty & \text{else,} \end{cases} \end{split}$$

Hence,

$$\begin{aligned} q(\boldsymbol{\lambda}, \boldsymbol{\mu}_0, \dots, \boldsymbol{\mu}_m) &= \min_{\mathbf{x}, \mathbf{z}_0, \dots, \mathbf{z}_m} L(\mathbf{x}, \mathbf{z}_0, \dots, \mathbf{z}_m, \boldsymbol{\lambda}, \boldsymbol{\mu}_0, \dots, \boldsymbol{\mu}_m) \\ &= \begin{cases} g(1, \boldsymbol{\mu}_0) + \sum_{i=1}^m g(\lambda_i, \boldsymbol{\mu}_i) + c_0 + \mathbf{c}^T \boldsymbol{\lambda} & \mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i - \sum_{i=0}^m \mathbf{D}_i^T \boldsymbol{\mu}_i = \mathbf{0}, \\ -\infty & \text{else.} \end{cases} \end{aligned}$$

The dual problem is therefore

$$\begin{array}{ll} \max & g(1,\mu_0) + \sum_{i=1}^m g(\lambda_i,\mu_i) + c_0 + \sum_{i=1}^m c_i \lambda_i \\ \text{s.t.} & \mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i - \sum_{i=0}^m \mathbf{D}_i^T \boldsymbol{\mu}_i = \mathbf{0}, \\ & \boldsymbol{\lambda} \in \mathbb{R}_+^m, \boldsymbol{\mu}_0, \dots, \boldsymbol{\mu}_m \in \mathbb{R}^n. \end{array}$$

Consider the problem

min
$$\mathbf{x}^T \mathbf{A}_0 \mathbf{x} + 2\mathbf{b}_0^T \mathbf{x} + c_0$$

s.t. $\mathbf{x}^T \mathbf{A}_i \mathbf{x} + 2\mathbf{b}_i^T \mathbf{x} + c_i \le 0, \quad i = 1, 2, ..., m,$

▶ $\mathbf{A}_i = \mathbf{A}_i^T \in \mathbb{R}^{n \times n}, \mathbf{b}_i \in \mathbb{R}^n, c_i \in \mathbb{R}, i = 0, 1, \dots, m.$

Consider the problem

min
$$\mathbf{x}^T \mathbf{A}_0 \mathbf{x} + 2\mathbf{b}_0^T \mathbf{x} + c_0$$

s.t. $\mathbf{x}^T \mathbf{A}_i \mathbf{x} + 2\mathbf{b}_i^T \mathbf{x} + c_i \le 0, \quad i = 1, 2, \dots, m_i$

- ► $\mathbf{A}_i = \mathbf{A}_i^T \in \mathbb{R}^{n \times n}, \mathbf{b}_i \in \mathbb{R}^n, c_i \in \mathbb{R}, i = 0, 1, ..., m.$
- ▶ We do not assume that A_i are positive semidefinite, and hence the problem is in general nonconvex.

Consider the problem

min
$$\mathbf{x}^T \mathbf{A}_0 \mathbf{x} + 2\mathbf{b}_0^T \mathbf{x} + c_0$$

s.t. $\mathbf{x}^T \mathbf{A}_i \mathbf{x} + 2\mathbf{b}_i^T \mathbf{x} + c_i \le 0, \quad i = 1, 2, \dots, m_i$

► $\mathbf{A}_i = \mathbf{A}_i^T \in \mathbb{R}^{n \times n}, \mathbf{b}_i \in \mathbb{R}^n, c_i \in \mathbb{R}, i = 0, 1, ..., m.$

- We do not assume that A_i are positive semidefinite, and hence the problem is in general nonconvex.
- ▶ Lagrangian ($\lambda \in \mathbb{R}^m_+$):

$$\mathbf{L}(\mathbf{x}, \boldsymbol{\lambda}) = \mathbf{x}^T \mathbf{A}_0 \mathbf{x} + 2\mathbf{b}_0^T \mathbf{x} + c_0 + \sum_{i=1}^m \lambda_i \left(\mathbf{x}^T \mathbf{A}_i \mathbf{x} + 2\mathbf{b}_i^T \mathbf{x} + c_i \right)$$
$$= \mathbf{x}^T \left(\mathbf{A}_0 + \sum_{i=1}^m \lambda_i \mathbf{A}_i \right) \mathbf{x} + 2 \left(\mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i \right)^T \mathbf{x} + c_0 + \sum_{i=1}^m c_i \lambda_i.$$

Consider the problem

min
$$\mathbf{x}^T \mathbf{A}_0 \mathbf{x} + 2\mathbf{b}_0^T \mathbf{x} + c_0$$

s.t. $\mathbf{x}^T \mathbf{A}_i \mathbf{x} + 2\mathbf{b}_i^T \mathbf{x} + c_i \le 0, \quad i = 1, 2, \dots, m_i$

► $\mathbf{A}_i = \mathbf{A}_i^T \in \mathbb{R}^{n \times n}, \mathbf{b}_i \in \mathbb{R}^n, c_i \in \mathbb{R}, i = 0, 1, ..., m.$

