Lecture 12 - Duality

$$
\begin{align*}
f^{*}=\min & f(\mathbf{x}) \\
\text { s.t. } & g_{i}(\mathbf{x}) \leq 0, i=1,2, \ldots, m \tag{1}\\
& h_{j}(\mathbf{x})=0, j=1,2, \ldots, p \\
& \mathbf{x} \in X
\end{align*}
$$

- $f, g_{i}, h_{j}(i=1,2, \ldots, m, j=1,2, \ldots, p)$ are functions defined on the set $X \subseteq \mathbb{R}^{n}$.

Lecture 12 - Duality

$$
\begin{align*}
f^{*}=\min & f(\mathbf{x}) \\
\mathrm{s.t.} & g_{i}(\mathbf{x}) \leq 0, i=1,2, \ldots, m \\
& h_{j}(\mathbf{x})=0, j=1,2, \ldots, p \tag{1}\\
& \mathbf{x} \in X
\end{align*}
$$

- $f, g_{i}, h_{j}(i=1,2, \ldots, m, j=1,2, \ldots, p)$ are functions defined on the set $X \subseteq \mathbb{R}^{n}$.
- Problem (1) will be referred to as the primal problem.

Lecture 12 - Duality

$$
\begin{align*}
f^{*}=\min & f(\mathbf{x}) \\
\mathrm{s.t.} & g_{i}(\mathbf{x}) \leq 0, i=1,2, \ldots, m \\
& h_{j}(\mathbf{x})=0, j=1,2, \ldots, p \tag{1}\\
& \mathbf{x} \in X
\end{align*}
$$

- $f, g_{i}, h_{j}(i=1,2, \ldots, m, j=1,2, \ldots, p)$ are functions defined on the set $X \subseteq \mathbb{R}^{n}$.
- Problem (1) will be referred to as the primal problem.
- The Lagrangian is

$$
L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})+\sum_{j=1}^{p} \mu_{j} h_{j}(\mathbf{x}) \quad\left(\mathbf{x} \in X, \boldsymbol{\lambda} \in \mathbb{R}_{+}^{m}, \boldsymbol{\mu} \in \mathbb{R}^{p}\right)
$$

Lecture 12 - Duality

$$
\begin{align*}
f^{*}=\min & f(\mathbf{x}) \\
\text { s.t. } & g_{i}(\mathbf{x}) \leq 0, i=1,2, \ldots, m \\
& h_{j}(\mathbf{x})=0, j=1,2, \ldots, p \tag{1}\\
& \mathbf{x} \in X
\end{align*}
$$

- $f, g_{i}, h_{j}(i=1,2, \ldots, m, j=1,2, \ldots, p)$ are functions defined on the set $X \subseteq \mathbb{R}^{n}$.
- Problem (1) will be referred to as the primal problem.
- The Lagrangian is

$$
L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})+\sum_{j=1}^{p} \mu_{j} h_{j}(\mathbf{x}) \quad\left(\mathbf{x} \in X, \boldsymbol{\lambda} \in \mathbb{R}_{+}^{m}, \boldsymbol{\mu} \in \mathbb{R}^{p}\right)
$$

- The dual objective function $q: \mathbb{R}_{+}^{m} \times \mathbb{R}^{p} \rightarrow \mathbb{R} \cup\{-\infty\}$ is defined to be

$$
\begin{equation*}
q(\boldsymbol{\lambda}, \boldsymbol{\mu})=\min _{\mathbf{x} \in X} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \tag{2}
\end{equation*}
$$

The Dual Problem

- The domain of the dual objective function is

$$
\operatorname{dom}(q)=\left\{(\boldsymbol{\lambda}, \boldsymbol{\mu}) \in \mathbb{R}_{+}^{m} \times \mathbb{R}^{p}: q(\boldsymbol{\lambda}, \boldsymbol{\mu})>-\infty\right\} .
$$

- The dual problem is given by

$$
\begin{equation*}
q^{*}=\max _{\text {s.t. }} \quad q(\boldsymbol{\lambda}, \boldsymbol{\mu}) \tag{3}
\end{equation*}
$$

Convexity of the Dual Problem

Theorem. Consider problem (1) with $f, g_{i}, h_{j}(i=1,2, \ldots, m, j=$ $1,2, \ldots, p$) being functions defined on the set $X \subseteq \mathbb{R}^{n}$, and let q be the dual function defined in (2). Then
(a) $\operatorname{dom}(q)$ is a convex set.
(b) q is a concave function over $\operatorname{dom}(q)$.

Convexity of the Dual Problem

Theorem. Consider problem (1) with $f, g_{i}, h_{j}(i=1,2, \ldots, m, j=$ $1,2, \ldots, p$) being functions defined on the set $X \subseteq \mathbb{R}^{n}$, and let q be the dual function defined in (2). Then
(a) $\operatorname{dom}(q)$ is a convex set.
(b) q is a concave function over $\operatorname{dom}(q)$.

Proof.

- (a) Take $\left(\boldsymbol{\lambda}_{1}, \boldsymbol{\mu}_{1}\right),\left(\boldsymbol{\lambda}_{2}, \boldsymbol{\mu}_{2}\right) \in \operatorname{dom}(q)$ and $\alpha \in[0,1]$. Then

$$
\begin{align*}
& \min _{\mathbf{x} \in X} L\left(\mathbf{x}, \boldsymbol{\lambda}_{1}, \boldsymbol{\mu}_{1}\right)>-\infty, \tag{4}\\
& \min _{\mathbf{x} \in X} L\left(\mathbf{x}, \boldsymbol{\lambda}_{2}, \boldsymbol{\mu}_{2}\right)>-\infty . \tag{5}
\end{align*}
$$

Proof Contd.

- Therefore, since the Lagrangian $L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$ is affine w.r.t. $\boldsymbol{\lambda}, \boldsymbol{\mu}$,

$$
\begin{aligned}
& q\left(\alpha \boldsymbol{\lambda}_{1}+(1-\alpha) \boldsymbol{\lambda}_{2}, \alpha \boldsymbol{\mu}_{1}+(1-\alpha) \boldsymbol{\mu}_{2}\right) \\
& =\min _{\mathbf{x} \in X} L\left(\mathbf{x}, \alpha \boldsymbol{\lambda}_{1}+(1-\alpha) \boldsymbol{\lambda}_{2}, \alpha \boldsymbol{\mu}_{1}+(1-\alpha) \boldsymbol{\mu}_{2}\right) \\
& =\min _{\mathbf{x} \in X}\left\{\alpha L\left(\mathbf{x}, \boldsymbol{\lambda}_{1}, \boldsymbol{\mu}_{1}\right)+(1-\alpha) L\left(\mathbf{x}, \boldsymbol{\lambda}_{2}, \boldsymbol{\mu}_{2}\right)\right\} \\
& \geq \alpha \min _{\mathbf{x} \in X} L\left(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}_{1}\right)+(1-\alpha) \min _{\mathbf{x} \in X} L\left(\mathbf{x}, \boldsymbol{\lambda}_{2}, \boldsymbol{\mu}_{2}\right) \\
& =\alpha \boldsymbol{q}\left(\boldsymbol{\lambda}_{1}, \boldsymbol{\mu}_{1}\right)+(1-\alpha) \boldsymbol{q}\left(\boldsymbol{\lambda}_{2}, \boldsymbol{\mu}_{2}\right) \\
& >-\infty
\end{aligned}
$$

Proof Contd.

- Therefore, since the Lagrangian $L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$ is affine w.r.t. $\boldsymbol{\lambda}, \boldsymbol{\mu}$,

$$
\begin{aligned}
& q\left(\alpha \boldsymbol{\lambda}_{1}+(1-\alpha) \boldsymbol{\lambda}_{2}, \alpha \boldsymbol{\mu}_{1}+(1-\alpha) \boldsymbol{\mu}_{2}\right) \\
& =\min _{\mathbf{x} \in X} L\left(\mathbf{x}, \alpha \boldsymbol{\lambda}_{1}+(1-\alpha) \boldsymbol{\lambda}_{2}, \alpha \boldsymbol{\mu}_{1}+(1-\alpha) \boldsymbol{\mu}_{2}\right) \\
& =\min _{\mathbf{x} \in X}\left\{\alpha L\left(\mathbf{x}, \boldsymbol{\lambda}_{1}, \boldsymbol{\mu}_{1}\right)+(1-\alpha) L\left(\mathbf{x}, \boldsymbol{\lambda}_{2}, \boldsymbol{\mu}_{2}\right)\right\} \\
& \geq \alpha \min _{\mathbf{x} \in X} L\left(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}_{1}\right)+(1-\alpha) \min _{\mathbf{x} \in X} L\left(\mathbf{x}, \boldsymbol{\lambda}_{2}, \boldsymbol{\mu}_{2}\right) \\
& =\alpha \boldsymbol{q}\left(\boldsymbol{\lambda}_{1}, \boldsymbol{\mu}_{1}\right)+(1-\alpha) \boldsymbol{q}\left(\boldsymbol{\lambda}_{2}, \boldsymbol{\mu}_{2}\right) \\
& >-\infty
\end{aligned}
$$

- Hence, $\alpha\left(\boldsymbol{\lambda}_{1}, \boldsymbol{\mu}_{1}\right)+(1-\alpha)\left(\boldsymbol{\lambda}_{2}, \boldsymbol{\mu}_{2}\right) \in \operatorname{dom}(q)$, and the convexity of $\operatorname{dom}(q)$ is established.

Proof Contd.

- Therefore, since the Lagrangian $L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$ is affine w.r.t. $\boldsymbol{\lambda}, \boldsymbol{\mu}$,

$$
\begin{aligned}
& q\left(\alpha \boldsymbol{\lambda}_{1}+(1-\alpha) \boldsymbol{\lambda}_{2}, \alpha \boldsymbol{\mu}_{1}+(1-\alpha) \boldsymbol{\mu}_{2}\right) \\
& =\min _{\mathbf{x} \in X} L\left(\mathbf{x}, \alpha \boldsymbol{\lambda}_{1}+(1-\alpha) \boldsymbol{\lambda}_{2}, \alpha \boldsymbol{\mu}_{1}+(1-\alpha) \boldsymbol{\mu}_{2}\right) \\
& =\min _{\mathbf{x} \in X}\left\{\alpha L\left(\mathbf{x}, \boldsymbol{\lambda}_{1}, \boldsymbol{\mu}_{1}\right)+(1-\alpha) L\left(\mathbf{x}, \boldsymbol{\lambda}_{2}, \boldsymbol{\mu}_{2}\right)\right\} \\
& \geq \alpha \min _{\mathbf{x} \in X} L\left(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}_{1}\right)+(1-\alpha) \min _{\mathbf{x} \in X} L\left(\mathbf{x}, \boldsymbol{\lambda}_{2}, \boldsymbol{\mu}_{2}\right) \\
& =\alpha \boldsymbol{q}\left(\boldsymbol{\lambda}_{1}, \boldsymbol{\mu}_{1}\right)+(1-\alpha) q\left(\boldsymbol{\lambda}_{2}, \boldsymbol{\mu}_{2}\right) \\
& >-\infty
\end{aligned}
$$

- Hence, $\alpha\left(\boldsymbol{\lambda}_{1}, \boldsymbol{\mu}_{1}\right)+(1-\alpha)\left(\boldsymbol{\lambda}_{2}, \boldsymbol{\mu}_{2}\right) \in \operatorname{dom}(q)$, and the convexity of $\operatorname{dom}(q)$ is established.
- (b) $L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$ is an affine function w.r.t. $(\boldsymbol{\lambda}, \boldsymbol{\mu})$.

Proof Contd.

- Therefore, since the Lagrangian $L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$ is affine w.r.t. $\boldsymbol{\lambda}, \boldsymbol{\mu}$,

$$
\begin{aligned}
& q\left(\alpha \boldsymbol{\lambda}_{1}+(1-\alpha) \boldsymbol{\lambda}_{2}, \alpha \boldsymbol{\mu}_{1}+(1-\alpha) \boldsymbol{\mu}_{2}\right) \\
& =\min _{\mathbf{x} \in X} L\left(\mathbf{x}, \alpha \boldsymbol{\lambda}_{1}+(1-\alpha) \boldsymbol{\lambda}_{2}, \alpha \boldsymbol{\mu}_{1}+(1-\alpha) \boldsymbol{\mu}_{2}\right) \\
& =\min _{\mathbf{x} \in X}\left\{\alpha L\left(\mathbf{x}, \boldsymbol{\lambda}_{1}, \boldsymbol{\mu}_{1}\right)+(1-\alpha) L\left(\mathbf{x}, \boldsymbol{\lambda}_{2}, \boldsymbol{\mu}_{2}\right)\right\} \\
& \geq \alpha \min _{\mathbf{x} \in X} L\left(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}_{1}\right)+(1-\alpha) \min _{\mathbf{x} \in X} L\left(\mathbf{x}, \boldsymbol{\lambda}_{2}, \boldsymbol{\mu}_{2}\right) \\
& =\alpha \boldsymbol{q}\left(\boldsymbol{\lambda}_{1}, \boldsymbol{\mu}_{1}\right)+(1-\alpha) \boldsymbol{q}\left(\boldsymbol{\lambda}_{2}, \boldsymbol{\mu}_{2}\right) \\
& >-\infty
\end{aligned}
$$

- Hence, $\alpha\left(\boldsymbol{\lambda}_{1}, \boldsymbol{\mu}_{1}\right)+(1-\alpha)\left(\boldsymbol{\lambda}_{2}, \boldsymbol{\mu}_{2}\right) \in \operatorname{dom}(q)$, and the convexity of $\operatorname{dom}(q)$ is established.
- (b) $L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$ is an affine function w.r.t. $(\boldsymbol{\lambda}, \boldsymbol{\mu})$.
- In particular, it is a concave function w.r.t. $(\boldsymbol{\lambda}, \boldsymbol{\mu})$.

Proof Contd.

- Therefore, since the Lagrangian $L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$ is affine w.r.t. $\boldsymbol{\lambda}, \boldsymbol{\mu}$,

$$
\begin{aligned}
& q\left(\alpha \boldsymbol{\lambda}_{1}+(1-\alpha) \boldsymbol{\lambda}_{2}, \alpha \boldsymbol{\mu}_{1}+(1-\alpha) \boldsymbol{\mu}_{2}\right) \\
& =\min _{\mathbf{x} \in X} L\left(\mathbf{x}, \alpha \boldsymbol{\lambda}_{1}+(1-\alpha) \boldsymbol{\lambda}_{2}, \alpha \boldsymbol{\mu}_{1}+(1-\alpha) \boldsymbol{\mu}_{2}\right) \\
& =\min _{\mathbf{x} \in X}\left\{\alpha L\left(\mathbf{x}, \boldsymbol{\lambda}_{1}, \boldsymbol{\mu}_{1}\right)+(1-\alpha) L\left(\mathbf{x}, \boldsymbol{\lambda}_{2}, \boldsymbol{\mu}_{2}\right)\right\} \\
& \geq \alpha \min _{\mathbf{x} \in X} L\left(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}_{1}\right)+(1-\alpha) \min _{\mathbf{x} \in X} L\left(\mathbf{x}, \boldsymbol{\lambda}_{2}, \boldsymbol{\mu}_{2}\right) \\
& =\alpha \boldsymbol{q}\left(\boldsymbol{\lambda}_{1}, \boldsymbol{\mu}_{1}\right)+(1-\alpha) \boldsymbol{q}\left(\boldsymbol{\lambda}_{2}, \boldsymbol{\mu}_{2}\right) \\
& >-\infty
\end{aligned}
$$

- Hence, $\alpha\left(\boldsymbol{\lambda}_{1}, \boldsymbol{\mu}_{1}\right)+(1-\alpha)\left(\boldsymbol{\lambda}_{2}, \boldsymbol{\mu}_{2}\right) \in \operatorname{dom}(q)$, and the convexity of $\operatorname{dom}(q)$ is established.
- (b) $L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$ is an affine function w.r.t. $(\boldsymbol{\lambda}, \boldsymbol{\mu})$.
- In particular, it is a concave function w.r.t. $(\boldsymbol{\lambda}, \boldsymbol{\mu})$.
- Hence, since q is the minimum of concave functions, it must be concave.

The Weak Duality Theorem

Theorem. Consider the primal problem (1) and its dual problem (3). Then

$$
q^{*} \leq f^{*},
$$

where f^{*}, q^{*} are the primal and dual optimal values respectively.
Proof.

The Weak Duality Theorem

Theorem. Consider the primal problem (1) and its dual problem (3). Then

$$
q^{*} \leq f^{*},
$$

where f^{*}, q^{*} are the primal and dual optimal values respectively.

Proof.

- The feasible set of the primal problem is

$$
S=\left\{\mathbf{x} \in X: g_{i}(\mathbf{x}) \leq 0, h_{j}(\mathbf{x})=0, i=1,2, \ldots, m, j=1,2, \ldots, p\right\} .
$$

The Weak Duality Theorem

Theorem. Consider the primal problem (1) and its dual problem (3). Then

$$
q^{*} \leq f^{*},
$$

where f^{*}, q^{*} are the primal and dual optimal values respectively.