- We do not assume that A_i are positive semidefinite, and hence the problem is in general nonconvex.
- ▶ Lagrangian ($\lambda \in \mathbb{R}^m_+$):

$$\begin{aligned} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}) &= \mathbf{x}^T \mathbf{A}_0 \mathbf{x} + 2\mathbf{b}_0^T \mathbf{x} + c_0 + \sum_{i=1}^m \lambda_i \left(\mathbf{x}^T \mathbf{A}_i \mathbf{x} + 2\mathbf{b}_i^T \mathbf{x} + c_i \right) \\ &= \mathbf{x}^T \left(\mathbf{A}_0 + \sum_{i=1}^m \lambda_i \mathbf{A}_i \right) \mathbf{x} + 2 \left(\mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i \right)^T \mathbf{x} + c_0 + \sum_{i=1}^m c_i \lambda_i. \end{aligned}$$

Note that

$$q(\boldsymbol{\lambda}) = \min_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}) = \max_{t} \{t : L(\mathbf{x}, \boldsymbol{\lambda}) \geq t \text{ for any } \mathbf{x} \in \mathbb{R}^n \}.$$

Amir Beck

The following holds:

 $L(\mathbf{x}, \boldsymbol{\lambda}) \geq t$ for all $\mathbf{x} \in \mathbb{R}^n$

is equivalent to

$$\begin{pmatrix} \mathbf{A}_0 + \sum_{i=1}^m \lambda_i \mathbf{A}_i & \mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i \\ (\mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i)^T & c_0 + \sum_{i=1}^m \lambda_i c_i - t \end{pmatrix} \succeq \mathbf{0},$$

The following holds:

 $L(\mathbf{x}, \boldsymbol{\lambda}) \geq t$ for all $\mathbf{x} \in \mathbb{R}^n$

is equivalent to

$$\begin{pmatrix} \mathbf{A}_0 + \sum_{i=1}^m \lambda_i \mathbf{A}_i & \mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i \\ (\mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i)^T & c_0 + \sum_{i=1}^m \lambda_i c_i - t \end{pmatrix} \succeq \mathbf{0},$$

Therefore, the dual problem is

$$\begin{array}{ll} \max_{t,\lambda_i} & t \\ \text{s.t.} & \begin{pmatrix} \mathbf{A}_0 + \sum_{i=1}^m \lambda_i \mathbf{A}_i & \mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i \\ (\mathbf{b}_0 + \sum_{i=1}^m \lambda_i \mathbf{b}_i)^T & \mathbf{c}_0 + \sum_{i=1}^m \lambda_i \mathbf{c}_i - t \end{pmatrix} \succeq \mathbf{0}, \\ \lambda_i \ge 0, \quad i = 1, 2, \dots, m. \end{array}$$

• Given a vector $\mathbf{y} \in \mathbb{R}^n$, the orthogonal projection of \mathbf{y} onto Δ_n is the solution to

$$\begin{array}{ll} \min & \|\mathbf{x} - \mathbf{y}\|^2 \\ \text{s.t.} & \mathbf{e}^T \mathbf{x} = 1, \\ & \mathbf{x} \ge \mathbf{0}. \end{array}$$

• Given a vector $\mathbf{y} \in \mathbb{R}^n$, the orthogonal projection of \mathbf{y} onto Δ_n is the solution to

$$\begin{aligned} \min & \|\mathbf{x} - \mathbf{y}\|^2 \\ \text{s.t.} & \mathbf{e}^T \mathbf{x} = 1, \\ & \mathbf{x} \ge \mathbf{0}. \end{aligned}$$

Lagrangian:

$$L(\mathbf{x}, \lambda) = \|\mathbf{x} - \mathbf{y}\|^2 + 2\lambda(\mathbf{e}^T \mathbf{x} - 1) = \|\mathbf{x}\|^2 - 2(\mathbf{y} - \lambda \mathbf{e})^T \mathbf{x} + \|\mathbf{y}\|^2 - 2\lambda$$

=
$$\sum_{j=1}^n (x_j^2 - 2(y_j - \lambda)x_j) + \|\mathbf{y}\|^2 - 2\lambda.$$

• Given a vector $\mathbf{y} \in \mathbb{R}^n$, the orthogonal projection of \mathbf{y} onto Δ_n is the solution to

$$\begin{aligned} \min & \|\mathbf{x} - \mathbf{y}\|^2 \\ \text{s.t.} & \mathbf{e}^T \mathbf{x} = 1, \\ & \mathbf{x} \ge \mathbf{0}. \end{aligned}$$

Lagrangian:

$$L(\mathbf{x}, \lambda) = \|\mathbf{x} - \mathbf{y}\|^2 + 2\lambda(\mathbf{e}^T \mathbf{x} - 1) = \|\mathbf{x}\|^2 - 2(\mathbf{y} - \lambda \mathbf{e})^T \mathbf{x} + \|\mathbf{y}\|^2 - 2\lambda$$

=
$$\sum_{j=1}^n (x_j^2 - 2(y_j - \lambda)x_j) + \|\mathbf{y}\|^2 - 2\lambda.$$

► The optimal x_j is the solution to the 1D problem $\min_{x_j \ge 0} [x_j^2 - 2(y_j - \lambda)x_j]$.