Proof.

- The feasible set of the primal problem is

$$
S=\left\{\mathbf{x} \in X: g_{i}(\mathbf{x}) \leq 0, h_{j}(\mathbf{x})=0, i=1,2, \ldots, m, j=1,2, \ldots, p\right\} .
$$

- Then for any $(\boldsymbol{\lambda}, \boldsymbol{\mu}) \in \operatorname{dom}(q)$ we have

$$
\begin{aligned}
q(\boldsymbol{\lambda}, \boldsymbol{\mu}) & =\min _{\mathbf{x} \in X} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \leq \min _{\mathbf{x} \in S} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \\
& =\min _{\mathbf{x} \in S}\left\{f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})+\sum_{j=1}^{p} \mu_{j} h_{j}(\mathbf{x})\right\} \\
& \leq \min _{\mathbf{x} \in S} f(\mathbf{x})=f^{*}
\end{aligned}
$$

The Weak Duality Theorem

Theorem. Consider the primal problem (1) and its dual problem (3). Then

$$
q^{*} \leq f^{*},
$$

where f^{*}, q^{*} are the primal and dual optimal values respectively.

Proof.

- The feasible set of the primal problem is

$$
S=\left\{\mathbf{x} \in X: g_{i}(\mathbf{x}) \leq 0, h_{j}(\mathbf{x})=0, i=1,2, \ldots, m, j=1,2, \ldots, p\right\} .
$$

- Then for any $(\boldsymbol{\lambda}, \boldsymbol{\mu}) \in \operatorname{dom}(q)$ we have

$$
\begin{aligned}
q(\boldsymbol{\lambda}, \boldsymbol{\mu}) & =\min _{\mathbf{x} \in X} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \leq \min _{\mathbf{x} \in S} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \\
& =\min _{\mathbf{x} \in S}\left\{f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})+\sum_{j=1}^{p} \mu_{j} h_{j}(\mathbf{x})\right\} \\
& \leq \min _{\mathbf{x} \in S} f(\mathbf{x})=f^{*}
\end{aligned}
$$

- Taking the maximum over $(\boldsymbol{\lambda}, \boldsymbol{\mu}) \in \operatorname{dom}(q)$, the result follows.

Example

$$
\begin{array}{ll}
\min & x_{1}^{2}-3 x_{2}^{2} \\
\text { s.t. } & x_{1}=x_{2}^{3} .
\end{array}
$$

In class

Strong Duality in the Convex Case - Back to Separation

Supporting Hyperplane Theorem Let $C \subseteq \mathbb{R}^{n}$ be a convex set and let $\mathbf{y} \notin C$. Then there exists $\mathbf{0} \neq \mathbf{p} \in \mathbb{R}^{n}$ such that

$$
\mathbf{p}^{T} \mathbf{x} \leq \mathbf{p}^{T} \mathbf{y} \text { for any } \mathbf{x} \in C .
$$

Proof.

Strong Duality in the Convex Case - Back to Separation

Supporting Hyperplane Theorem Let $C \subseteq \mathbb{R}^{n}$ be a convex set and let $\mathbf{y} \notin C$. Then there exists $\mathbf{0} \neq \mathbf{p} \in \mathbb{R}^{n}$ such that

$$
\mathbf{p}^{T} \mathbf{x} \leq \mathbf{p}^{T} \mathbf{y} \text { for any } \mathbf{x} \in C .
$$

Proof.

- Although the theorem holds for any convex set C, we will prove it only for sets with a nonempty interior.

Strong Duality in the Convex Case - Back to Separation

Supporting Hyperplane Theorem Let $C \subseteq \mathbb{R}^{n}$ be a convex set and let $\mathbf{y} \notin C$.
Then there exists $\mathbf{0} \neq \mathbf{p} \in \mathbb{R}^{n}$ such that

$$
\mathbf{p}^{T} \mathbf{x} \leq \mathbf{p}^{T} \mathbf{y} \text { for any } \mathbf{x} \in C .
$$

Proof.

- Although the theorem holds for any convex set C, we will prove it only for sets with a nonempty interior.
- Since $\mathbf{y} \notin \operatorname{int}(C)$, it follows that $\mathbf{y} \notin \operatorname{int}(\operatorname{cl}(C))$.

Strong Duality in the Convex Case - Back to Separation

Supporting Hyperplane Theorem Let $C \subseteq \mathbb{R}^{n}$ be a convex set and let $\mathbf{y} \notin C$.
Then there exists $\mathbf{0} \neq \mathbf{p} \in \mathbb{R}^{n}$ such that

$$
\mathbf{p}^{T} \mathbf{x} \leq \mathbf{p}^{T} \mathbf{y} \text { for any } \mathbf{x} \in C .
$$

Proof.

- Although the theorem holds for any convex set C, we will prove it only for sets with a nonempty interior.
- Since $\mathbf{y} \notin \operatorname{int}(C)$, it follows that $\mathbf{y} \notin \operatorname{int}(\operatorname{cl}(C))$.
- Therefore, there exists a sequence $\left\{\mathbf{y}_{k}\right\}_{k \geq 1}$ such that $\mathbf{y}_{k} \notin \operatorname{cl}(C)$ and $\mathbf{y}_{k} \rightarrow \mathbf{y}$.

Strong Duality in the Convex Case - Back to Separation

Supporting Hyperplane Theorem Let $C \subseteq \mathbb{R}^{n}$ be a convex set and let $\mathbf{y} \notin C$.
Then there exists $\mathbf{0} \neq \mathbf{p} \in \mathbb{R}^{n}$ such that

$$
\mathbf{p}^{\top} \mathbf{x} \leq \mathbf{p}^{\top} \mathbf{y} \text { for any } \mathbf{x} \in C
$$

Proof.

- Although the theorem holds for any convex set C, we will prove it only for sets with a nonempty interior.
- Since $\mathbf{y} \notin \operatorname{int}(C)$, it follows that $\mathbf{y} \notin \operatorname{int}(\mathrm{cl}(C))$.
- Therefore, there exists a sequence $\left\{\mathbf{y}_{k}\right\}_{k \geq 1}$ such that $\mathbf{y}_{k} \notin \operatorname{cl}(C)$ and $\mathbf{y}_{k} \rightarrow \mathbf{y}$.
- By the separation theorem of a point from a closed and convex set, there exists $\mathbf{0} \neq \mathbf{p}_{k} \in \mathbb{R}^{n}$ such that

$$
\mathbf{p}_{k}^{T} \mathbf{x}<\mathbf{p}_{k}^{T} \mathbf{y}_{k} \quad \forall \mathbf{x} \in \operatorname{cl}(C)
$$

Strong Duality in the Convex Case - Back to Separation

Supporting Hyperplane Theorem Let $C \subseteq \mathbb{R}^{n}$ be a convex set and let $\mathbf{y} \notin C$.
Then there exists $\mathbf{0} \neq \mathbf{p} \in \mathbb{R}^{n}$ such that

$$
\mathbf{p}^{\top} \mathbf{x} \leq \mathbf{p}^{\top} \mathbf{y} \text { for any } \mathbf{x} \in C
$$

Proof.

- Although the theorem holds for any convex set C, we will prove it only for sets with a nonempty interior.
- Since $\mathbf{y} \notin \operatorname{int}(C)$, it follows that $\mathbf{y} \notin \operatorname{int}(\mathrm{cl}(C))$.
- Therefore, there exists a sequence $\left\{\mathbf{y}_{k}\right\}_{k \geq 1}$ such that $\mathbf{y}_{k} \notin \operatorname{cl}(C)$ and $\mathbf{y}_{k} \rightarrow \mathbf{y}$.
- By the separation theorem of a point from a closed and convex set, there exists $\mathbf{0} \neq \mathbf{p}_{k} \in \mathbb{R}^{n}$ such that

$$
\mathbf{p}_{k}^{T} \mathbf{x}<\mathbf{p}_{k}^{T} \mathbf{y}_{k} \quad \forall \mathbf{x} \in \operatorname{cl}(C)
$$

- Thus,

$$
\begin{equation*}
\frac{\mathbf{p}_{k}^{T}}{\left\|\mathbf{p}_{k}\right\|}\left(\mathbf{x}-\mathbf{y}_{k}\right)<0 \text { for any } \mathbf{x} \in \operatorname{cl}(C) \tag{6}
\end{equation*}
$$

Proof Contd.

- Since the sequence $\left\{\frac{\mathbf{p}_{k}}{\left\|\boldsymbol{p}_{k}\right\|}\right\}$ is bounded, it follows that there exists a subsequence $\left\{\frac{\mathbf{p}_{k}}{\left\|\boldsymbol{p}_{k}\right\|}\right\}_{k \in T}$ such that $\frac{\mathbf{p}_{k}}{\left\|\mathbf{p}_{k}\right\|} \rightarrow \mathbf{p}$ as $k \xrightarrow{T} \infty$ for some $\mathbf{p} \in \mathbb{R}^{n}$.

Proof Contd.

- Since the sequence $\left\{\frac{\mathbf{p}_{k}}{\left\|\boldsymbol{p}_{k}\right\|}\right\}$ is bounded, it follows that there exists a subsequence $\left\{\frac{\mathbf{p}_{k}}{\left\|\mathbf{p}_{k}\right\|}\right\}_{k \in T}$ such that $\frac{\mathbf{p}_{k}}{\left\|\mathbf{p}_{k}\right\|} \rightarrow \mathbf{p}$ as $k \xrightarrow{T} \infty$ for some $\mathbf{p} \in \mathbb{R}^{n}$.
- Obviously, $\|\mathbf{p}\|=1$ and hence in particular $\mathbf{p} \neq 0$.

Proof Contd.

- Since the sequence $\left\{\frac{\mathbf{p}_{k}}{\left\|\boldsymbol{p}_{k}\right\|}\right\}$ is bounded, it follows that there exists a subsequence $\left\{\frac{\mathbf{p}_{k}}{\left\|\mathbf{p}_{k}\right\|}\right\}_{k \in T}$ such that $\frac{\mathbf{p}_{k}}{\left\|\mathbf{p}_{k}\right\|} \rightarrow \mathbf{p}$ as $k \xrightarrow{T} \infty$ for some $\mathbf{p} \in \mathbb{R}^{n}$.
- Obviously, $\|\mathbf{p}\|=1$ and hence in particular $\mathbf{p} \neq 0$.
- Taking the limit as $k \xrightarrow{T} \infty$ in inequality (6) we obtain that

$$
\mathbf{p}^{T}(\mathbf{x}-\mathbf{y}) \leq 0 \text { for any } \mathbf{x} \in \operatorname{cl}(C)
$$

which readily implies the result since $C \subseteq \operatorname{cl}(C)$.

Separation of Two Convex Sets

Theorem. Let $C_{1}, C_{2} \subseteq \mathbb{R}^{n}$ be two nonempty convex sets such that $C_{1} \cap C_{2}=$ \emptyset. Then there exists $\mathbf{0} \neq \mathbf{p} \in \mathbb{R}^{n}$ for which

$$
\mathbf{p}^{T} \mathbf{x} \leq \mathbf{p}^{T} \mathbf{y} \text { for any } \mathbf{x} \in C_{1}, \mathbf{y} \in C_{2} .
$$

Proof.

- The set $C_{1}-C_{2}$ is a convex set.

Separation of Two Convex Sets

Theorem. Let $C_{1}, C_{2} \subseteq \mathbb{R}^{n}$ be two nonempty convex sets such that $C_{1} \cap C_{2}=$ \emptyset. Then there exists $\mathbf{0} \neq \mathbf{p} \in \mathbb{R}^{n}$ for which

$$
\mathbf{p}^{T} \mathbf{x} \leq \mathbf{p}^{T} \mathbf{y} \text { for any } \mathbf{x} \in C_{1}, \mathbf{y} \in C_{2} .
$$

Proof.

- The set $C_{1}-C_{2}$ is a convex set.
- $C_{1} \cap C_{2}=\emptyset \Rightarrow \mathbf{0} \notin C_{1}-C_{2}$.

Separation of Two Convex Sets

Theorem. Let $C_{1}, C_{2} \subseteq \mathbb{R}^{n}$ be two nonempty convex sets such that $C_{1} \cap C_{2}=$ \emptyset. Then there exists $\mathbf{0} \neq \mathbf{p} \in \mathbb{R}^{n}$ for which

$$
\mathbf{p}^{T} \mathbf{x} \leq \mathbf{p}^{T} \mathbf{y} \text { for any } \mathbf{x} \in C_{1}, \mathbf{y} \in C_{2} .
$$

Proof.

- The set $C_{1}-C_{2}$ is a convex set.
- $C_{1} \cap C_{2}=\emptyset \Rightarrow \mathbf{0} \notin C_{1}-C_{2}$.
- By the supporting hyperplane theorem, there exists $\mathbf{0} \neq \mathbf{p} \in \mathbb{R}^{n}$ such that

$$
\mathbf{p}^{T}(\mathbf{x}-\mathbf{y}) \leq \mathbf{p}^{T} \mathbf{0} \text { for any } \mathbf{x} \in C_{1}, \mathbf{y} \in C_{2},
$$

The Nonlinear Farkas Lemma

Theorem. Let $X \subseteq \mathbb{R}^{n}$ be a convex set and let $f, g_{1}, g_{2}, \ldots, g_{m}$ be convex functions over X. Assume that there exists $\hat{\mathbf{x}} \in X$ such that

$$
g_{1}(\hat{\mathbf{x}})<0, g_{2}(\hat{\mathbf{x}})<0, \ldots, g_{m}(\hat{\mathbf{x}})<0
$$

Let $c \in \mathbb{R}$. Then the following two claims are equivalent:
(a) the following implication holds:

$$
\mathbf{x} \in X, g_{i}(\mathbf{x}) \leq 0, i=1,2, \ldots, m \Rightarrow f(\mathbf{x}) \geq c
$$

(b) there exist $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \geq 0$ such that

$$
\begin{equation*}
\min _{\mathbf{x} \in X}\left\{f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})\right\} \geq c \tag{7}
\end{equation*}
$$

Proof of $(\mathrm{b}) \Rightarrow(\mathrm{a})$

- Suppose that there exist $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \geq 0$ such that (7) holds, and let $\mathbf{x} \in X$ satisfy $g_{i}(\mathbf{x}) \leq 0, i=1,2, \ldots, m$.

Proof of $(\mathrm{b}) \Rightarrow(\mathrm{a})$

- Suppose that there exist $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \geq 0$ such that (7) holds, and let $\mathbf{x} \in X$ satisfy $g_{i}(\mathbf{x}) \leq 0, i=1,2, \ldots, m$.
- By (7) we have

$$
f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x}) \geq c
$$

Proof of $(\mathrm{b}) \Rightarrow(\mathrm{a})$

- Suppose that there exist $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \geq 0$ such that (7) holds, and let $\mathbf{x} \in X$ satisfy $g_{i}(\mathbf{x}) \leq 0, i=1,2, \ldots, m$.
- By (7) we have

$$
f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x}) \geq c
$$

- Hence,

$$
f(\mathbf{x}) \geq c-\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x}) \geq c
$$

Proof of $(\mathrm{a}) \Rightarrow(\mathrm{b})$

- Assume that the implication (a) holds.

Proof of (a) \Rightarrow (b)

- Assume that the implication (a) holds.
- Consider the following two sets:

$$
\begin{aligned}
S & =\left\{\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{m}\right): \exists \mathbf{x} \in X, f(\mathbf{x}) \leq u_{0}, g_{i}(\mathbf{x}) \leq u_{i}, i=1,2, \ldots, m\right\}, \\
T & =\left\{\left(u_{0}, u_{1}, \ldots, u_{m}\right): u_{0}<c, u_{1} \leq 0, u_{2} \leq 0, \ldots, u_{m} \leq 0\right\}
\end{aligned}
$$

Proof of $(\mathrm{a}) \Rightarrow(\mathrm{b})$

- Assume that the implication (a) holds.
- Consider the following two sets:

$$
\begin{aligned}
S & =\left\{\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{m}\right): \exists \mathbf{x} \in X, f(\mathbf{x}) \leq u_{0}, g_{i}(\mathbf{x}) \leq u_{i}, i=1,2, \ldots, m\right\} \\
T & =\left\{\left(u_{0}, u_{1}, \ldots, u_{m}\right): u_{0}<c, u_{1} \leq 0, u_{2} \leq 0, \ldots, u_{m} \leq 0\right\}
\end{aligned}
$$

- S, T are nonempty and convex and in addition $S \cap T=\emptyset$.

Proof of (a) \Rightarrow (b)

- Assume that the implication (a) holds.
- Consider the following two sets:

$$
\begin{aligned}
S & =\left\{\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{m}\right): \exists \mathbf{x} \in X, f(\mathbf{x}) \leq u_{0}, g_{i}(\mathbf{x}) \leq u_{i}, i=1,2, \ldots, m\right\} \\
T & =\left\{\left(u_{0}, u_{1}, \ldots, u_{m}\right): u_{0}<c, u_{1} \leq 0, u_{2} \leq 0, \ldots, u_{m} \leq 0\right\}
\end{aligned}
$$

- S, T are nonempty and convex and in addition $S \cap T=\emptyset$.
- By the supporting hyperplane theorem, there exists a vector $\mathbf{a}=\left(a_{0}, a_{1}, \ldots, a_{m}\right) \neq \mathbf{0}$, such that

$$
\begin{equation*}
\min _{\left(u_{0}, u_{1}, \ldots, u_{m}\right) \in S} \sum_{j=0}^{m} a_{j} u_{j} \geq \underset{\left(u_{0}, u_{1}, \ldots, u_{m}\right) \in T}{\max } \sum_{j=0}^{m} a_{j} u_{j} \tag{8}
\end{equation*}
$$

Proof of (a) \Rightarrow (b)

- Assume that the implication (a) holds.
- Consider the following two sets:

$$
\begin{aligned}
S & =\left\{\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{m}\right): \exists \mathbf{x} \in X, f(\mathbf{x}) \leq u_{0}, g_{i}(\mathbf{x}) \leq u_{i}, i=1,2, \ldots, m\right\} \\
T & =\left\{\left(u_{0}, u_{1}, \ldots, u_{m}\right): u_{0}<c, u_{1} \leq 0, u_{2} \leq 0, \ldots, u_{m} \leq 0\right\}
\end{aligned}
$$

- S, T are nonempty and convex and in addition $S \cap T=\emptyset$.
- By the supporting hyperplane theorem, there exists a vector $\mathbf{a}=\left(a_{0}, a_{1}, \ldots, a_{m}\right) \neq \mathbf{0}$, such that

$$
\begin{equation*}
\min _{\left(u_{0}, u_{1}, \ldots, u_{m}\right) \in S} \sum_{j=0}^{m} a_{j} u_{j} \geq \underset{\left(u_{0}, u_{1}, \ldots, u_{m}\right) \in T}{\max } \sum_{j=0}^{m} a_{j} u_{j} \tag{8}
\end{equation*}
$$

- $\mathbf{a} \geq 0$.

Proof of (a) \Rightarrow (b)

- Assume that the implication (a) holds.
- Consider the following two sets:

$$
\begin{aligned}
S & =\left\{\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{m}\right): \exists \mathbf{x} \in X, f(\mathbf{x}) \leq u_{0}, g_{i}(\mathbf{x}) \leq u_{i}, i=1,2, \ldots, m\right\} \\
T & =\left\{\left(u_{0}, u_{1}, \ldots, u_{m}\right): u_{0}<c, u_{1} \leq 0, u_{2} \leq 0, \ldots, u_{m} \leq 0\right\}
\end{aligned}
$$

- S, T are nonempty and convex and in addition $S \cap T=\emptyset$.
- By the supporting hyperplane theorem, there exists a vector $\mathbf{a}=\left(a_{0}, a_{1}, \ldots, a_{m}\right) \neq \mathbf{0}$, such that

$$
\begin{equation*}
\min _{\left(u_{0}, u_{1}, \ldots, u_{m}\right) \in S} \sum_{j=0}^{m} a_{j} u_{j} \geq \underset{\left(u_{0}, u_{1}, \ldots, u_{m}\right) \in T}{\max } \sum_{j=0}^{m} a_{j} u_{j} \tag{8}
\end{equation*}
$$

- $\mathbf{a} \geq 0$.
- Since $\mathbf{a} \geq 0$, it follows that the right-hand side is $a_{0} c$, and we thus obtained

$$
\begin{equation*}
\min _{\left(u_{0}, u_{1}, \ldots, u_{m}\right) \in S} \sum_{j=0}^{m} a_{j} u_{j} \geq a_{0} c \tag{9}
\end{equation*}
$$

Proof of $(\mathrm{a}) \Rightarrow(\mathrm{b})$ Contd.

- We will show that $a_{0}>0$. Suppose in contradiction that $a_{0}=0$. Then $\min _{\left(u_{0}, u_{1}, \ldots, u_{m}\right) \in S} \sum_{j=1}^{m} a_{j} u_{j} \geq 0$.

Proof of $(\mathrm{a}) \Rightarrow(\mathrm{b})$ Contd.

- We will show that $a_{0}>0$. Suppose in contradiction that $a_{0}=0$. Then $\min _{\left(u_{0}, u_{1}, \ldots, u_{m}\right) \in S} \sum_{j=1}^{m} a_{j} u_{j} \geq 0$.
- Since we can take $u_{i}=g_{i}(\hat{\mathbf{x}})$, we can deduce that $\sum_{j=1}^{m} a_{j} g_{j}(\hat{\mathbf{x}}) \geq 0$, which is impossible since $g_{j}(\hat{\mathbf{x}})<0$ and $\mathbf{a} \neq \mathbf{0}$.

Proof of $(\mathrm{a}) \Rightarrow(\mathrm{b})$ Contd.

- We will show that $a_{0}>0$. Suppose in contradiction that $a_{0}=0$. Then $\min _{\left(u_{0}, u_{1}, \ldots, u_{m}\right) \in S} \sum_{j=1}^{m} a_{j} u_{j} \geq 0$.
- Since we can take $u_{i}=g_{i}(\hat{\mathbf{x}})$, we can deduce that $\sum_{j=1}^{m} a_{j} g_{j}(\hat{\mathbf{x}}) \geq 0$, which is impossible since $g_{j}(\hat{\mathbf{x}})<0$ and $\mathbf{a} \neq \mathbf{0}$.
- Since $a_{0}>0$, we can divide (9) by a_{0} to obtain

$$
\begin{equation*}
\min _{\left(u_{0}, u_{1}, \ldots, u_{m}\right) \in S}\left\{u_{0}+\sum_{j=1}^{m} \tilde{\mathrm{a}}_{j} u_{j}\right\} \geq c, \tag{10}
\end{equation*}
$$

where $\tilde{a}_{j}=\frac{a_{j}}{a_{0}}$.

Proof of $(\mathrm{a}) \Rightarrow(\mathrm{b})$ Contd.

- We will show that $a_{0}>0$. Suppose in contradiction that $a_{0}=0$. Then $\min _{\left(u_{0}, u_{1}, \ldots, u_{m}\right) \in S} \sum_{j=1}^{m} a_{j} u_{j} \geq 0$.
- Since we can take $u_{i}=g_{i}(\hat{\mathbf{x}})$, we can deduce that $\sum_{j=1}^{m} a_{j} g_{j}(\hat{\mathbf{x}}) \geq 0$, which is impossible since $g_{j}(\hat{\mathbf{x}})<0$ and $\mathbf{a} \neq \mathbf{0}$.
- Since $a_{0}>0$, we can divide (9) by a_{0} to obtain

$$
\begin{equation*}
\min _{\left(u_{0}, u_{1}, \ldots, u_{m}\right) \in S}\left\{u_{0}+\sum_{j=1}^{m} \tilde{\mathrm{a}}_{j} u_{j}\right\} \geq c \tag{10}
\end{equation*}
$$

where $\tilde{a}_{j}=\frac{a_{j}}{a_{0}}$.

- By the definition of S we have

$$
\min _{\left(u_{0}, u_{1}, \ldots, u_{m}\right) \in S}\left\{u_{0}+\sum_{j=1}^{m} \tilde{a}_{j} u_{j}\right\} \leq \min _{\mathbf{x} \in X}\left\{f(\mathbf{x})+\sum_{j=1}^{m} \tilde{\mathrm{a}}_{j} g_{j}(\mathbf{x})\right\},
$$

which combined with (10) yields the desired result

$$
\min _{\mathbf{x} \in X}\left\{f(\mathbf{x})+\sum_{\substack{j=1}}^{m} \tilde{a}_{j} g_{j}(\mathbf{x})\right\} \geq c
$$

Strong Duality of Convex Problems with Inequality Constraints

Theorem. Consider the optimization problem

$$
\begin{align*}
f^{*}=\min & f(\mathbf{x}) \\
\text { s.t. } & g_{i}(\mathbf{x}) \leq 0, \quad i=1,2, \ldots, m, \tag{11}\\
& \mathbf{x} \in X,
\end{align*}
$$

where X is a convex set and $f, g_{i}, i=1,2, \ldots, m$ are convex functions over X. Suppose that there exists $\hat{\mathbf{x}} \in X$ for which $g_{i}(\hat{\mathbf{x}})<0, i=1,2, \ldots, m$. If problem (11) has a finite optimal value, then
(a) the optimal value of the dual problem is attained.
(b) $f^{*}=q^{*}$.

Proof of Strong Duality Theorem

- Since $f^{*}>-\infty$ is the optimal value of (11), it follows that the following implication holds:

$$
\mathbf{x} \in X, g_{i}(\mathbf{x}) \leq 0, i=1,2, \ldots, m \Rightarrow f(\mathbf{x}) \geq f^{*}
$$

Proof of Strong Duality Theorem

- Since $f^{*}>-\infty$ is the optimal value of (11), it follows that the following implication holds:

$$
\mathbf{x} \in X, g_{i}(\mathbf{x}) \leq 0, i=1,2, \ldots, m \Rightarrow f(\mathbf{x}) \geq f^{*}
$$

- By the nonlinear Farkas Lemma there exists $\tilde{\lambda}_{1}, \tilde{\lambda}_{2}, \ldots, \tilde{\lambda}_{m} \geq 0$ such that

$$
q(\tilde{\lambda})=\min _{\mathbf{x} \in X}\left\{f(\mathbf{x})+\sum_{j=1}^{m} \tilde{\lambda}_{j} g_{j}(\mathbf{x})\right\} \geq f^{*} .
$$

Proof of Strong Duality Theorem

- Since $f^{*}>-\infty$ is the optimal value of (11), it follows that the following implication holds:

$$
\mathbf{x} \in X, g_{i}(\mathbf{x}) \leq 0, i=1,2, \ldots, m \Rightarrow f(\mathbf{x}) \geq f^{*}
$$

- By the nonlinear Farkas Lemma there exists $\tilde{\lambda}_{1}, \tilde{\lambda}_{2}, \ldots, \tilde{\lambda}_{m} \geq 0$ such that

$$
q(\tilde{\lambda})=\min _{\mathbf{x} \in X}\left\{f(\mathbf{x})+\sum_{j=1}^{m} \tilde{\lambda}_{j} g_{j}(\mathbf{x})\right\} \geq f^{*} .
$$

- By the weak duality theorem,

$$
q^{*} \geq q(\tilde{\lambda}) \geq f^{*} \geq q^{*},
$$

Proof of Strong Duality Theorem

- Since $f^{*}>-\infty$ is the optimal value of (11), it follows that the following implication holds:

$$
\mathbf{x} \in X, g_{i}(\mathbf{x}) \leq 0, i=1,2, \ldots, m \Rightarrow f(\mathbf{x}) \geq f^{*}
$$

- By the nonlinear Farkas Lemma there exists $\tilde{\lambda}_{1}, \tilde{\lambda}_{2}, \ldots, \tilde{\lambda}_{m} \geq 0$ such that

$$
q(\tilde{\lambda})=\min _{\mathbf{x} \in X}\left\{f(\mathbf{x})+\sum_{j=1}^{m} \tilde{\lambda}_{j} g_{j}(\mathbf{x})\right\} \geq f^{*} .
$$

- By the weak duality theorem,

$$
q^{*} \geq q(\tilde{\lambda}) \geq f^{*} \geq q^{*},
$$

- Hence $f^{*}=q^{*}$ and $\tilde{\lambda}$ is an optimal solution of the dual problem.

Example

$$
\begin{array}{ll}
\min & x_{1}^{2}-x_{2} \\
\text { s.t. } & x_{2}^{2} \leq 0 .
\end{array}
$$

In class

Duffin's Duality Gap

$$
\min \left\{e^{-x_{2}}: \sqrt{x_{1}^{2}+x_{2}^{2}}-x_{1} \leq 0\right\}
$$

- The feasible set is in fact $F=\left\{\left(x_{1}, x_{2}\right): x_{1} \geq 0, x_{2}=0\right\} \Rightarrow f^{*}=1$

Duffin's Duality Gap

$$
\min \left\{e^{-x_{2}}: \sqrt{x_{1}^{2}+x_{2}^{2}}-x_{1} \leq 0\right\}
$$

- The feasible set is in fact $F=\left\{\left(x_{1}, x_{2}\right): x_{1} \geq 0, x_{2}=0\right\} \Rightarrow f^{*}=1$
- Slater condition is not satisfied.

Duffin's Duality Gap

$$
\min \left\{e^{-x_{2}}: \sqrt{x_{1}^{2}+x_{2}^{2}}-x_{1} \leq 0\right\}
$$

- The feasible set is in fact $F=\left\{\left(x_{1}, x_{2}\right): x_{1} \geq 0, x_{2}=0\right\} \Rightarrow f^{*}=1$
- Slater condition is not satisfied.
- Lagrangian: $L\left(x_{1}, x_{2}, \lambda\right)=e^{-x_{2}}+\lambda\left(\sqrt{x_{1}^{2}+x_{2}^{2}}-x_{1}\right) \quad(\lambda>0)$.

Duffin's Duality Gap

$$
\min \left\{e^{-x_{2}}: \sqrt{x_{1}^{2}+x_{2}^{2}}-x_{1} \leq 0\right\}
$$

- The feasible set is in fact $F=\left\{\left(x_{1}, x_{2}\right): x_{1} \geq 0, x_{2}=0\right\} \Rightarrow f^{*}=1$
- Slater condition is not satisfied.
- Lagrangian: $L\left(x_{1}, x_{2}, \lambda\right)=e^{-x_{2}}+\lambda\left(\sqrt{x_{1}^{2}+x_{2}^{2}}-x_{1}\right) \quad(\lambda>0)$.
- $q(\lambda)=\min _{x_{1}, x_{2}} L\left(x_{1}, x_{2}, \lambda\right) \geq 0$

Duffin's Duality Gap

$$
\min \left\{e^{-x_{2}}: \sqrt{x_{1}^{2}+x_{2}^{2}}-x_{1} \leq 0\right\}
$$

- The feasible set is in fact $F=\left\{\left(x_{1}, x_{2}\right): x_{1} \geq 0, x_{2}=0\right\} \Rightarrow f^{*}=1$
- Slater condition is not satisfied.
- Lagrangian: $L\left(x_{1}, x_{2}, \lambda\right)=e^{-x_{2}}+\lambda\left(\sqrt{x_{1}^{2}+x_{2}^{2}}-x_{1}\right) \quad(\lambda>0)$.
- $q(\lambda)=\min _{x_{1}, x_{2}} L\left(x_{1}, x_{2}, \lambda\right) \geq 0$
- For any $\varepsilon>0$, take $x_{2}=-\log \varepsilon, x_{1}=\frac{x_{2}^{2}-\varepsilon^{2}}{2 \varepsilon}$.

$$
\begin{aligned}
\sqrt{x_{1}^{2}+x_{2}^{2}}-x_{1} & =\sqrt{\frac{\left(x_{2}^{2}-\varepsilon^{2}\right)}{4 \varepsilon^{2}}+x_{2}^{2}}-\frac{x_{2}^{2}-\varepsilon^{2}}{2 \varepsilon}=\sqrt{\frac{\left(x_{2}^{2}+\varepsilon^{2}\right)^{2}}{4 \varepsilon^{2}}}-\frac{x_{2}^{2}-\varepsilon^{2}}{2 \varepsilon} \\
& =\frac{x_{2}^{2}+\varepsilon^{2}}{2 \varepsilon}-\frac{x_{2}^{2}-\varepsilon^{2}}{2 \varepsilon}=\varepsilon
\end{aligned}
$$

Duffin's Duality Gap

$$
\min \left\{e^{-x_{2}}: \sqrt{x_{1}^{2}+x_{2}^{2}}-x_{1} \leq 0\right\}
$$

- The feasible set is in fact $F=\left\{\left(x_{1}, x_{2}\right): x_{1} \geq 0, x_{2}=0\right\} \Rightarrow f^{*}=1$
- Slater condition is not satisfied.
- Lagrangian: $L\left(x_{1}, x_{2}, \lambda\right)=e^{-x_{2}}+\lambda\left(\sqrt{x_{1}^{2}+x_{2}^{2}}-x_{1}\right) \quad(\lambda>0)$.
- $q(\lambda)=\min _{x_{1}, x_{2}} L\left(x_{1}, x_{2}, \lambda\right) \geq 0$
- For any $\varepsilon>0$, take $x_{2}=-\log \varepsilon, x_{1}=\frac{x_{2}^{2}-\varepsilon^{2}}{2 \varepsilon}$.