• Given a vector $\mathbf{y} \in \mathbb{R}^n$, the orthogonal projection of \mathbf{y} onto Δ_n is the solution to

$$\begin{aligned} \min & \|\mathbf{x} - \mathbf{y}\|^2 \\ \text{s.t.} & \mathbf{e}^T \mathbf{x} = 1, \\ & \mathbf{x} \ge \mathbf{0}. \end{aligned}$$

Lagrangian:

$$L(\mathbf{x}, \lambda) = \|\mathbf{x} - \mathbf{y}\|^2 + 2\lambda(\mathbf{e}^T \mathbf{x} - 1) = \|\mathbf{x}\|^2 - 2(\mathbf{y} - \lambda \mathbf{e})^T \mathbf{x} + \|\mathbf{y}\|^2 - 2\lambda$$

=
$$\sum_{j=1}^n (x_j^2 - 2(y_j - \lambda)x_j) + \|\mathbf{y}\|^2 - 2\lambda.$$

• Given a vector $\mathbf{y} \in \mathbb{R}^n$, the orthogonal projection of \mathbf{y} onto Δ_n is the solution to

$$\begin{array}{ll} \min & \|\mathbf{x} - \mathbf{y}\|^2 \\ \text{s.t.} & \mathbf{e}^T \mathbf{x} = 1, \\ & \mathbf{x} \ge \mathbf{0}. \end{array}$$

Lagrangian:

$$L(\mathbf{x}, \lambda) = \|\mathbf{x} - \mathbf{y}\|^2 + 2\lambda(\mathbf{e}^T \mathbf{x} - 1) = \|\mathbf{x}\|^2 - 2(\mathbf{y} - \lambda \mathbf{e})^T \mathbf{x} + \|\mathbf{y}\|^2 - 2\lambda$$

=
$$\sum_{j=1}^n (x_j^2 - 2(y_j - \lambda)x_j) + \|\mathbf{y}\|^2 - 2\lambda.$$

- ► The optimal x_j is the solution to the 1D problem $\min_{x_j \ge 0} [x_j^2 2(y_j \lambda)x_j]$.
- ► The optimal x_j is $x_j = \begin{cases} y_j \lambda & y_j \ge \lambda \\ 0 & \text{else} \end{cases} = [y_j \lambda]_+$, with optimal value $-[y_j \lambda]_+^2$. ► The dual problem is

$$\max_{\lambda \in \mathbb{R}} \left\{ g(\lambda) \equiv -\sum_{j=1}^{n} [y_j - \lambda]_+^2 - 2\lambda + \|\mathbf{y}\|^2 \right\}.$$

Amir Beck

"Introduction to Nonlinear Optimization" Lecture Slides - Duality

• g is concave, differentiable, $\lim_{\lambda\to\infty} g(\lambda) = \lim_{\lambda\to-\infty} g(\lambda) = -\infty$.

- ▶ g is concave, differentiable, $\lim_{\lambda\to\infty} g(\lambda) = \lim_{\lambda\to-\infty} g(\lambda) = -\infty$.
- Therefore, there exists an optimal solution to the dual problem attained at a point λ* in which g'(λ*) = 0.

- ▶ g is concave, differentiable, $\lim_{\lambda\to\infty} g(\lambda) = \lim_{\lambda\to-\infty} g(\lambda) = -\infty$.
- Therefore, there exists an optimal solution to the dual problem attained at a point λ* in which g'(λ*) = 0.
- $\blacktriangleright \sum_{j=1}^n [y_j \lambda^*]_+ = 1.$
- h(λ) = ∑_{j=1}ⁿ [y_j − λ]₊ − 1 is nonincreasing over ℝ and is in fact strictly decreasing over (−∞, max_j y_j].

- ▶ g is concave, differentiable, $\lim_{\lambda\to\infty} g(\lambda) = \lim_{\lambda\to-\infty} g(\lambda) = -\infty$.
- Therefore, there exists an optimal solution to the dual problem attained at a point λ* in which g'(λ*) = 0.
- $\blacktriangleright \sum_{j=1}^n [y_j \lambda^*]_+ = 1.$

►

h(λ) = ∑_{j=1}ⁿ [y_j − λ]₊ − 1 is nonincreasing over ℝ and is in fact strictly decreasing over (−∞, max_j y_j].

$$h(y_{\max}) = -1,$$

 $h\left(y_{\min} - \frac{2}{n}\right) = \sum_{j=1}^{n} y_j - ny_{\min} + 2 - 1 > 0,$

where $y_{\max} = \max_{j=1,2,...,n} y_j, y_{\min} = \min_{j=1,2,...,n} y_j$.