$$
\begin{aligned}
\sqrt{x_{1}^{2}+x_{2}^{2}}-x_{1} & =\sqrt{\frac{\left(x_{2}^{2}-\varepsilon^{2}\right)}{4 \varepsilon^{2}}+x_{2}^{2}}-\frac{x_{2}^{2}-\varepsilon^{2}}{2 \varepsilon}=\sqrt{\frac{\left(x_{2}^{2}+\varepsilon^{2}\right)^{2}}{4 \varepsilon^{2}}}-\frac{x_{2}^{2}-\varepsilon^{2}}{2 \varepsilon} \\
& =\frac{x_{2}^{2}+\varepsilon^{2}}{2 \varepsilon}-\frac{x_{2}^{2}-\varepsilon^{2}}{2 \varepsilon}=\varepsilon
\end{aligned}
$$

- Hence, $L\left(x_{1}, x_{2}, \lambda\right)=e^{-x_{2}}+\lambda\left(\sqrt{x_{1}^{2}+x_{2}^{2}}-x_{1}\right)=\varepsilon+\lambda \varepsilon=(1+\lambda) \varepsilon$,

Duffin's Duality Gap

$$
\min \left\{e^{-x_{2}}: \sqrt{x_{1}^{2}+x_{2}^{2}}-x_{1} \leq 0\right\}
$$

- The feasible set is in fact $F=\left\{\left(x_{1}, x_{2}\right): x_{1} \geq 0, x_{2}=0\right\} \Rightarrow f^{*}=1$
- Slater condition is not satisfied.
- Lagrangian: $L\left(x_{1}, x_{2}, \lambda\right)=e^{-x_{2}}+\lambda\left(\sqrt{x_{1}^{2}+x_{2}^{2}}-x_{1}\right) \quad(\lambda>0)$.
- $q(\lambda)=\min _{x_{1}, x_{2}} L\left(x_{1}, x_{2}, \lambda\right) \geq 0$
- For any $\varepsilon>0$, take $x_{2}=-\log \varepsilon, x_{1}=\frac{x_{2}^{2}-\varepsilon^{2}}{2 \varepsilon}$.

$$
\begin{aligned}
\sqrt{x_{1}^{2}+x_{2}^{2}}-x_{1} & =\sqrt{\frac{\left(x_{2}^{2}-\varepsilon^{2}\right)}{4 \varepsilon^{2}}+x_{2}^{2}}-\frac{x_{2}^{2}-\varepsilon^{2}}{2 \varepsilon}=\sqrt{\frac{\left(x_{2}^{2}+\varepsilon^{2}\right)^{2}}{4 \varepsilon^{2}}}-\frac{x_{2}^{2}-\varepsilon^{2}}{2 \varepsilon} \\
& =\frac{x_{2}^{2}+\varepsilon^{2}}{2 \varepsilon}-\frac{x_{2}^{2}-\varepsilon^{2}}{2 \varepsilon}=\varepsilon
\end{aligned}
$$

- Hence, $L\left(x_{1}, x_{2}, \lambda\right)=e^{-x_{2}}+\lambda\left(\sqrt{x_{1}^{2}+x_{2}^{2}}-x_{1}\right)=\varepsilon+\lambda \varepsilon=(1+\lambda) \varepsilon$,
- $q(\lambda)=0$ for all $\lambda \geq 0$.

Duffin's Duality Gap

$$
\min \left\{e^{-x_{2}}: \sqrt{x_{1}^{2}+x_{2}^{2}}-x_{1} \leq 0\right\}
$$

- The feasible set is in fact $F=\left\{\left(x_{1}, x_{2}\right): x_{1} \geq 0, x_{2}=0\right\} \Rightarrow f^{*}=1$
- Slater condition is not satisfied.
- Lagrangian: $L\left(x_{1}, x_{2}, \lambda\right)=e^{-x_{2}}+\lambda\left(\sqrt{x_{1}^{2}+x_{2}^{2}}-x_{1}\right) \quad(\lambda>0)$.
- $q(\lambda)=\min _{x_{1}, x_{2}} L\left(x_{1}, x_{2}, \lambda\right) \geq 0$
- For any $\varepsilon>0$, take $x_{2}=-\log \varepsilon, x_{1}=\frac{x_{2}^{2}-\varepsilon^{2}}{2 \varepsilon}$.

$$
\begin{aligned}
\sqrt{x_{1}^{2}+x_{2}^{2}}-x_{1} & =\sqrt{\frac{\left(x_{2}^{2}-\varepsilon^{2}\right)}{4 \varepsilon^{2}}+x_{2}^{2}}-\frac{x_{2}^{2}-\varepsilon^{2}}{2 \varepsilon}=\sqrt{\frac{\left(x_{2}^{2}+\varepsilon^{2}\right)^{2}}{4 \varepsilon^{2}}}-\frac{x_{2}^{2}-\varepsilon^{2}}{2 \varepsilon} \\
& =\frac{x_{2}^{2}+\varepsilon^{2}}{2 \varepsilon}-\frac{x_{2}^{2}-\varepsilon^{2}}{2 \varepsilon}=\varepsilon
\end{aligned}
$$

- Hence, $L\left(x_{1}, x_{2}, \lambda\right)=e^{-x_{2}}+\lambda\left(\sqrt{x_{1}^{2}+x_{2}^{2}}-x_{1}\right)=\varepsilon+\lambda \varepsilon=(1+\lambda) \varepsilon$,
- $q(\lambda)=0$ for all $\lambda \geq 0$.
- $q^{*}=0 \Rightarrow f^{*}-q^{*}=1 \Rightarrow$ duality gap of 1 .

Complementary Slackness Conditions

Theorem. Consider the optimization problem

$$
\begin{equation*}
f^{*}=\min \left\{f(\mathbf{x}): g_{i}(\mathbf{x}) \leq 0, i=1,2, \ldots, m, \mathbf{x} \in X\right\}, \tag{12}
\end{equation*}
$$

and assume that $f^{*}=q^{*}$ where q^{*} is the optimal value of the dual problem. Let $\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}$ be feasible solutions of the primal and dual problems. Then $\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}$ are optimal solutions of the primal and dual problems iff

$$
\begin{align*}
\mathbf{x}^{*} & \in \operatorname{argmin} L_{\mathbf{x} \in X}\left(\mathbf{x}, \boldsymbol{\lambda}^{*}\right), \tag{13}\\
\lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right) & =0, i=1,2, \ldots, m . \tag{14}
\end{align*}
$$

Complementary Slackness Conditions

Theorem. Consider the optimization problem

$$
\begin{equation*}
f^{*}=\min \left\{f(\mathbf{x}): g_{i}(\mathbf{x}) \leq 0, i=1,2, \ldots, m, \mathbf{x} \in X\right\}, \tag{12}
\end{equation*}
$$

and assume that $f^{*}=q^{*}$ where q^{*} is the optimal value of the dual problem. Let $\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}$ be feasible solutions of the primal and dual problems. Then $\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}$ are optimal solutions of the primal and dual problems iff

$$
\begin{align*}
\mathbf{x}^{*} & \in \operatorname{argmin} L_{\mathbf{x} \in X}\left(\mathbf{x}, \boldsymbol{\lambda}^{*}\right), \tag{13}\\
\lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right) & =0, i=1,2, \ldots, m . \tag{14}
\end{align*}
$$

Proof.

- $q\left(\boldsymbol{\lambda}^{*}\right)=\min _{\mathrm{x} \in X} L\left(\mathbf{x}, \boldsymbol{\lambda}^{*}\right) \leq L\left(\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}\right)=f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right) \leq f\left(\mathbf{x}^{*}\right)$

Complementary Slackness Conditions

Theorem. Consider the optimization problem

$$
\begin{equation*}
f^{*}=\min \left\{f(\mathbf{x}): g_{i}(\mathbf{x}) \leq 0, i=1,2, \ldots, m, \mathbf{x} \in X\right\}, \tag{12}
\end{equation*}
$$

and assume that $f^{*}=q^{*}$ where q^{*} is the optimal value of the dual problem. Let $\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}$ be feasible solutions of the primal and dual problems. Then $\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}$ are optimal solutions of the primal and dual problems iff

$$
\begin{align*}
\mathbf{x}^{*} & \in \operatorname{argmin} L_{\mathbf{x} \in X}\left(\mathbf{x}, \boldsymbol{\lambda}^{*}\right), \tag{13}\\
\lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right) & =0, i=1,2, \ldots, m . \tag{14}
\end{align*}
$$

Proof.

- $q\left(\boldsymbol{\lambda}^{*}\right)=\min _{\mathrm{x} \in X} L\left(\mathbf{x}, \boldsymbol{\lambda}^{*}\right) \leq L\left(\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}\right)=f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right) \leq f\left(\mathbf{x}^{*}\right)$
- By strong duality, $\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}$ are optimal iff $f\left(\mathbf{x}^{*}\right)=q\left(\boldsymbol{\lambda}^{*}\right)$

Complementary Slackness Conditions

Theorem. Consider the optimization problem

$$
\begin{equation*}
f^{*}=\min \left\{f(\mathbf{x}): g_{i}(\mathbf{x}) \leq 0, i=1,2, \ldots, m, \mathbf{x} \in X\right\}, \tag{12}
\end{equation*}
$$

and assume that $f^{*}=q^{*}$ where q^{*} is the optimal value of the dual problem. Let $\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}$ be feasible solutions of the primal and dual problems. Then $\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}$ are optimal solutions of the primal and dual problems iff

$$
\begin{align*}
\mathbf{x}^{*} & \in \operatorname{argmin} L_{\mathbf{x} \in X}\left(\mathbf{x}, \boldsymbol{\lambda}^{*}\right) \tag{13}\\
\lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right) & =0, i=1,2, \ldots, m \tag{14}
\end{align*}
$$

Proof.

- $q\left(\boldsymbol{\lambda}^{*}\right)=\min _{\mathrm{x} \in X} L\left(\mathbf{x}, \boldsymbol{\lambda}^{*}\right) \leq L\left(\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}\right)=f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right) \leq f\left(\mathbf{x}^{*}\right)$
- By strong duality, $\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}$ are optimal iff $f\left(\mathbf{x}^{*}\right)=q\left(\boldsymbol{\lambda}^{*}\right)$
- iff $\min _{\mathbf{x} \in X} L\left(\mathbf{x}, \boldsymbol{\lambda}^{*}\right)=L\left(\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}\right), \sum_{i=1}^{m} \lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right)=0$.

Complementary Slackness Conditions

Theorem. Consider the optimization problem

$$
\begin{equation*}
f^{*}=\min \left\{f(\mathbf{x}): g_{i}(\mathbf{x}) \leq 0, i=1,2, \ldots, m, \mathbf{x} \in X\right\}, \tag{12}
\end{equation*}
$$

and assume that $f^{*}=q^{*}$ where q^{*} is the optimal value of the dual problem. Let $\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}$ be feasible solutions of the primal and dual problems. Then $\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}$ are optimal solutions of the primal and dual problems iff

$$
\begin{align*}
\mathbf{x}^{*} & \in \operatorname{argmin} L_{\mathbf{x} \in X}\left(\mathbf{x}, \boldsymbol{\lambda}^{*}\right), \tag{13}\\
\lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right) & =0, i=1,2, \ldots, m \tag{14}
\end{align*}
$$

Proof.

- $q\left(\boldsymbol{\lambda}^{*}\right)=\min _{\mathrm{x} \in X} L\left(\mathbf{x}, \boldsymbol{\lambda}^{*}\right) \leq L\left(\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}\right)=f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right) \leq f\left(\mathbf{x}^{*}\right)$
- By strong duality, $\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}$ are optimal iff $f\left(\mathbf{x}^{*}\right)=q\left(\boldsymbol{\lambda}^{*}\right)$
- iff $\min _{\mathrm{x} \in X} L\left(\mathbf{x}, \boldsymbol{\lambda}^{*}\right)=L\left(\mathbf{x}^{*}, \boldsymbol{\lambda}^{*}\right), \sum_{i=1}^{m} \lambda_{i}^{*} g_{i}\left(\mathbf{x}^{*}\right)=0$.
- iff (13), (14) hold.

A More General Strong Duality Theorem

Theorem. Consider the optimization problem

$$
\begin{array}{ll}
f^{*}=\min & f(\mathbf{x}) \\
\mathrm{s.t.} & g_{i}(\mathbf{x}) \leq 0, \quad i=1,2, \ldots, m \\
& h_{j}(\mathbf{x}) \leq 0, \quad j=1,2, \ldots, p \tag{15}\\
& s_{k}(\mathbf{x})=0, \quad k=1,2, \ldots, q \\
& \mathbf{x} \in X
\end{array}
$$

where X is a convex set and $f, g_{i}, i=1,2, \ldots, m$ are convex functions over X. The functions h_{j}, s_{k} are affine functions. Suppose that there exists $\hat{\mathbf{x}} \in \operatorname{int}(X)$ for which $g_{i}(\hat{\mathbf{x}})<0, h_{j}(\hat{\mathbf{x}}) \leq 0, s_{k}(\hat{\mathbf{x}})=0$. Then if problem (15) has a finite optimal value, then the optimal value of the dual problem

$$
q^{*}=\max \{q(\boldsymbol{\lambda}, \boldsymbol{\eta}, \boldsymbol{\mu}):(\boldsymbol{\lambda}, \boldsymbol{\eta}, \boldsymbol{\mu}) \in \operatorname{dom}(q)\}
$$

where

$$
q(\boldsymbol{\lambda}, \boldsymbol{\eta}, \boldsymbol{\mu})=\min _{\mathbf{x} \in X}\left[f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})+\sum_{j=1}^{p} \eta_{j} h_{j}(\mathbf{x})+\sum_{k=1}^{q} \mu_{k} s_{k}(\mathbf{x})\right]
$$

is attained, and $f^{*}=q^{*}$.

Importance of the Underlying Set

$$
\begin{array}{ll}
& \min \\
x_{1}^{3}+x_{2}^{3} \\
\text { s.t. } & x_{1}+x_{2} \geq 1 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

- $\left(\frac{1}{2}, \frac{1}{2}\right)$ is the optimal solution of (P) with an optimal value $f^{*}=\frac{1}{4}$.
- First dual problem is constructed by taking $X=\left\{\left(x_{1}, x_{2}\right): x_{1}, x_{2} \geq 0\right\}$.
- The primal problem is $\min \left\{x_{1}^{3}+x_{2}^{3}: x_{1}+x_{2} \geq 1,\left(x_{1}, x_{2}\right) \in X\right\}$.
- Strong duality holds for the problem and hence in particular $q^{*}=\frac{1}{4}$.

Importance of the Underlying Set

$$
\begin{array}{ll}
& \min \\
\text { (P) } & x_{1}^{3}+x_{2}^{3} \\
\text { s.t. } & x_{1}+x_{2} \geq 1 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

- $\left(\frac{1}{2}, \frac{1}{2}\right)$ is the optimal solution of (P) with an optimal value $f^{*}=\frac{1}{4}$.
- First dual problem is constructed by taking $X=\left\{\left(x_{1}, x_{2}\right): x_{1}, x_{2} \geq 0\right\}$.
- The primal problem is $\min \left\{x_{1}^{3}+x_{2}^{3}: x_{1}+x_{2} \geq 1,\left(x_{1}, x_{2}\right) \in X\right\}$.
- Strong duality holds for the problem and hence in particular $q^{*}=\frac{1}{4}$.
- Second dual is constructed by taking $X=\mathbb{R}^{2}$.
- Objective function is not convex \Rightarrow strong duality is not necessarily satisfied.

Importance of the Underlying Set

$$
\begin{array}{ll}
& \min \\
\text { (P) } & x_{1}^{3}+x_{2}^{3} \\
\text { s.t. } & x_{1}+x_{2} \geq 1 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

- $\left(\frac{1}{2}, \frac{1}{2}\right)$ is the optimal solution of (P) with an optimal value $f^{*}=\frac{1}{4}$.
- First dual problem is constructed by taking $X=\left\{\left(x_{1}, x_{2}\right): x_{1}, x_{2} \geq 0\right\}$.
- The primal problem is $\min \left\{x_{1}^{3}+x_{2}^{3}: x_{1}+x_{2} \geq 1,\left(x_{1}, x_{2}\right) \in X\right\}$.
- Strong duality holds for the problem and hence in particular $q^{*}=\frac{1}{4}$.
- Second dual is constructed by taking $X=\mathbb{R}^{2}$.
- Objective function is not convex \Rightarrow strong duality is not necessarily satisfied.
- $L\left(x_{1}, x_{2}, \lambda, \eta_{1}, \eta_{2}\right)=x_{1}^{3}+x_{2}^{3}-\lambda\left(x_{1}+x_{2}-1\right)-\eta_{1} x_{1}-\eta_{2} x_{2}$.
- $q\left(\lambda, \eta_{1}, \eta_{2}\right)=-\infty$ for all $\left(\lambda, \mu_{1}, \mu_{2}\right) \Rightarrow q^{*}=-\infty$.