- ▶ g is concave, differentiable, $\lim_{\lambda\to\infty} g(\lambda) = \lim_{\lambda\to-\infty} g(\lambda) = -\infty$.
- Therefore, there exists an optimal solution to the dual problem attained at a point λ* in which g'(λ*) = 0.
- $\blacktriangleright \sum_{j=1}^n [y_j \lambda^*]_+ = 1.$

►

h(λ) = ∑_{j=1}ⁿ [y_j − λ]₊ − 1 is nonincreasing over ℝ and is in fact strictly decreasing over (−∞, max_j y_j].

$$h(y_{\max}) = -1,$$

 $h\left(y_{\min} - \frac{2}{n}\right) = \sum_{j=1}^{n} y_j - ny_{\min} + 2 - 1 > 0,$

where $y_{\max} = \max_{j=1,2,...,n} y_j, y_{\min} = \min_{j=1,2,...,n} y_j$.

We can therefore invoke a bisection procedure to find the unique root λ* of the function h over the interval [y_{min} - ²/_n, y_{max}], and then define P_{Δ_n}(y) = [y - λ*e]₊.

The MATLAB function proj_unit_simplex:

```
function xp=proj_unit_simplex(y)
f=@(lam)sum(max(y-lam,0))-1;
n=length(y);
lb=min(y)-2/n;
ub=max(y);
lam=bisection(f,lb,ub,1e-10);
xp=max(y-lam,0);
```

Dual of the Chebyshev Center Problem

► Formulation:

$$\begin{array}{ll} \min_{\mathbf{x},r} & r \\ \text{s.t.} & \|\mathbf{x} - \mathbf{a}_i\| \leq r, \quad i = 1, 2, \dots, m. \end{array}$$

Dual of the Chebyshev Center Problem

► Formulation:

$$\begin{array}{ll} \min_{\mathbf{x},r} & r \\ \text{s.t.} & \|\mathbf{x} - \mathbf{a}_i\| \leq r, \quad i = 1, 2, \dots, m \end{array}$$

Reformulation:

$$\begin{array}{ll} \min_{\mathbf{x},\gamma} & \gamma \\ \text{s.t.} & \|\mathbf{x} - \mathbf{a}_i\|^2 \leq \gamma, \quad i = 1, 2, \dots, m. \end{array}$$

Dual of the Chebyshev Center Problem

► Formulation:

$$\begin{array}{ll} \min_{\mathbf{x},r} & r \\ \text{s.t.} & \|\mathbf{x} - \mathbf{a}_i\| \leq r, \quad i = 1, 2, \dots, m \end{array}$$

Reformulation:

►

$$\begin{array}{ll} \min_{\mathbf{x},\gamma} & \gamma \\ \text{s.t.} & \|\mathbf{x}-\mathbf{a}_i\|^2 \leq \gamma, \quad i=1,2,\ldots,m. \end{array}$$

$$L(\mathbf{x}, \gamma, \boldsymbol{\lambda}) = \gamma + \sum_{i=1}^{m} \lambda_i (\|\mathbf{x} - \mathbf{a}_i\|^2 - \gamma)$$

= $\gamma (1 - \sum_{i=1}^{m} \lambda_i) + \sum_{i=1}^{m} \lambda_i \|\mathbf{x} - \mathbf{a}_i\|^2.$

Dual of the Chebyshev Center Problem

► Formulation:

$$\begin{array}{ll} \min_{\mathbf{x},r} & r \\ \text{s.t.} & \|\mathbf{x} - \mathbf{a}_i\| \leq r, \quad i = 1, 2, \dots, m \end{array}$$

Reformulation:

$$\begin{array}{ll} \min_{\mathbf{x},\gamma} & \gamma \\ \text{s.t.} & \|\mathbf{x}-\mathbf{a}_i\|^2 \leq \gamma, \quad i=1,2,\ldots,m. \end{array}$$

$$L(\mathbf{x}, \gamma, \boldsymbol{\lambda}) = \gamma + \sum_{i=1}^{m} \lambda_i (\|\mathbf{x} - \mathbf{a}_i\|^2 - \gamma)$$

= $\gamma (1 - \sum_{i=1}^{m} \lambda_i) + \sum_{i=1}^{m} \lambda_i \|\mathbf{x} - \mathbf{a}_i\|^2.$

► The minimization of the above expression must be $-\infty$ unless $\sum_{i=1}^{m} \lambda_i = 1$, and in this case we have

$$\min_{\gamma} \gamma \left(1 - \sum_{i=1}^m \lambda_i \right) = 0.$$

Amir Beck

• Need to solve $\min_{\mathbf{x}} \sum_{i=1}^{m} \lambda_i \|\mathbf{x} - \mathbf{a}_i\|^2$.

- Need to solve $\min_{\mathbf{x}} \sum_{i=1}^{m} \lambda_i \|\mathbf{x} \mathbf{a}_i\|^2$.
- We have

 $\sum_{i=1}^{m} \lambda_{i} \|\mathbf{x} - \mathbf{a}_{i}\|^{2} = \|\mathbf{x}\|^{2} - 2\left(\sum_{i=1}^{m} \lambda_{i} \mathbf{a}_{i}\right)^{T} \mathbf{x} + \sum_{i=1}^{m} \lambda_{i} \|\mathbf{a}_{i}\|^{2},$ (17)

- Need to solve $\min_{\mathbf{x}} \sum_{i=1}^{m} \lambda_i \|\mathbf{x} \mathbf{a}_i\|^2$.
- We have

$$\sum_{i=1}^{m} \lambda_i \|\mathbf{x} - \mathbf{a}_i\|^2 = \|\mathbf{x}\|^2 - 2\left(\sum_{i=1}^{m} \lambda_i \mathbf{a}_i\right)^T \mathbf{x} + \sum_{i=1}^{m} \lambda_i \|\mathbf{a}_i\|^2, \qquad (17)$$

> The minimum is attained at the point in which the gradient vanishes:

$$\mathbf{x}^* = \sum_{i=1}^m \lambda_i \mathbf{a}_i = \mathbf{A} \boldsymbol{\lambda},$$

A is the $n \times m$ matrix whose columns are $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m$.

- Need to solve $\min_{\mathbf{x}} \sum_{i=1}^{m} \lambda_i \|\mathbf{x} \mathbf{a}_i\|^2$.
- We have

$$\sum_{i=1}^{m} \lambda_i \|\mathbf{x} - \mathbf{a}_i\|^2 = \|\mathbf{x}\|^2 - 2\left(\sum_{i=1}^{m} \lambda_i \mathbf{a}_i\right)^T \mathbf{x} + \sum_{i=1}^{m} \lambda_i \|\mathbf{a}_i\|^2, \qquad (17)$$

> The minimum is attained at the point in which the gradient vanishes:

$$\mathbf{x}^* = \sum_{i=1}^m \lambda_i \mathbf{a}_i = \mathbf{A} \boldsymbol{\lambda},$$

A is the n × m matrix whose columns are a₁, a₂,..., a_m.
▶ Substituting this expression back into (17),

 $q(\boldsymbol{\lambda}) = \|\boldsymbol{A}\boldsymbol{\lambda}\|^2 - 2(\boldsymbol{A}\boldsymbol{\lambda})^T(\boldsymbol{A}\boldsymbol{\lambda}) + \sum_{i=1}^m \lambda_i \|\boldsymbol{a}_i\|^2 = -\|\boldsymbol{A}\boldsymbol{\lambda}\|^2 + \sum_{i=1}^m \lambda_i \|\boldsymbol{a}_i\|^2.$

- Need to solve $\min_{\mathbf{x}} \sum_{i=1}^{m} \lambda_i \|\mathbf{x} \mathbf{a}_i\|^2$.
- We have

$$\sum_{i=1}^{m} \lambda_i \|\mathbf{x} - \mathbf{a}_i\|^2 = \|\mathbf{x}\|^2 - 2\left(\sum_{i=1}^{m} \lambda_i \mathbf{a}_i\right)^T \mathbf{x} + \sum_{i=1}^{m} \lambda_i \|\mathbf{a}_i\|^2, \qquad (17)$$

> The minimum is attained at the point in which the gradient vanishes:

$$\mathbf{x}^* = \sum_{i=1}^m \lambda_i \mathbf{a}_i = \mathbf{A} \boldsymbol{\lambda},$$

A is the $n \times m$ matrix whose columns are $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m$.

Substituting this expression back into (17),

 $q(\boldsymbol{\lambda}) = \|\boldsymbol{A}\boldsymbol{\lambda}\|^2 - 2(\boldsymbol{A}\boldsymbol{\lambda})^T(\boldsymbol{A}\boldsymbol{\lambda}) + \sum_{i=1}^m \lambda_i \|\boldsymbol{a}_i\|^2 = -\|\boldsymbol{A}\boldsymbol{\lambda}\|^2 + \sum_{i=1}^m \lambda_i \|\boldsymbol{a}_i\|^2.$

The dual problem is therefore

$$\begin{array}{ll} \max & -\|\mathbf{A}\boldsymbol{\lambda}\|^2 + \sum_{i=1}^m \lambda_i \|\mathbf{a}_i\|^2\\ \text{s.t.} & \boldsymbol{\lambda} \in \Delta_m. \end{array}$$

Amir Beck

MATLAB code

```
function [xp,r]=chebyshev_center(A)
d=size(A);
m=d(2):
Q=A'*A;
L=2*max(eig(Q));
b=sum(A.^2)':
%initialization with the uniform vector
lam=1/m*ones(m,1);
old_lam=zeros(m,1);
while (norm(lam-old_lam)>1e-5)
    old_lam=lam;
    lam=proj_unit_simplex(lam+1/L*(-2*Q*lam+b));
end
xp=A*lam;
r=0;
for i=1:m
    r=max(r,norm(xp-A(:,i)));
end
```

Denoising

Suppose that we are given a signal contaminated with noise.

 $\mathbf{y} = \mathbf{x} + \mathbf{w},$

x - unknown "true" signal, w - unknown noise, y - known observed signal.