Linear Programming

Consider the linear programming problem

$$
\begin{array}{ll}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & \mathbf{A x} \leq \mathbf{b},
\end{array}
$$

- $\mathbf{c} \in \mathbb{R}^{n}, \mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$.
- We assume that the problem is feasible \Rightarrow strong duality holds.

Linear Programming

Consider the linear programming problem

$$
\begin{array}{ll}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & \mathbf{A x} \leq \mathbf{b},
\end{array}
$$

- $\mathbf{c} \in \mathbb{R}^{n}, \mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$.
- We assume that the problem is feasible \Rightarrow strong duality holds.
- $L(\mathbf{x}, \boldsymbol{\lambda})=\mathbf{c}^{T} \mathbf{x}+\boldsymbol{\lambda}^{T}(\mathbf{A x}-\mathbf{b})=\left(\mathbf{c}+\mathbf{A}^{T} \boldsymbol{\lambda}\right)^{T} \mathbf{x}-\mathbf{b}^{T} \boldsymbol{\lambda}$.

Linear Programming

Consider the linear programming problem

$$
\begin{array}{ll}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & \mathbf{A x} \leq \mathbf{b},
\end{array}
$$

- $\mathbf{c} \in \mathbb{R}^{n}, \mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$.
- We assume that the problem is feasible \Rightarrow strong duality holds.
- $L(\mathbf{x}, \boldsymbol{\lambda})=\mathbf{c}^{T} \mathbf{x}+\boldsymbol{\lambda}^{T}(\mathbf{A x}-\mathbf{b})=\left(\mathbf{c}+\mathbf{A}^{T} \boldsymbol{\lambda}\right)^{T} \mathbf{x}-\mathbf{b}^{T} \boldsymbol{\lambda}$.
- Dual objective funvtion:

$$
q(\boldsymbol{\lambda})=\min _{\mathbf{x} \in \mathbb{R}^{n}} L(\mathbf{x}, \boldsymbol{\lambda})=\min _{\mathbf{x} \in \mathbb{R}^{n}}\left(\mathbf{c}+\mathbf{A}^{T} \boldsymbol{\lambda}\right)^{T} \mathbf{x}-\mathbf{b}^{T} \boldsymbol{\lambda}= \begin{cases}-\mathbf{b}^{T} \boldsymbol{\lambda} & \mathbf{c}+\mathbf{A}^{T} \boldsymbol{\lambda}=\mathbf{0}, \\ -\infty & \text { else. }\end{cases}
$$

Linear Programming

Consider the linear programming problem

$$
\begin{array}{ll}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { s.t. } & \mathbf{A x} \leq \mathbf{b},
\end{array}
$$

- $\mathbf{c} \in \mathbb{R}^{n}, \mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$.
- We assume that the problem is feasible \Rightarrow strong duality holds.
- $L(\mathbf{x}, \boldsymbol{\lambda})=\mathbf{c}^{T} \mathbf{x}+\boldsymbol{\lambda}^{T}(\mathbf{A x}-\mathbf{b})=\left(\mathbf{c}+\mathbf{A}^{T} \boldsymbol{\lambda}\right)^{T} \mathbf{x}-\mathbf{b}^{T} \boldsymbol{\lambda}$.
- Dual objective funvtion:

$$
q(\boldsymbol{\lambda})=\min _{\mathbf{x} \in \mathbb{R}^{n}} L(\mathbf{x}, \boldsymbol{\lambda})=\min _{\mathbf{x} \in \mathbb{R}^{n}}\left(\mathbf{c}+\mathbf{A}^{T} \boldsymbol{\lambda}\right)^{T} \mathbf{x}-\mathbf{b}^{T} \boldsymbol{\lambda}= \begin{cases}-\mathbf{b}^{T} \boldsymbol{\lambda} & \mathbf{c}+\mathbf{A}^{T} \boldsymbol{\lambda}=\mathbf{0}, \\ -\infty & \text { else. }\end{cases}
$$

- Dual problem:

$$
\begin{array}{ll}
\max & -\mathbf{b}^{\top} \boldsymbol{\lambda} \\
\text { s.t. } & \mathbf{A}^{T} \boldsymbol{\lambda}=-\mathbf{c}, \\
& \boldsymbol{\lambda} \geq \mathbf{0} .
\end{array}
$$

Strictly Convex Quadratic Programming

Consider the strictly convex quadratic programming problem

$$
\begin{array}{ll}
\min & \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+2 \mathbf{f}^{T} \mathbf{x} \\
\text { s.t. } & \mathbf{A x} \leq \mathbf{b}, \tag{16}
\end{array}
$$

- $\mathbf{Q} \in \mathbb{R}^{n \times n}$ positive definite, $\mathbf{f} \in \mathbb{R}^{n}, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$.

Strictly Convex Quadratic Programming

Consider the strictly convex quadratic programming problem

$$
\begin{array}{ll}
\min & \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+2 \mathbf{f}^{T} \mathbf{x} \\
\text { s.t. } & \mathbf{A x} \leq \mathbf{b}, \tag{16}
\end{array}
$$

- $\mathbf{Q} \in \mathbb{R}^{n \times n}$ positive definite, $\mathbf{f} \in \mathbb{R}^{n}, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$.
- Lagrangian: $\left(\boldsymbol{\lambda} \in \mathbb{R}_{+}^{m}\right) \quad L(\mathbf{x}, \boldsymbol{\lambda})=\mathbf{x}^{T} \mathbf{Q} \mathbf{x}+2 \mathbf{f}^{T} \mathbf{x}+2 \boldsymbol{\lambda}^{T}(\mathbf{A} \mathbf{x}-\mathbf{b})=$ $\mathbf{x}^{\top} \mathbf{Q} \mathbf{x}+2\left(\mathbf{A}^{\top} \boldsymbol{\lambda}+\mathbf{f}\right)^{\top} \mathbf{x}-2 \mathbf{b}^{\top} \boldsymbol{\lambda}$.

Strictly Convex Quadratic Programming

Consider the strictly convex quadratic programming problem

$$
\begin{array}{ll}
\min & \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+2 \mathbf{f}^{T} \mathbf{x} \\
\text { s.t. } & \mathbf{A x} \leq \mathbf{b}, \tag{16}
\end{array}
$$

- $\mathbf{Q} \in \mathbb{R}^{n \times n}$ positive definite, $\mathbf{f} \in \mathbb{R}^{n}, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$.
- Lagrangian: $\left(\boldsymbol{\lambda} \in \mathbb{R}_{+}^{m}\right) \quad L(\mathbf{x}, \boldsymbol{\lambda})=\mathbf{x}^{T} \mathbf{Q} \mathbf{x}+2 \mathbf{f}^{T} \mathbf{x}+2 \boldsymbol{\lambda}^{T}(\mathbf{A} \mathbf{x}-\mathbf{b})=$ $\mathbf{x}^{\top} \mathbf{Q} \mathbf{x}+2\left(\mathbf{A}^{\top} \boldsymbol{\lambda}+\mathbf{f}\right)^{T} \mathbf{x}-2 \mathbf{b}^{\top} \boldsymbol{\lambda}$.
- The minimizer of the Lagrangian is attained at $\mathbf{x}^{*}=-\mathbf{Q}^{-1}\left(\mathbf{f}+\mathbf{A}^{\top} \boldsymbol{\lambda}\right)$.

Strictly Convex Quadratic Programming

Consider the strictly convex quadratic programming problem

$$
\begin{array}{ll}
\min & \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+2 \mathbf{f}^{T} \mathbf{x} \\
\text { s.t. } & \mathbf{A x} \leq \mathbf{b}, \tag{16}
\end{array}
$$

- $\mathbf{Q} \in \mathbb{R}^{n \times n}$ positive definite, $\mathbf{f} \in \mathbb{R}^{n}, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$.
- Lagrangian: $\left(\boldsymbol{\lambda} \in \mathbb{R}_{+}^{m}\right) \quad L(\mathbf{x}, \boldsymbol{\lambda})=\mathbf{x}^{T} \mathbf{Q} \mathbf{x}+2 \mathbf{f}^{T} \mathbf{x}+2 \boldsymbol{\lambda}^{T}(\mathbf{A} \mathbf{x}-\mathbf{b})=$ $\mathbf{x}^{\top} \mathbf{Q} \mathbf{x}+2\left(\mathbf{A}^{\top} \boldsymbol{\lambda}+\mathbf{f}\right)^{T} \mathbf{x}-2 \mathbf{b}^{\top} \boldsymbol{\lambda}$.
- The minimizer of the Lagrangian is attained at $\mathbf{x}^{*}=-\mathbf{Q}^{-1}\left(\mathbf{f}+\mathbf{A}^{\top} \boldsymbol{\lambda}\right)$.

$$
\begin{aligned}
q(\boldsymbol{\lambda}) & =L\left(\mathbf{x}^{*}, \boldsymbol{\lambda}\right) \\
& =\left(\mathbf{f}+\mathbf{A}^{T} \boldsymbol{\lambda}\right)^{T} \mathbf{Q}^{-1} \mathbf{Q} \mathbf{Q}^{-1}\left(\mathbf{f}+\mathbf{A}^{T} \boldsymbol{\lambda}\right)-2\left(\mathbf{f}+\mathbf{A}^{T} \boldsymbol{\lambda}\right)^{T} \mathbf{Q}^{-1}\left(\mathbf{f}+\mathbf{A}^{T} \boldsymbol{\lambda}\right)-2 \mathbf{b}^{\top} \boldsymbol{\lambda} \\
& =-\left(\mathbf{f}+\mathbf{A}^{T} \boldsymbol{\lambda}\right)^{T} \mathbf{Q}^{-1}\left(\mathbf{f}+\mathbf{A}^{T} \boldsymbol{\lambda}\right)-2 \mathbf{b}^{T} \boldsymbol{\lambda} \\
& =-\boldsymbol{\lambda}^{T} \mathbf{A} \mathbf{Q}^{-1} \mathbf{A}^{T} \boldsymbol{\lambda}-2 \mathbf{f}^{T} \mathbf{Q}^{-1} \mathbf{A}^{T} \boldsymbol{\lambda}-\mathbf{f}^{T} \mathbf{Q}^{-1} \mathbf{f}-2 \mathbf{b}^{T} \boldsymbol{\lambda} \\
& =-\boldsymbol{\lambda}^{T} \mathbf{A} \mathbf{Q}^{-1} \mathbf{A}^{T} \boldsymbol{\lambda}-2\left(\mathbf{A} \mathbf{Q}^{-1} \mathbf{f}+\mathbf{b}\right)^{T} \boldsymbol{\lambda}-\mathbf{f}^{T} \mathbf{Q}^{-1} \mathbf{f} .
\end{aligned}
$$

Strictly Convex Quadratic Programming

Consider the strictly convex quadratic programming problem

$$
\begin{array}{ll}
\min & \mathbf{x}^{T} \mathbf{Q} \mathbf{x}+2 \mathbf{f}^{T} \mathbf{x} \\
\text { s.t. } & \mathbf{A x} \leq \mathbf{b}, \tag{16}
\end{array}
$$

- $\mathbf{Q} \in \mathbb{R}^{n \times n}$ positive definite, $\mathbf{f} \in \mathbb{R}^{n}, \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^{m}$.
- Lagrangian: $\left(\boldsymbol{\lambda} \in \mathbb{R}_{+}^{m}\right) \quad L(\mathbf{x}, \boldsymbol{\lambda})=\mathbf{x}^{T} \mathbf{Q} \mathbf{x}+2 \mathbf{f}^{T} \mathbf{x}+2 \boldsymbol{\lambda}^{T}(\mathbf{A} \mathbf{x}-\mathbf{b})=$ $\mathbf{x}^{\top} \mathbf{Q} \mathbf{x}+2\left(\mathbf{A}^{\top} \boldsymbol{\lambda}+\mathbf{f}\right)^{T} \mathbf{x}-2 \mathbf{b}^{\top} \boldsymbol{\lambda}$.
- The minimizer of the Lagrangian is attained at $\mathbf{x}^{*}=-\mathbf{Q}^{-1}\left(\mathbf{f}+\mathbf{A}^{\top} \boldsymbol{\lambda}\right)$.

$$
\begin{aligned}
q(\boldsymbol{\lambda}) & =L\left(\mathbf{x}^{*}, \boldsymbol{\lambda}\right) \\
& =\left(\mathbf{f}+\mathbf{A}^{T} \boldsymbol{\lambda}\right)^{T} \mathbf{Q}^{-1} \mathbf{Q} \mathbf{Q}^{-1}\left(\mathbf{f}+\mathbf{A}^{T} \boldsymbol{\lambda}\right)-2\left(\mathbf{f}+\mathbf{A}^{T} \boldsymbol{\lambda}\right)^{T} \mathbf{Q}^{-1}\left(\mathbf{f}+\mathbf{A}^{T} \boldsymbol{\lambda}\right)-2 \mathbf{b}^{T} \boldsymbol{\lambda} \\
& =-\left(\mathbf{f}+\mathbf{A}^{T} \boldsymbol{\lambda}\right)^{T} \mathbf{Q}^{-1}\left(\mathbf{f}+\mathbf{A}^{T} \boldsymbol{\lambda}\right)-2 \mathbf{b}^{\top} \boldsymbol{\lambda} \\
& =-\boldsymbol{\lambda}^{T} \mathbf{A} \mathbf{Q}^{-1} \mathbf{A}^{T} \boldsymbol{\lambda}-2 \mathbf{F}^{T} \mathbf{Q}^{-1} \mathbf{A}^{T} \boldsymbol{\lambda}-\mathbf{f}^{T} \mathbf{Q}^{-1} \mathbf{f}-2 \mathbf{b}^{T} \boldsymbol{\lambda} \\
& =-\boldsymbol{\lambda}^{T} \mathbf{A} \mathbf{Q}^{-1} \mathbf{A}^{T} \boldsymbol{\lambda}-2\left(\mathbf{A} \mathbf{Q}^{-1} \mathbf{f}+\mathbf{b}\right)^{T} \boldsymbol{\lambda}-\mathbf{f}^{T} \mathbf{Q}^{-1} \mathbf{f} .
\end{aligned}
$$

- The dual problem is $\max \{q(\boldsymbol{\lambda}): \boldsymbol{\lambda} \geq \mathbf{0}\}$.

Dual of Convex QCQP with strictly convex objective

 Consider the QCQP problem$$
\begin{array}{ll}
\min & \mathbf{x}^{T} \mathbf{A}_{0} \mathbf{x}+2 \mathbf{b}_{0}^{T} \mathbf{x}+c_{0} \\
\text { s.t. } & \mathbf{x}^{T} \mathbf{A}_{i} \mathbf{x}+2 \mathbf{b}_{i}^{T} \mathbf{x}+c_{i} \leq 0, \quad i=1,2, \ldots, m
\end{array}
$$

where $\mathbf{A}_{i} \succeq \mathbf{0}$ is an $n \times n$ matrix, $\mathbf{b}_{i} \in \mathbb{R}^{n}, c_{i} \in \mathbb{R}, i=0,1, \ldots, m$. Assume that $\mathbf{A}_{0} \succ \mathbf{0}$.

Dual of Convex QCQP with strictly convex objective

 Consider the QCQP problem$$
\begin{array}{ll}
\min & \mathbf{x}^{T} \mathbf{A}_{0} \mathbf{x}+2 \mathbf{b}_{0}^{T} \mathbf{x}+c_{0} \\
\text { s.t. } & \mathbf{x}^{T} \mathbf{A}_{i} \mathbf{x}+2 \mathbf{b}_{i}^{T} \mathbf{x}+c_{i} \leq 0, \quad i=1,2, \ldots, m
\end{array}
$$

where $\mathbf{A}_{i} \succeq \mathbf{0}$ is an $n \times n$ matrix, $\mathbf{b}_{i} \in \mathbb{R}^{n}, c_{i} \in \mathbb{R}, i=0,1, \ldots, m$. Assume that $\mathbf{A}_{0} \succ \mathbf{0}$.

- Lagrangian $\left(\boldsymbol{\lambda} \in \mathbb{R}_{+}^{m}\right)$:

$$
\begin{aligned}
L(\mathbf{x}, \boldsymbol{\lambda}) & =\mathbf{x}^{T} \mathbf{A}_{0} \mathbf{x}+2 \mathbf{b}_{0}^{T} \mathbf{x}+c_{0}+\sum_{i=1}^{m} \lambda_{i}\left(\mathbf{x}^{T} \mathbf{A}_{i} \mathbf{x}+2 \mathbf{b}_{i}^{T} \mathbf{x}+c_{i}\right) \\
& =\mathbf{x}^{T}\left(\mathbf{A}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i}\right) \mathbf{x}+2\left(\mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}\right)^{T} \mathbf{x}+c_{0}+\sum_{i=1}^{m} \lambda_{i} c_{i}
\end{aligned}
$$

Dual of Convex QCQP with strictly convex objective

 Consider the QCQP problem$$
\begin{array}{ll}
\min & \mathbf{x}^{T} \mathbf{A}_{0} \mathbf{x}+2 \mathbf{b}_{0}^{T} \mathbf{x}+c_{0} \\
\text { s.t. } & \mathbf{x}^{T} \mathbf{A}_{i} \mathbf{x}+2 \mathbf{b}_{i}^{T} \mathbf{x}+c_{i} \leq 0, \quad i=1,2, \ldots, m
\end{array}
$$

where $\mathbf{A}_{i} \succeq \mathbf{0}$ is an $n \times n$ matrix, $\mathbf{b}_{i} \in \mathbb{R}^{n}, c_{i} \in \mathbb{R}, i=0,1, \ldots, m$. Assume that $\mathbf{A}_{0} \succ \mathbf{0}$.