A Tikhonov Regularization Approach

Quadratic Penalty:

$$\min \|\mathbf{x} - \mathbf{y}\|^2 + \lambda \sum_{i=1}^{n-1} (x_i - x_{i+1})^2,$$

A Tikhonov Regularization Approach

Quadratic Penalty:

$$\min \|\mathbf{x} - \mathbf{y}\|^2 + \lambda \sum_{i=1}^{n-1} (x_i - x_{i+1})^2,$$

The solution with $\lambda = 1$:

A Tikhonov Regularization Approach

Quadratic Penalty:

$$\min \|\mathbf{x} - \mathbf{y}\|^2 + \lambda \sum_{i=1}^{n-1} (x_i - x_{i+1})^2,$$

The solution with $\lambda = 1$:

Pretty good!

Amir Beck

Weakness of Quadratic Regularization

The quadratic regularization method does not work so well for all types of signals. True and noisy step functions:

Failure of Quadratic Regularization

$$\min \|\mathbf{x} - \mathbf{y}\|^2 + \lambda \|\mathbf{L}\mathbf{x}\|_1.$$
(18)

$$\min \|\mathbf{x} - \mathbf{y}\|^2 + \lambda \|\mathbf{L}\mathbf{x}\|_1.$$
(18)

The problem is equivalent to the optimization problem

$$\begin{array}{ll} \min_{\mathbf{x},\mathbf{z}} & \|\mathbf{x}-\mathbf{y}\|^2 + \lambda \|\mathbf{z}\|_1 \\ \text{s.t.} & \mathbf{z} = \mathbf{L}\mathbf{x}. \end{array}$$

L is the $(n-1) \times n$ matrix whose components are $L_{i,i} = 1, L_{i,i+1} = -1$ and 0 otherwise.

$$\min \|\mathbf{x} - \mathbf{y}\|^2 + \lambda \|\mathbf{L}\mathbf{x}\|_1.$$
(18)

The problem is equivalent to the optimization problem

$$\begin{aligned} \min_{\mathbf{x},\mathbf{z}} & \|\mathbf{x} - \mathbf{y}\|^2 + \lambda \|\mathbf{z}\|_1 \\ \text{s.t.} & \mathbf{z} = \mathbf{L}\mathbf{x}. \end{aligned}$$

L is the $(n-1) \times n$ matrix whose components are $L_{i,i} = 1, L_{i,i+1} = -1$ and 0 otherwise.

The Lagrangian of the problem is

$$L(\mathbf{x}, \mathbf{z}, \boldsymbol{\mu}) = \|\mathbf{x} - \mathbf{y}\|^2 + \lambda \|\mathbf{z}\|_1 + \boldsymbol{\mu}^T (\mathbf{L}\mathbf{x} - \mathbf{z})$$

= $\|\mathbf{x} - \mathbf{y}\|^2 + (\mathbf{L}^T \boldsymbol{\mu})^T \mathbf{x} + \lambda \|\mathbf{z}\|_1 - \boldsymbol{\mu}^T \mathbf{z}$.

$$\min \|\mathbf{x} - \mathbf{y}\|^2 + \lambda \|\mathbf{L}\mathbf{x}\|_1.$$
(18)

The problem is equivalent to the optimization problem

$$\begin{aligned} \min_{\mathbf{x},\mathbf{z}} & \|\mathbf{x} - \mathbf{y}\|^2 + \lambda \|\mathbf{z}\|_1 \\ \text{s.t.} & \mathbf{z} = \mathbf{L}\mathbf{x}. \end{aligned}$$

L is the $(n-1) \times n$ matrix whose components are $L_{i,i} = 1, L_{i,i+1} = -1$ and 0 otherwise.

The Lagrangian of the problem is

$$L(\mathbf{x}, \mathbf{z}, \boldsymbol{\mu}) = \|\mathbf{x} - \mathbf{y}\|^2 + \lambda \|\mathbf{z}\|_1 + \boldsymbol{\mu}^T (\mathbf{L}\mathbf{x} - \mathbf{z})$$

= $\|\mathbf{x} - \mathbf{y}\|^2 + (\mathbf{L}^T \boldsymbol{\mu})^T \mathbf{x} + \lambda \|\mathbf{z}\|_1 - \boldsymbol{\mu}^T \mathbf{z}.$

The dual problem is

$$\max_{s.t.} \quad -\frac{1}{4} \boldsymbol{\mu}^T \mathbf{L} \mathbf{L}^T \boldsymbol{\mu} + \boldsymbol{\mu}^T \mathbf{L} \mathbf{y}$$

s.t. $\|\boldsymbol{\mu}\|_{\infty} \le \lambda.$ (19)

A MATLAB code

Employing the gradient projection method on the dual:

```
lambda=1;
mu=zeros(n-1,1);
for i=1:1000
    mu=mu-0.25*L*(L'*mu)+0.5*(L*y);
    mu=lambda*mu./max(abs(mu),lambda);
    xde=y-0.5*L'*mu;
    end
figure(5)
plot(t,xde,'.');
axis([0,1,-1,4])
```

I_1 -regularized solution

Dual of the Linear Separation Problem (Dual SVM)

- ▶ $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m \in \mathbb{R}^n$.
- For each *i*, we are given a scalar y_i which is equal to 1 if x_i is in class A or −1 if it is in class B.
- The problem of finding a maximal margin hyperplane that separates the two sets of points is

min
$$\frac{1}{2} \|\mathbf{w}\|^2$$

s.t. $y_i(\mathbf{w}^T \mathbf{x}_i + \beta) \ge 1$, $i = 1, 2, ..., m$.