- Lagrangian $\left(\boldsymbol{\lambda} \in \mathbb{R}_{+}^{m}\right)$:

$$
\begin{aligned}
L(\mathbf{x}, \boldsymbol{\lambda}) & =\mathbf{x}^{T} \mathbf{A}_{0} \mathbf{x}+2 \mathbf{b}_{0}^{T} \mathbf{x}+c_{0}+\sum_{i=1}^{m} \lambda_{i}\left(\mathbf{x}^{T} \mathbf{A}_{i} \mathbf{x}+2 \mathbf{b}_{i}^{T} \mathbf{x}+c_{i}\right) \\
& =\mathbf{x}^{T}\left(\mathbf{A}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i}\right) \mathbf{x}+2\left(\mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}\right)^{T} \mathbf{x}+c_{0}+\sum_{i=1}^{m} \lambda_{i} c_{i}
\end{aligned}
$$

- The minimizer of the Lagrangian w.r.t. \mathbf{x} is attained at $\tilde{\mathbf{x}}$ satisfying

$$
2\left(\mathbf{A}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i}\right) \tilde{\mathbf{x}}=-2\left(\mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}\right)
$$

Dual of Convex QCQP with strictly convex objective

 Consider the QCQP problem$$
\begin{array}{ll}
\min & \mathbf{x}^{T} \mathbf{A}_{0} \mathbf{x}+2 \mathbf{b}_{0}^{T} \mathbf{x}+c_{0} \\
\text { s.t. } & \mathbf{x}^{T} \mathbf{A}_{i} \mathbf{x}+2 \mathbf{b}_{i}^{T} \mathbf{x}+c_{i} \leq 0, \quad i=1,2, \ldots, m
\end{array}
$$

where $\mathbf{A}_{i} \succeq \mathbf{0}$ is an $n \times n$ matrix, $\mathbf{b}_{i} \in \mathbb{R}^{n}, c_{i} \in \mathbb{R}, i=0,1, \ldots, m$. Assume that $\mathbf{A}_{0} \succ \mathbf{0}$.

- Lagrangian $\left(\boldsymbol{\lambda} \in \mathbb{R}_{+}^{m}\right)$:

$$
\begin{aligned}
L(\mathbf{x}, \boldsymbol{\lambda}) & =\mathbf{x}^{T} \mathbf{A}_{0} \mathbf{x}+2 \mathbf{b}_{0}^{T} \mathbf{x}+c_{0}+\sum_{i=1}^{m} \lambda_{i}\left(\mathbf{x}^{T} \mathbf{A}_{i} \mathbf{x}+2 \mathbf{b}_{i}^{T} \mathbf{x}+c_{i}\right) \\
& =\mathbf{x}^{T}\left(\mathbf{A}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i}\right) \mathbf{x}+2\left(\mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}\right)^{T} \mathbf{x}+c_{0}+\sum_{i=1}^{m} \lambda_{i} c_{i}
\end{aligned}
$$

- The minimizer of the Lagrangian w.r.t. \mathbf{x} is attained at $\tilde{\mathbf{x}}$ satisfying

$$
2\left(\mathbf{A}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i}\right) \tilde{\mathbf{x}}=-2\left(\mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}\right)
$$

- Thus, $\tilde{\mathbf{x}}=-\left(\mathbf{A}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i}\right)^{-1}\left(\mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}\right)$.

QCQP contd.

- Plugging this expression back into the Lagrangian, we obtain the following expression for the dual objective function

$$
\begin{aligned}
q(\boldsymbol{\lambda})= & \min _{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda})=L(\tilde{\mathbf{x}}, \boldsymbol{\lambda}) \\
= & \tilde{\mathbf{x}}^{T}\left(\mathbf{A}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i}\right) \tilde{\mathbf{x}}+2\left(\mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}\right)^{T} \tilde{\mathbf{x}}+c_{0}+\sum_{i=1}^{m} \lambda_{i} c_{i} \\
= & -\left(\mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}\right)^{T}\left(\mathbf{A}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i}\right)^{-1}\left(\mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}\right)+ \\
& c_{0}+\sum_{i=1}^{m} \lambda_{i} c_{i} .
\end{aligned}
$$

QCQP contd.

- Plugging this expression back into the Lagrangian, we obtain the following expression for the dual objective function

$$
\begin{aligned}
q(\boldsymbol{\lambda})= & \min _{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda})=L(\tilde{\mathbf{x}}, \lambda) \\
= & \tilde{\mathbf{x}}^{T}\left(\mathbf{A}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i}\right) \tilde{\mathbf{x}}+2\left(\mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}\right)^{T} \tilde{\mathbf{x}}+c_{0}+\sum_{i=1}^{m} \lambda_{i} c_{i} \\
= & -\left(\mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}\right)^{T}\left(\mathbf{A}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i}\right)^{-1}\left(\mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}\right)+ \\
& c_{0}+\sum_{i=1}^{m} \lambda_{i} c_{i} .
\end{aligned}
$$

- The dual problem is thus

$$
\begin{aligned}
\max & -\left(\mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}\right)^{T}\left(\mathbf{A}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i}\right)^{-1}\left(\mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}\right)+ \\
& c_{0}+\sum_{i=1}^{m} \lambda_{i} c_{i}
\end{aligned}
$$

$$
\text { s.t. } \quad \lambda_{i} \geq 0, \quad i=1,2, \ldots, m
$$

Dual of Convex QCQPs

A_{0} is only assumed to be positive semidefinite.

- The previous dual is not well defined since the matrix $\mathbf{A}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i}$ is not necessarily PD.

Dual of Convex QCQPs

A_{0} is only assumed to be positive semidefinite.

- The previous dual is not well defined since the matrix $\mathbf{A}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i}$ is not necessarily PD.
- Decompose \mathbf{A}_{i} as $\mathbf{A}_{i}=\mathbf{D}_{i}^{T} \mathbf{D}_{i}\left(\mathbf{D}_{i} \in \mathbb{R}^{n \times n}\right)$ and rewrite the problem as

$$
\begin{array}{ll}
\min & \mathbf{x}^{T} \mathbf{D}_{0}^{T} \mathbf{D}_{0} \mathbf{x}+2 \mathbf{b}_{0}^{T} \mathbf{x}+c_{0} \\
\text { s.t. } & \mathbf{x}^{T} \mathbf{D}_{i}^{T} \mathbf{D}_{i} \mathbf{x}+2 \mathbf{b}_{i}^{T} \mathbf{x}+c_{i} \leq 0, i=1,2, \ldots, m,
\end{array}
$$

Dual of Convex QCQPs

A_{0} is only assumed to be positive semidefinite.

- The previous dual is not well defined since the matrix $\mathbf{A}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i}$ is not necessarily PD.
- Decompose \mathbf{A}_{i} as $\mathbf{A}_{i}=\mathbf{D}_{i}^{T} \mathbf{D}_{i}\left(\mathbf{D}_{i} \in \mathbb{R}^{n \times n}\right)$ and rewrite the problem as

$$
\begin{array}{ll}
\min & \mathbf{x}^{T} \mathbf{D}_{0}^{T} \mathbf{D}_{0} \mathbf{x}+2 \mathbf{b}_{0}^{T} \mathbf{x}+c_{0} \\
\text { s.t. } & \mathbf{x}^{T} \mathbf{D}_{i}^{T} \mathbf{D}_{i} \mathbf{x}+2 \mathbf{b}_{i}^{T} \mathbf{x}+c_{i} \leq 0, i=1,2, \ldots, m,
\end{array}
$$

- Define additional variables $\mathbf{z}_{i}=\mathbf{D}_{i} \mathbf{x}$, giving rise to the formulation

$$
\begin{array}{ll}
\min & \left\|\mathbf{z}_{i}\right\|^{2}+2 \mathbf{b}_{0}^{T} \mathbf{x}+c_{0} \\
\text { s.t. } & \left\|\mathbf{z}_{\mathbf{z}^{2}}\right\|^{2}+2 \mathbf{b}_{i}^{T} \mathbf{x}+c_{i} \leq 0, i=1,2, \ldots, m, \\
& \mathbf{z}_{i}=\mathbf{D}_{i} \mathbf{x}, \quad i=0,1, \ldots, m .
\end{array}
$$

Dual of Convex QCQPs

- The Lagrangian is $\left(\boldsymbol{\lambda} \in \mathbb{R}_{+}^{m}, \boldsymbol{\mu}_{i} \in \mathbb{R}^{n}, i=0,1, \ldots, m\right)$:

$$
\begin{aligned}
& L\left(\mathbf{x}, \mathbf{z}_{0}, \ldots, \mathbf{z}_{m}, \boldsymbol{\lambda}, \boldsymbol{\mu}_{0}, \ldots, \boldsymbol{\mu}_{m}\right) \\
= & \left\|\mathbf{z}_{0}\right\|^{2}+2 \mathbf{b}_{0}^{T} \mathbf{x}+c_{0}+\sum_{i=1}^{m} \lambda_{i}\left(\left\|\mathbf{z}_{i}\right\|^{2}+2 \mathbf{b}_{i}^{T} \mathbf{x}+c_{i}\right)+ \\
& 2 \sum_{i=0}^{m} \boldsymbol{\mu}_{i}^{T}\left(\mathbf{z}_{i}-\mathbf{D}_{i} \mathbf{x}\right) \\
= & \left\|\mathbf{z}_{0}\right\|^{2}+2 \boldsymbol{\mu}_{0}^{T} \mathbf{z}_{0}+\sum_{i=1}^{m}\left(\lambda_{i}\left\|\mathbf{z}_{i}\right\|^{2}+2 \boldsymbol{\mu}_{i}^{T} \mathbf{z}_{i}\right)+ \\
& 2\left(\mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}-\sum_{i=0}^{m} \mathbf{D}_{i}^{T} \boldsymbol{\mu}_{i}\right)^{T} \mathbf{x} \\
& +c_{0}+\sum_{i=1}^{m} c_{i} \lambda_{i} .
\end{aligned}
$$

Dual of Convex QCQPs

- For any $\lambda \in \mathbb{R}_{+}, \boldsymbol{\mu} \in \mathbb{R}^{n}$,

$$
g(\lambda, \boldsymbol{\mu}) \equiv \min _{\mathbf{z}}\left\{\lambda\|\mathbf{z}\|^{2}+2 \boldsymbol{\mu}^{T} \mathbf{z}\right\}= \begin{cases}-\frac{\|\boldsymbol{\mu}\|^{2}}{\lambda} & \lambda>0 \\ 0 & \lambda=0, \boldsymbol{\mu}=\mathbf{0} \\ -\infty & \lambda=0, \boldsymbol{\mu} \neq \mathbf{0}\end{cases}
$$

Dual of Convex QCQPs

- For any $\lambda \in \mathbb{R}_{+}, \boldsymbol{\mu} \in \mathbb{R}^{n}$,

$$
g(\lambda, \boldsymbol{\mu}) \equiv \min _{\mathbf{z}}\left\{\lambda\|\mathbf{z}\|^{2}+2 \boldsymbol{\mu}^{T} \mathbf{z}\right\}= \begin{cases}-\frac{\|\boldsymbol{\mu}\|^{2}}{\lambda} & \lambda>0, \\ 0 & \lambda=0, \boldsymbol{\mu}=\mathbf{0} \\ -\infty & \lambda=0, \boldsymbol{\mu} \neq \mathbf{0} .\end{cases}
$$

- Since the Lagrangian is separable with respect to \mathbf{z}_{i} and \mathbf{x}, we can perform the minimization with respect to each of the variables vectors:

$$
\begin{aligned}
\min _{\mathbf{z}_{0}}\left[\left\|\mathbf{z}_{0}\right\|^{2}+2 \boldsymbol{\mu}_{0}^{T} \mathbf{z}_{0}\right] & =g\left(1, \boldsymbol{\mu}_{0}\right)=-\left\|\boldsymbol{\mu}_{0}\right\|^{2}, \\
\min _{\mathbf{z}_{i}}\left[\lambda_{i}\left\|\mathbf{z}_{i}\right\|^{2}+2 \boldsymbol{\mu}_{i}^{T} \mathbf{z}_{i}\right] & =g\left(\lambda_{i}, \boldsymbol{\mu}_{i}\right),
\end{aligned} \min _{\mathbf{x}}\left(\mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}-\sum_{i=0}^{m} \mathbf{D}_{i}^{T} \boldsymbol{\mu}_{i}\right)^{T} \mathbf{x}=\left\{\begin{array}{ll}
0 & \mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}-\sum_{i=0}^{m} \mathbf{D}_{i}^{T} \boldsymbol{\mu}_{i}=\mathbf{0}, \\
-\infty & \text { else, }
\end{array},\right.
$$

Dual of Convex QCQPs

- For any $\lambda \in \mathbb{R}_{+}, \boldsymbol{\mu} \in \mathbb{R}^{n}$,

$$
g(\lambda, \boldsymbol{\mu}) \equiv \min _{\mathbf{z}}\left\{\lambda\|\mathbf{z}\|^{2}+2 \boldsymbol{\mu}^{T} \mathbf{z}\right\}= \begin{cases}-\frac{\|\boldsymbol{\mu}\|^{2}}{\lambda} & \lambda>0 \\ 0 & \lambda=0, \boldsymbol{\mu}=\mathbf{0} \\ -\infty & \lambda=0, \boldsymbol{\mu} \neq \mathbf{0}\end{cases}
$$

- Since the Lagrangian is separable with respect to \mathbf{z}_{i} and \mathbf{x}, we can perform the minimization with respect to each of the variables vectors:

$$
\begin{aligned}
\min _{\mathbf{z}_{0}}\left[\left\|\mathbf{z}_{0}\right\|^{2}+2 \boldsymbol{\mu}_{0}^{T} \mathbf{z}_{0}\right] & =g\left(1, \boldsymbol{\mu}_{0}\right)=-\left\|\boldsymbol{\mu}_{0}\right\|^{2}, \\
\min _{\mathbf{z}_{i}}\left[\lambda_{i}\left\|\mathbf{z}_{i}\right\|^{2}+2 \boldsymbol{\mu}_{i}^{T} \mathbf{z}_{i}\right] & =g\left(\lambda_{i}, \boldsymbol{\mu}_{i}\right),
\end{aligned} \min _{\mathrm{x}}\left(\mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}-\sum_{i=0}^{m} \mathbf{D}_{i}^{T} \boldsymbol{\mu}_{i}\right)^{T} \mathbf{x}=\left\{\begin{array}{ll}
0 & \mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}-\sum_{i=0}^{m} \mathbf{D}_{i}^{T} \boldsymbol{\mu}_{i}=\mathbf{0}, \\
-\infty & \text { else, }
\end{array},\right.
$$

- Hence,

$$
\begin{aligned}
& q\left(\boldsymbol{\lambda}, \boldsymbol{\mu}_{0}, \ldots, \boldsymbol{\mu}_{m}\right)=\min _{\mathbf{x}, \mathbf{z}_{0}, \ldots, \mathbf{z}_{m}} L\left(\mathbf{x}, \mathbf{z}_{0}, \ldots, \mathbf{z}_{m}, \boldsymbol{\lambda}, \boldsymbol{\mu}_{0}, \ldots, \boldsymbol{\mu}_{m}\right) \\
& = \begin{cases}g\left(1, \boldsymbol{\mu}_{0}\right)+\sum_{i=1}^{m} g\left(\lambda_{i}, \boldsymbol{\mu}_{i}\right)+c_{0}+\mathbf{c}^{T} \boldsymbol{\lambda} & \mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}-\sum_{i=0}^{m} \mathbf{D}_{i}^{T} \boldsymbol{\mu}_{i}=\mathbf{0}, \\
-\infty & \text { else. }\end{cases}
\end{aligned}
$$

Dual of Convex QCQPs

The dual problem is therefore

$$
\begin{array}{ll}
\max & g\left(1, \boldsymbol{\mu}_{0}\right)+\sum_{i=1}^{m} g\left(\lambda_{i}, \boldsymbol{\mu}_{i}\right)+c_{0}+\sum_{i=1}^{m} c_{i} \lambda_{i} \\
\mathrm{s.t.} & \mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}-\sum_{i=0}^{m} \mathbf{D}_{i}^{T} \boldsymbol{\mu}_{i}=\mathbf{0}, \\
& \boldsymbol{\lambda} \in \mathbb{R}_{+}^{m}, \boldsymbol{\mu}_{0}, \ldots, \boldsymbol{\mu}_{m} \in \mathbb{R}^{n} .
\end{array}
$$

Dual of Nonconvex QCQPs

Consider the problem

$$
\begin{array}{ll}
\min & \mathbf{x}^{T} \mathbf{A}_{0} \mathbf{x}+2 \mathbf{b}_{0}^{T} \mathbf{x}+c_{0} \\
\mathrm{s.t.} & \mathbf{x}^{T} \mathbf{A}_{i} \mathbf{x}+2 \mathbf{b}_{i}^{T} \mathbf{x}+c_{i} \leq 0, \quad i=1,2, \ldots, m
\end{array}
$$

- $\mathbf{A}_{i}=\mathbf{A}_{i}^{T} \in \mathbb{R}^{n \times n}, \mathbf{b}_{i} \in \mathbb{R}^{n}, c_{i} \in \mathbb{R}, i=0,1, \ldots, m$.

Dual of Nonconvex QCQPs

Consider the problem

$$
\begin{array}{ll}
\min & \mathbf{x}^{T} \mathbf{A}_{0} \mathbf{x}+2 \mathbf{b}_{0}^{T} \mathbf{x}+c_{0} \\
\text { s.t. } & \mathbf{x}^{T} \mathbf{A}_{i} \mathbf{x}+2 \mathbf{b}_{i}^{T} \mathbf{x}+c_{i} \leq 0, \quad i=1,2, \ldots, m
\end{array}
$$

- $\mathbf{A}_{i}=\mathbf{A}_{i}^{T} \in \mathbb{R}^{n \times n}, \mathbf{b}_{i} \in \mathbb{R}^{n}, c_{i} \in \mathbb{R}, i=0,1, \ldots, m$.
- We do not assume that \mathbf{A}_{i} are positive semidefinite, and hence the problem is in general nonconvex.

Dual of Nonconvex QCQPs

Consider the problem

$$
\begin{array}{ll}
\min & \mathbf{x}^{T} \mathbf{A}_{0} \mathbf{x}+2 \mathbf{b}_{0}^{T} \mathbf{x}+c_{0} \\
\mathrm{s.t.} & \mathbf{x}^{T} \mathbf{A}_{i} \mathbf{x}+2 \mathbf{b}_{i}^{T} \mathbf{x}+c_{i} \leq 0, \quad i=1,2, \ldots, m
\end{array}
$$

- $\mathbf{A}_{i}=\mathbf{A}_{i}^{T} \in \mathbb{R}^{n \times n}, \mathbf{b}_{i} \in \mathbb{R}^{n}, c_{i} \in \mathbb{R}, i=0,1, \ldots, m$.
- We do not assume that \mathbf{A}_{i} are positive semidefinite, and hence the problem is in general nonconvex.
- Lagrangian $\left(\boldsymbol{\lambda} \in \mathbb{R}_{+}^{m}\right)$:

$$
\begin{aligned}
L(\mathbf{x}, \boldsymbol{\lambda}) & =\mathbf{x}^{T} \mathbf{A}_{0} \mathbf{x}+2 \mathbf{b}_{0}^{T} \mathbf{x}+c_{0}+\sum_{i=1}^{m} \lambda_{i}\left(\mathbf{x}^{T} \mathbf{A}_{i} \mathbf{x}+2 \mathbf{b}_{i}^{T} \mathbf{x}+c_{i}\right) \\
& =\mathbf{x}^{T}\left(\mathbf{A}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i}\right) \mathbf{x}+2\left(\mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}\right)^{T} \mathbf{x}+c_{0}+\sum_{i=1}^{m} c_{i} \lambda_{i}
\end{aligned}
$$

Dual of Nonconvex QCQPs

Consider the problem

$$
\begin{array}{ll}
\min & \mathbf{x}^{T} \mathbf{A}_{0} \mathbf{x}+2 \mathbf{b}_{0}^{T} \mathbf{x}+c_{0} \\
\mathrm{s.t.} & \mathbf{x}^{T} \mathbf{A}_{i} \mathbf{x}+2 \mathbf{b}_{i}^{T} \mathbf{x}+c_{i} \leq 0, \quad i=1,2, \ldots, m
\end{array}
$$

- $\mathbf{A}_{i}=\mathbf{A}_{i}^{T} \in \mathbb{R}^{n \times n}, \mathbf{b}_{i} \in \mathbb{R}^{n}, c_{i} \in \mathbb{R}, i=0,1, \ldots, m$.
- We do not assume that \mathbf{A}_{i} are positive semidefinite, and hence the problem is in general nonconvex.
- Lagrangian $\left(\boldsymbol{\lambda} \in \mathbb{R}_{+}^{m}\right)$:

$$
\begin{aligned}
L(\mathbf{x}, \boldsymbol{\lambda}) & =\mathbf{x}^{T} \mathbf{A}_{0} \mathbf{x}+2 \mathbf{b}_{0}^{T} \mathbf{x}+c_{0}+\sum_{i=1}^{m} \lambda_{i}\left(\mathbf{x}^{T} \mathbf{A}_{i} \mathbf{x}+2 \mathbf{b}_{i}^{T} \mathbf{x}+c_{i}\right) \\
& =\mathbf{x}^{T}\left(\mathbf{A}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i}\right) \mathbf{x}+2\left(\mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}\right)^{T} \mathbf{x}+c_{0}+\sum_{i=1}^{m} c_{i} \lambda_{i}
\end{aligned}
$$

- Note that

$$
q(\boldsymbol{\lambda})=\min _{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda})=\max _{t}\left\{t: L(\mathbf{x}, \boldsymbol{\lambda}) \geq t \text { for any } \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

Dual of Nonconvex QCQPs

- The following holds:

$$
L(\mathbf{x}, \boldsymbol{\lambda}) \geq t \text { for all } \mathbf{x} \in \mathbb{R}^{n}
$$

is equivalent to

$$
\left(\begin{array}{cc}
\mathbf{A}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i} & \mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i} \\
\left(\mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}\right)^{T} & c_{0}+\sum_{i=1}^{m} \lambda_{i} c_{i}-t
\end{array}\right) \succeq \mathbf{0},
$$

Dual of Nonconvex QCQPs

- The following holds:

$$
L(\mathbf{x}, \boldsymbol{\lambda}) \geq t \text { for all } \mathbf{x} \in \mathbb{R}^{n}
$$

is equivalent to

$$
\left(\begin{array}{cc}
\mathbf{A}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i} & \mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i} \\
\left(\mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}\right)^{T} & c_{0}+\sum_{i=1}^{m} \lambda_{i} c_{i}-t
\end{array}\right) \succeq \mathbf{0},
$$

- Therefore, the dual problem is

$$
\begin{array}{ll}
\max _{t, \lambda_{i}} & t \\
\text { s.t. } & \left(\begin{array}{cc}
\mathbf{A}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{A}_{i} & \mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i} \\
\left(\mathbf{b}_{0}+\sum_{i=1}^{m} \lambda_{i} \mathbf{b}_{i}\right)^{T} & c_{0}+\sum_{i=1}^{m} \lambda_{i} c_{i}-t
\end{array}\right) \succeq \mathbf{0} \\
& \lambda_{i} \geq 0, \quad i=1,2, \ldots, m
\end{array}
$$

Orthogonal Projection onto the Unit Simplex

- Given a vector $\mathbf{y} \in \mathbb{R}^{n}$, the orthogonal projection of \mathbf{y} onto Δ_{n} is the solution to

$$
\begin{array}{ll}
\min & \|\mathbf{x}-\mathbf{y}\|^{2} \\
\mathrm{s.t.} & \mathbf{e}^{T} \mathbf{x}=1 \\
& \mathbf{x} \geq \mathbf{0}
\end{array}
$$

Orthogonal Projection onto the Unit Simplex

- Given a vector $\mathbf{y} \in \mathbb{R}^{n}$, the orthogonal projection of \mathbf{y} onto Δ_{n} is the solution to

$$
\begin{array}{ll}
\min & \|\mathbf{x}-\mathbf{y}\|^{2} \\
\text { s.t. } & \mathbf{e}^{T} \mathbf{x}=1, \\
& \mathbf{x} \geq \mathbf{0} .
\end{array}
$$

- Lagrangian:

$$
\begin{aligned}
L(\mathbf{x}, \lambda) & =\|\mathbf{x}-\mathbf{y}\|^{2}+2 \lambda\left(\mathbf{e}^{T} \mathbf{x}-1\right)=\|\mathbf{x}\|^{2}-2(\mathbf{y}-\lambda \mathbf{e})^{T} \mathbf{x}+\|\mathbf{y}\|^{2}-2 \lambda \\
& =\sum_{j=1}^{n}\left(x_{j}^{2}-2\left(y_{j}-\lambda\right) x_{j}\right)+\|\mathbf{y}\|^{2}-2 \lambda .
\end{aligned}
$$

Orthogonal Projection onto the Unit Simplex

- Given a vector $\mathbf{y} \in \mathbb{R}^{n}$, the orthogonal projection of \mathbf{y} onto Δ_{n} is the solution to

$$
\begin{array}{ll}
\min & \|\mathbf{x}-\mathbf{y}\|^{2} \\
\text { s.t. } & \mathbf{e}^{T} \mathbf{x}=1, \\
& \mathbf{x} \geq \mathbf{0} .
\end{array}
$$

- Lagrangian:

$$
\begin{aligned}
L(\mathbf{x}, \lambda) & =\|\mathbf{x}-\mathbf{y}\|^{2}+2 \lambda\left(\mathbf{e}^{T} \mathbf{x}-1\right)=\|\mathbf{x}\|^{2}-2(\mathbf{y}-\lambda \mathbf{e})^{T} \mathbf{x}+\|\mathbf{y}\|^{2}-2 \lambda \\
& =\sum_{j=1}^{n}\left(x_{j}^{2}-2\left(y_{j}-\lambda\right) x_{j}\right)+\|\mathbf{y}\|^{2}-2 \lambda .
\end{aligned}
$$

- The optimal x_{j} is the solution to the 1D problem $\min _{x_{j} \geq 0}\left[x_{j}^{2}-2\left(y_{j}-\lambda\right) x_{j}\right]$.

Orthogonal Projection onto the Unit Simplex

- Given a vector $\mathbf{y} \in \mathbb{R}^{n}$, the orthogonal projection of \mathbf{y} onto Δ_{n} is the solution to

$$
\begin{array}{ll}
\min & \|\mathbf{x}-\mathbf{y}\|^{2} \\
\text { s.t. } & \mathbf{e}^{T} \mathbf{x}=1, \\
& \mathbf{x} \geq \mathbf{0} .
\end{array}
$$

- Lagrangian:

$$
\begin{aligned}
L(\mathbf{x}, \lambda) & =\|\mathbf{x}-\mathbf{y}\|^{2}+2 \lambda\left(\mathbf{e}^{T} \mathbf{x}-1\right)=\|\mathbf{x}\|^{2}-2(\mathbf{y}-\lambda \mathbf{e})^{T} \mathbf{x}+\|\mathbf{y}\|^{2}-2 \lambda \\
& =\sum_{j=1}^{n}\left(x_{j}^{2}-2\left(y_{j}-\lambda\right) x_{j}\right)+\|\mathbf{y}\|^{2}-2 \lambda .
\end{aligned}
$$

- The optimal x_{j} is the solution to the 1D problem $\min _{x_{j} \geq 0}\left[x_{j}^{2}-2\left(y_{j}-\lambda\right) x_{j}\right]$.
- The optimal x_{j} is $x_{j}=\left\{\begin{array}{cl}y_{j}-\lambda & y_{j} \geq \lambda \\ 0 & \text { else }\end{array}=\left[y_{j}-\lambda\right]_{+}\right.$, with optimal value $-\left[y_{j}-\lambda\right]_{+}^{2}$.

Orthogonal Projection onto the Unit Simplex

- Given a vector $\mathbf{y} \in \mathbb{R}^{n}$, the orthogonal projection of \mathbf{y} onto Δ_{n} is the solution to

$$
\begin{array}{ll}
\min & \|\mathbf{x}-\mathbf{y}\|^{2} \\
\text { s.t. } & \mathbf{e}^{T} \mathbf{x}=1, \\
& \mathbf{x} \geq \mathbf{0} .
\end{array}
$$

- Lagrangian:

$$
\begin{aligned}
L(\mathbf{x}, \lambda) & =\|\mathbf{x}-\mathbf{y}\|^{2}+2 \lambda\left(\mathbf{e}^{T} \mathbf{x}-1\right)=\|\mathbf{x}\|^{2}-2(\mathbf{y}-\lambda \mathbf{e})^{T} \mathbf{x}+\|\mathbf{y}\|^{2}-2 \lambda \\
& =\sum_{j=1}^{n}\left(x_{j}^{2}-2\left(y_{j}-\lambda\right) x_{j}\right)+\|\mathbf{y}\|^{2}-2 \lambda .
\end{aligned}
$$

- The optimal x_{j} is the solution to the 1D problem $\min _{x_{j} \geq 0}\left[x_{j}^{2}-2\left(y_{j}-\lambda\right) x_{j}\right]$.
- The optimal x_{j} is $x_{j}=\left\{\begin{array}{cl}y_{j}-\lambda & y_{j} \geq \lambda \\ 0 & \text { else }\end{array}=\left[y_{j}-\lambda\right]_{+}\right.$, with optimal value $-\left[y_{j}-\lambda\right]^{2}$.
- The dual problem is

$$
\max _{\lambda \in \mathbb{R}}\left\{g(\lambda) \equiv-\sum_{j=1}^{n}\left[y_{j}-\lambda\right]_{+}^{2}-2 \lambda+\|\mathbf{y}\|^{2}\right\} .
$$

Orthogonal Projection onto the Unit Simplex

- g is concave, differentiable, $\lim _{\lambda \rightarrow \infty} g(\lambda)=\lim _{\lambda \rightarrow-\infty} g(\lambda)=-\infty$.

Orthogonal Projection onto the Unit Simplex

- g is concave, differentiable, $\lim _{\lambda \rightarrow \infty} g(\lambda)=\lim _{\lambda \rightarrow-\infty} g(\lambda)=-\infty$.
- Therefore, there exists an optimal solution to the dual problem attained at a point λ^{*} in which $g^{\prime}\left(\lambda^{*}\right)=0$.

Orthogonal Projection onto the Unit Simplex

- g is concave, differentiable, $\lim _{\lambda \rightarrow \infty} g(\lambda)=\lim _{\lambda \rightarrow-\infty} g(\lambda)=-\infty$.
- Therefore, there exists an optimal solution to the dual problem attained at a point λ^{*} in which $g^{\prime}\left(\lambda^{*}\right)=0$.
- $\sum_{j=1}^{n}\left[y_{j}-\lambda^{*}\right]_{+}=1$.
- $h(\lambda)=\sum_{j=1}^{n}\left[y_{j}-\lambda\right]_{+}-1$ is nonincreasing over \mathbb{R} and is in fact strictly decreasing over $\left(-\infty, \max _{j} y_{j}\right]$.

Orthogonal Projection onto the Unit Simplex

- g is concave, differentiable, $\lim _{\lambda \rightarrow \infty} g(\lambda)=\lim _{\lambda \rightarrow-\infty} g(\lambda)=-\infty$.
- Therefore, there exists an optimal solution to the dual problem attained at a point λ^{*} in which $g^{\prime}\left(\lambda^{*}\right)=0$.
- $\sum_{j=1}^{n}\left[y_{j}-\lambda^{*}\right]_{+}=1$.
- $h(\lambda)=\sum_{j=1}^{n}\left[y_{j}-\lambda\right]_{+}-1$ is nonincreasing over \mathbb{R} and is in fact strictly decreasing over $\left(-\infty, \max _{j} y_{j}\right]$.

$$
\begin{aligned}
h\left(y_{\max }\right) & =-1 \\
h\left(y_{\min }-\frac{2}{n}\right) & =\sum_{j=1}^{n} y_{j}-n y_{\min }+2-1>0,
\end{aligned}
$$

where $y_{\text {max }}=\max _{j=1,2, \ldots, n} y_{j}, y_{\text {min }}=\min _{j=1,2, \ldots, n} y_{j}$.

Orthogonal Projection onto the Unit Simplex

- g is concave, differentiable, $\lim _{\lambda \rightarrow \infty} g(\lambda)=\lim _{\lambda \rightarrow-\infty} g(\lambda)=-\infty$.
- Therefore, there exists an optimal solution to the dual problem attained at a point λ^{*} in which $g^{\prime}\left(\lambda^{*}\right)=0$.
- $\sum_{j=1}^{n}\left[y_{j}-\lambda^{*}\right]_{+}=1$.
- $h(\lambda)=\sum_{j=1}^{n}\left[y_{j}-\lambda\right]_{+}-1$ is nonincreasing over \mathbb{R} and is in fact strictly decreasing over $\left(-\infty, \max _{j} y_{j}\right]$.

$$
\begin{aligned}
h\left(y_{\max }\right) & =-1 \\
h\left(y_{\min }-\frac{2}{n}\right) & =\sum_{j=1}^{n} y_{j}-n y_{\min }+2-1>0,
\end{aligned}
$$

where $y_{\text {max }}=\max _{j=1,2, \ldots, n} y_{j}, y_{\text {min }}=\min _{j=1,2, \ldots, n} y_{j}$.