Dual of the Linear Separation Problem (Dual SVM)

- ▶ $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m \in \mathbb{R}^n$.
- For each *i*, we are given a scalar y_i which is equal to 1 if x_i is in class A or −1 if it is in class B.
- The problem of finding a maximal margin hyperplane that separates the two sets of points is

$$\begin{array}{ll} \min & \frac{1}{2} \| \mathbf{w} \|^2 \\ \text{s.t.} & y_i (\mathbf{w}^T \mathbf{x}_i + \beta) \geq 1, \quad i = 1, 2, \dots, m. \end{array}$$

► The above assumes that the two classes are linearly seperable.

Dual of the Linear Separation Problem (Dual SVM)

- ▶ $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_m \in \mathbb{R}^n$.
- For each *i*, we are given a scalar y_i which is equal to 1 if x_i is in class A or −1 if it is in class B.
- The problem of finding a maximal margin hyperplane that separates the two sets of points is

$$\min_{\substack{1 \\ \text{s.t.}}} \frac{1}{2} \| \mathbf{w} \|^2$$

s.t. $y_i (\mathbf{w}^T \mathbf{x}_i + \beta) \ge 1, \quad i = 1, 2, \dots, m.$

- The above assumes that the two classes are linearly seperable.
- A formulation that allows violation of the constraints (with an appropriate penality):

$$\min_{\substack{1 \\ 2}} \frac{1}{\|\mathbf{w}\|^2} + C \sum_{i=1}^m \xi_i \\ \text{s.t.} \quad y_i(\mathbf{w}^T \mathbf{x}_i + \beta) \ge 1 - \xi_i, \quad i = 1, 2, \dots, m, \\ \xi_i \ge 0, \quad i = 1, 2, \dots, m,$$

where C > 0 is a penalty parameter.

Amir Beck

► The same as

$$\begin{array}{ll} \min & \frac{1}{2} \| \mathbf{w} \|^2 + C(\mathbf{e}^T \boldsymbol{\xi}) \\ \text{s.t.} & \mathbf{Y}(\mathbf{X} \mathbf{w} + \beta \mathbf{e}) \geq \mathbf{e} - \boldsymbol{\xi}, \\ & \boldsymbol{\xi} \geq \mathbf{0}, \end{array}$$

where $\mathbf{Y} = \text{diag}(y_1, y_2, \dots, y_m)$ and \mathbf{X} is the $m \times n$ matrix whose rows are $\mathbf{x}_1^T, \mathbf{x}_2^T, \dots, \mathbf{x}_m^T$.

The same as

$$\begin{array}{ll} \min & \frac{1}{2} \| \mathbf{w} \|^2 + C(\mathbf{e}^T \boldsymbol{\xi}) \\ \text{s.t.} & \mathbf{Y}(\mathbf{X} \mathbf{w} + \beta \mathbf{e}) \geq \mathbf{e} - \boldsymbol{\xi}, \\ & \boldsymbol{\xi} \geq \mathbf{0}, \end{array}$$

where $\mathbf{Y} = \text{diag}(y_1, y_2, \dots, y_m)$ and \mathbf{X} is the $m \times n$ matrix whose rows are $\mathbf{x}_1^T, \mathbf{x}_2^T, \dots, \mathbf{x}_m^T$.

▶ Lagrangian ($\alpha \in \mathbb{R}^m_+$):

$$L(\mathbf{w},\beta,\boldsymbol{\xi},\boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 + C(\mathbf{e}^T\boldsymbol{\xi}) - \boldsymbol{\alpha}^T [\mathbf{Y}\mathbf{X}\mathbf{w} + \beta\mathbf{Y}\mathbf{e} - \mathbf{e} + \boldsymbol{\xi}]$$

= $\frac{1}{2} \|\mathbf{w}\|^2 - \mathbf{w}^T [\mathbf{X}^T\mathbf{Y}\boldsymbol{\alpha}] - \beta(\boldsymbol{\alpha}^T\mathbf{Y}\mathbf{e}) + \boldsymbol{\xi}^T (C\mathbf{e} - \boldsymbol{\alpha}) + \boldsymbol{\alpha}^T \mathbf{e}.$

The same as

$$\begin{array}{ll} \min & \frac{1}{2} \| \mathbf{w} \|^2 + C(\mathbf{e}^T \boldsymbol{\xi}) \\ \text{s.t.} & \mathbf{Y}(\mathbf{X} \mathbf{w} + \beta \mathbf{e}) \geq \mathbf{e} - \boldsymbol{\xi}, \\ & \boldsymbol{\xi} \geq \mathbf{0}, \end{array}$$

where $\mathbf{Y} = \text{diag}(y_1, y_2, \dots, y_m)$ and \mathbf{X} is the $m \times n$ matrix whose rows are $\mathbf{x}_1^T, \mathbf{x}_2^T, \dots, \mathbf{x}_m^T$.

▶ Lagrangian ($\alpha \in \mathbb{R}^m_+$):

$$L(\mathbf{w},\beta,\boldsymbol{\xi},\boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{w}\|^2 + C(\mathbf{e}^T\boldsymbol{\xi}) - \boldsymbol{\alpha}^T [\mathbf{Y}\mathbf{X}\mathbf{w} + \beta\mathbf{Y}\mathbf{e} - \mathbf{e} + \boldsymbol{\xi}]$$

$$= \frac{1}{2} \|\mathbf{w}\|^2 - \mathbf{w}^T [\mathbf{X}^T\mathbf{Y}\boldsymbol{\alpha}] - \beta(\boldsymbol{\alpha}^T\mathbf{Y}\mathbf{e}) + \boldsymbol{\xi}^T (C\mathbf{e} - \boldsymbol{\alpha}) + \boldsymbol{\alpha}^T \mathbf{e}.$$

$$q(\boldsymbol{\alpha}) = \left[\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 - \mathbf{w}^T [\mathbf{X}^T \mathbf{Y} \boldsymbol{\alpha}]\right] + \left[\min_{\beta} (-\beta(\boldsymbol{\alpha}^T \mathbf{Y} \mathbf{e}))\right] + \left[\min_{\boldsymbol{\xi} \ge 0} \boldsymbol{\xi}^T (C \mathbf{e} - \boldsymbol{\alpha})\right] + \boldsymbol{\alpha}^T \mathbf{e}.$$

$$\begin{split} \min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 - \mathbf{w}^T [\mathbf{X}^T \mathbf{Y} \boldsymbol{\alpha}] &= -\frac{1}{2} \boldsymbol{\alpha}^T \mathbf{Y} \mathbf{X} \mathbf{X}^T \mathbf{Y} \boldsymbol{\alpha}, \\ \min_{\boldsymbol{\beta}} (-\boldsymbol{\beta} (\boldsymbol{\alpha}^T \mathbf{Y} \mathbf{e})) &= \begin{cases} 0 & \boldsymbol{\alpha}^T \mathbf{Y} \mathbf{e} = 0, \\ -\infty & \text{else}, \end{cases} \\ \min_{\boldsymbol{\xi} \ge \mathbf{0}} \boldsymbol{\xi}^T (C \mathbf{e} - \boldsymbol{\alpha}) &= \begin{cases} 0 & \boldsymbol{\alpha} \le C \mathbf{e}, \\ -\infty & \text{else}, \end{cases} \end{split}$$

▶ Therefore, the dual objective function is given by

$$q(\alpha) = \begin{cases} \alpha^{T} \mathbf{e} - \frac{1}{2} \alpha^{T} \mathbf{Y} \mathbf{X} \mathbf{X}^{T} \mathbf{Y} \alpha & \alpha^{T} \mathbf{Y} \mathbf{e} = 0, \mathbf{0} \le \alpha \le C \mathbf{e} \\ -\infty & \text{else.} \end{cases}$$

$$\begin{split} \min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w}\|^2 - \mathbf{w}^T [\mathbf{X}^T \mathbf{Y} \boldsymbol{\alpha}] &= -\frac{1}{2} \boldsymbol{\alpha}^T \mathbf{Y} \mathbf{X} \mathbf{X}^T \mathbf{Y} \boldsymbol{\alpha}, \\ \min_{\beta} (-\beta(\boldsymbol{\alpha}^T \mathbf{Y} \mathbf{e})) &= \begin{cases} 0 & \boldsymbol{\alpha}^T \mathbf{Y} \mathbf{e} = 0, \\ -\infty & \text{else}, \end{cases} \\ \min_{\boldsymbol{\xi} \ge \mathbf{0}} \boldsymbol{\xi}^T (C \mathbf{e} - \boldsymbol{\alpha}) &= \begin{cases} 0 & \boldsymbol{\alpha} \le C \mathbf{e}, \\ -\infty & \text{else}, \end{cases} \end{split}$$

Therefore, the dual objective function is given by

$$q(\alpha) = \begin{cases} \alpha^{T} \mathbf{e} - \frac{1}{2} \alpha^{T} \mathbf{Y} \mathbf{X} \mathbf{X}^{T} \mathbf{Y} \alpha & \alpha^{T} \mathbf{Y} \mathbf{e} = 0, \mathbf{0} \le \alpha \le C \mathbf{e} \\ -\infty & \text{else.} \end{cases}$$

 $\begin{array}{ll} \max & \alpha^{T}\mathbf{e} - \frac{1}{2}\alpha^{T}\mathbf{Y}\mathbf{X}\mathbf{X}^{T}\mathbf{Y}\alpha \\ \bullet & \text{The dual problem is s.t.} & \alpha^{T}\mathbf{Y}\mathbf{e} = 0, \\ & \mathbf{0} \le \alpha \le C\mathbf{e}. \end{array}$

or

$$\begin{array}{ll} \max & \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j) \\ \text{s.t.} & \sum_{i=1}^{m} y_i \alpha_i = 0, \\ & 0 \le \alpha_i \le C, \quad i = 1, 2, \dots, m. \end{array}$$

Amir Beck