- We can therefore invoke a bisection procedure to find the unique root λ^{*} of the function h over the interval $\left[y_{\text {min }}-\frac{2}{n}, y_{\text {max }}\right]$, and then define $P_{\Delta_{n}}(\mathbf{y})=\left[\mathbf{y}-\lambda^{*} \mathbf{e}\right]_{+}$.

Orthogonal Projection Onto the Unit Simplex

The MATLAB function proj_unit_simplex:

```
function xp=proj_unit_simplex(y)
f=@(lam)sum(max (y-lam,0))-1;
n=length(y);
lb=min(y)-2/n;
ub=max (y);
lam=bisection(f,lb,ub,1e-10);
xp=max(y-lam,0);
```


Dual of the Chebyshev Center Problem

- Formulation:

$$
\begin{array}{ll}
\min _{\mathbf{x}, r} & r \\
\text { s.t. } & \left\|\mathbf{x}-\mathbf{a}_{i}\right\| \leq r, \quad i=1,2, \ldots, m
\end{array}
$$

Dual of the Chebyshev Center Problem

- Formulation:

$$
\begin{array}{ll}
\min _{\mathbf{x}, r} & r \\
\text { s.t. } & \left\|\mathbf{x}-\mathbf{a}_{i}\right\| \leq r, \quad i=1,2, \ldots, m
\end{array}
$$

- Reformulation:

$$
\begin{array}{ll}
\min _{\mathbf{x}, \gamma} & \gamma \\
\mathrm{s.t.} & \left\|\mathbf{x}-\mathbf{a}_{i}\right\|^{2} \leq \gamma, \quad i=1,2, \ldots, m
\end{array}
$$

Dual of the Chebyshev Center Problem

- Formulation:

$$
\begin{array}{ll}
\min _{\mathbf{x}, r} & r \\
\text { s.t. } & \left\|\mathbf{x}-\mathbf{a}_{i}\right\| \leq r, \quad i=1,2, \ldots, m
\end{array}
$$

- Reformulation:

$$
\begin{aligned}
& \min _{\mathbf{x}, \gamma} \stackrel{\gamma}{\text { s.t. }} \\
&\left\|\mathbf{x}-\mathbf{a}_{i}\right\|^{2} \leq \gamma, \quad i=1,2, \ldots, m \\
& \begin{aligned}
L(\mathbf{x}, \gamma, \boldsymbol{\lambda}) & = \\
& \gamma+\sum_{i=1}^{m} \lambda_{i}\left(\left\|\mathbf{x}-\mathbf{a}_{i}\right\|^{2}-\gamma\right) \\
& =\gamma\left(1-\sum_{i=1}^{m} \lambda_{i}\right)+\sum_{i=1}^{m} \lambda_{i}\left\|\mathbf{x}-\mathbf{a}_{i}\right\|^{2} .
\end{aligned} \\
& \\
&
\end{aligned}
$$

Dual of the Chebyshev Center Problem

- Formulation:

$$
\begin{array}{ll}
\min _{\mathbf{x}, r} & r \\
\text { s.t. } & \left\|\mathbf{x}-\mathbf{a}_{i}\right\| \leq r, \quad i=1,2, \ldots, m
\end{array}
$$

- Reformulation:

$$
\begin{aligned}
\min _{\mathbf{x}, \gamma} & \stackrel{\gamma}{\text { s.t. }}
\end{aligned} \begin{aligned}
\left\|\mathbf{x}-\mathbf{a}_{i}\right\|^{2} \leq \gamma, \quad i=1,2, \ldots, m \\
\begin{aligned}
L(\mathbf{x}, \gamma, \boldsymbol{\lambda}) & = \\
& \gamma+\sum_{i=1}^{m} \lambda_{i}\left(\left\|\mathbf{x}-\mathbf{a}_{i}\right\|^{2}-\gamma\right) \\
& =\gamma\left(1-\sum_{i=1}^{m} \lambda_{i}\right)+\sum_{i=1}^{m} \lambda_{i}\left\|\mathbf{x}-\mathbf{a}_{i}\right\|^{2}
\end{aligned}
\end{aligned}
$$

- The minimization of the above expression must be $-\infty$ unless $\sum_{i=1}^{m} \lambda_{i}=1$, and in this case we have

$$
\min _{\gamma} \gamma\left(1-\sum_{i=1}^{m} \lambda_{i}\right)=0
$$

Dual of Chebyshev Center Contd.

- Need to solve $\min _{\mathrm{x}} \sum_{i=1}^{m} \lambda_{i}\left\|\mathbf{x}-\mathbf{a}_{i}\right\|^{2}$.

Dual of Chebyshev Center Contd.

- Need to solve $\min _{\mathbf{x}} \sum_{i=1}^{m} \lambda_{i}\left\|\mathbf{x}-\mathbf{a}_{i}\right\|^{2}$.
- We have

$$
\begin{equation*}
\sum_{i=1}^{m} \lambda_{i}\left\|\mathbf{x}-\mathbf{a}_{i}\right\|^{2}=\|\mathbf{x}\|^{2}-2\left(\sum_{i=1}^{m} \lambda_{i} \mathbf{a}_{i}\right)^{T} \mathbf{x}+\sum_{i=1}^{m} \lambda_{i}\left\|\mathbf{a}_{i}\right\|^{2} \tag{17}
\end{equation*}
$$

Dual of Chebyshev Center Contd.

- Need to solve $\min _{\mathrm{x}} \sum_{i=1}^{m} \lambda_{i}\left\|\mathbf{x}-\mathbf{a}_{i}\right\|^{2}$.
- We have

$$
\begin{equation*}
\sum_{i=1}^{m} \lambda_{i}\left\|\mathbf{x}-\mathbf{a}_{i}\right\|^{2}=\|\mathbf{x}\|^{2}-2\left(\sum_{i=1}^{m} \lambda_{i} \mathbf{a}_{i}\right)^{T} \mathbf{x}+\sum_{i=1}^{m} \lambda_{i}\left\|\mathbf{a}_{i}\right\|^{2} \tag{17}
\end{equation*}
$$

- The minimum is attained at the point in which the gradient vanishes:

$$
\mathbf{x}^{*}=\sum_{i=1}^{m} \lambda_{i} \mathbf{a}_{i}=\mathbf{A} \boldsymbol{\lambda}
$$

\mathbf{A} is the $n \times m$ matrix whose columns are $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{m}$.

Dual of Chebyshev Center Contd.

- Need to solve $\min _{\mathrm{x}} \sum_{i=1}^{m} \lambda_{i}\left\|\mathbf{x}-\mathbf{a}_{i}\right\|^{2}$.
- We have

$$
\begin{equation*}
\sum_{i=1}^{m} \lambda_{i}\left\|\mathbf{x}-\mathbf{a}_{i}\right\|^{2}=\|\mathbf{x}\|^{2}-2\left(\sum_{i=1}^{m} \lambda_{i} \mathbf{a}_{i}\right)^{T} \mathbf{x}+\sum_{i=1}^{m} \lambda_{i}\left\|\mathbf{a}_{i}\right\|^{2} \tag{17}
\end{equation*}
$$

- The minimum is attained at the point in which the gradient vanishes:

$$
\mathbf{x}^{*}=\sum_{i=1}^{m} \lambda_{i} \mathbf{a}_{i}=\mathbf{A} \boldsymbol{\lambda},
$$

\mathbf{A} is the $n \times m$ matrix whose columns are $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{m}$.

- Substituting this expression back into (17),

$$
q(\boldsymbol{\lambda})=\|\mathbf{A} \boldsymbol{\lambda}\|^{2}-2(\mathbf{A} \boldsymbol{\lambda})^{T}(\mathbf{A} \boldsymbol{\lambda})+\sum_{i=1}^{m} \lambda_{i}\left\|\mathbf{a}_{i}\right\|^{2}=-\|\mathbf{A} \boldsymbol{\lambda}\|^{2}+\sum_{i=1}^{m} \lambda_{i}\left\|\mathbf{a}_{i}\right\|^{2} .
$$

Dual of Chebyshev Center Contd.

- Need to solve $\min _{\mathrm{x}} \sum_{i=1}^{m} \lambda_{i}\left\|\mathbf{x}-\mathbf{a}_{i}\right\|^{2}$.
- We have

$$
\begin{equation*}
\sum_{i=1}^{m} \lambda_{i}\left\|\mathbf{x}-\mathbf{a}_{i}\right\|^{2}=\|\mathbf{x}\|^{2}-2\left(\sum_{i=1}^{m} \lambda_{i} \mathbf{a}_{i}\right)^{T} \mathbf{x}+\sum_{i=1}^{m} \lambda_{i}\left\|\mathbf{a}_{i}\right\|^{2} \tag{17}
\end{equation*}
$$

- The minimum is attained at the point in which the gradient vanishes:

$$
\mathbf{x}^{*}=\sum_{i=1}^{m} \lambda_{i} \mathbf{a}_{i}=\mathbf{A} \boldsymbol{\lambda},
$$

\mathbf{A} is the $n \times m$ matrix whose columns are $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{m}$.

- Substituting this expression back into (17),

$$
q(\boldsymbol{\lambda})=\|\mathbf{A} \boldsymbol{\lambda}\|^{2}-2(\mathbf{A} \boldsymbol{\lambda})^{T}(\mathbf{A} \boldsymbol{\lambda})+\sum_{i=1}^{m} \lambda_{i}\left\|\mathbf{a}_{i}\right\|^{2}=-\|\mathbf{A} \boldsymbol{\lambda}\|^{2}+\sum_{i=1}^{m} \lambda_{i}\left\|\mathbf{a}_{i}\right\|^{2} .
$$

- The dual problem is therefore

$$
\begin{array}{ll}
\max & -\|\mathbf{A} \boldsymbol{\lambda}\|^{2}+\sum_{i=1}^{m} \lambda_{i}\left\|\mathbf{a}_{i}\right\|^{2} \\
\text { s.t. } & \boldsymbol{\lambda} \in \Delta_{m} .
\end{array}
$$

MATLAB code

function $[\mathrm{xp}, \mathrm{r}]=$ chebyshev_center (A)

```
d=size (A) ;
\(\mathrm{m}=\mathrm{d}(2)\);
\(\mathrm{Q}=\mathrm{A}{ }^{\prime} * \mathrm{~A}\);
\(\mathrm{L}=2 * \max (\mathrm{eig}(\mathrm{Q}))\);
b=sum(A. \({ }^{\text {2 }}\) )';
\%initialization with the uniform vector
lam=1/m*ones (m,1);
old_lam=zeros (m,1);
while (norm(lam-old_lam)>1e-5)
    old_lam=lam;
    lam=proj_unit_simplex(lam+1/L*(-2*Q*lam+b));
end
\(\mathrm{xp}=\mathrm{A} * \mathrm{lam}\);
\(\mathrm{r}=0\);
for \(i=1: m\)
    \(r=\max (r, \operatorname{norm}(x p-A(:, i)))\);
end
```


Denoising

Suppose that we are given a signal contaminated with noise.

$$
\mathbf{y}=\mathbf{x}+\mathbf{w}
$$

\mathbf{x} - unknown "true" signal, w-unknown noise, \mathbf{y} - known observed signal.

The denoising problem: find a "good" estimate for \mathbf{x} given \mathbf{y}.

A Tikhonov Regularization Approach

Quadratic Penalty:

$$
\min \|\mathbf{x}-\mathbf{y}\|^{2}+\lambda \sum_{i=1}^{n-1}\left(x_{i}-x_{i+1}\right)^{2}
$$

A Tikhonov Regularization Approach

Quadratic Penalty:

$$
\min \|\mathbf{x}-\mathbf{y}\|^{2}+\lambda \sum_{i=1}^{n-1}\left(x_{i}-x_{i+1}\right)^{2}
$$

The solution with $\lambda=1$:

A Tikhonov Regularization Approach

Quadratic Penalty:

$$
\min \|\mathbf{x}-\mathbf{y}\|^{2}+\lambda \sum_{i=1}^{n-1}\left(x_{i}-x_{i+1}\right)^{2}
$$

The solution with $\lambda=1$:

Pretty good!

Weakness of Quadratic Regularization

The quadratic regularization method does not work so well for all types of signals. True and noisy step functions:

Failure of Quadratic Regularization

I_{1} regularization

$$
\begin{equation*}
\min \|\mathbf{x}-\mathbf{y}\|^{2}+\lambda\|\mathbf{L} \mathbf{x}\|_{1} \tag{18}
\end{equation*}
$$

I_{1} regularization

$$
\begin{equation*}
\min \|\mathbf{x}-\mathbf{y}\|^{2}+\lambda\|\mathbf{L}\|_{1} . \tag{18}
\end{equation*}
$$

- The problem is equivalent to the optimization problem

$$
\begin{array}{ll}
\min _{\mathbf{x}, \mathbf{z}} & \|\mathbf{x}-\mathbf{y}\|^{2}+\lambda\|\mathbf{z}\|_{1} \\
\text { s.t. } & \mathbf{z}=\mathbf{L x} .
\end{array}
$$

\mathbf{L} is the $(n-1) \times n$ matrix whose components are $L_{i, i}=1, L_{i, i+1}=-1$ and 0 otherwise.

I_{1} regularization

$$
\begin{equation*}
\min \|\mathbf{x}-\mathbf{y}\|^{2}+\lambda\|\mathbf{L}\|_{1} . \tag{18}
\end{equation*}
$$

- The problem is equivalent to the optimization problem

$$
\begin{array}{ll}
\min _{\mathbf{x}, \mathbf{z}} & \|\mathbf{x}-\mathbf{y}\|^{2}+\lambda\|\mathbf{z}\|_{1} \\
\text { s.t. } & \mathbf{z}=\mathbf{L x} .
\end{array}
$$

\mathbf{L} is the $(n-1) \times n$ matrix whose components are $L_{i, i}=1, L_{i, i+1}=-1$ and 0 otherwise.

- The Lagrangian of the problem is

$$
\begin{aligned}
L(\mathbf{x}, \mathbf{z}, \boldsymbol{\mu}) & =\|\mathbf{x}-\mathbf{y}\|^{2}+\lambda\|\mathbf{z}\|_{1}+\boldsymbol{\mu}^{T}(\mathbf{L} \mathbf{x}-\mathbf{z}) \\
& =\|\mathbf{x}-\mathbf{y}\|^{2}+\left(\mathbf{L}^{T} \boldsymbol{\mu}\right)^{T} \mathbf{x}+\lambda\|\mathbf{z}\|_{1}-\boldsymbol{\mu}^{T} \mathbf{z}
\end{aligned}
$$

I_{1} regularization

$$
\begin{equation*}
\min \|\mathbf{x}-\mathbf{y}\|^{2}+\lambda\|\mathbf{L} \mathbf{x}\|_{1} \tag{18}
\end{equation*}
$$

- The problem is equivalent to the optimization problem

$$
\begin{array}{ll}
\min _{\mathbf{x}, \mathbf{z}} & \|\mathbf{x}-\mathbf{y}\|^{2}+\lambda\|\mathbf{z}\|_{1} \\
\text { s.t. } & \mathbf{z}=\mathbf{L x} .
\end{array}
$$

\mathbf{L} is the $(n-1) \times n$ matrix whose components are $L_{i, i}=1, L_{i, i+1}=-1$ and 0 otherwise.

- The Lagrangian of the problem is

$$
\begin{aligned}
L(\mathbf{x}, \mathbf{z}, \boldsymbol{\mu}) & =\|\mathbf{x}-\mathbf{y}\|^{2}+\lambda\|\mathbf{z}\|_{1}+\boldsymbol{\mu}^{T}(\mathbf{L} \mathbf{x}-\mathbf{z}) \\
& =\|\mathbf{x}-\mathbf{y}\|^{2}+\left(\mathbf{L}^{T} \boldsymbol{\mu}\right)^{T} \mathbf{x}+\lambda\|\mathbf{z}\|_{1}-\boldsymbol{\mu}^{T} \mathbf{z}
\end{aligned}
$$

- The dual problem is

$$
\begin{array}{ll}
\max & -\frac{1}{4} \boldsymbol{\mu}^{\top} \mathbf{L L}^{\top} \boldsymbol{\mu}+\boldsymbol{\mu}^{T} \mathbf{L} \boldsymbol{y} \\
\text { s.t. } & \|\boldsymbol{\mu}\|_{\infty} \leq \lambda . \tag{19}
\end{array}
$$

A MATLAB code

Employing the gradient projection method on the dual:

```
lambda=1;
mu=zeros(n-1,1);
for i=1:1000
    mu=mu-0.25*L*(L'*mu)+0.5*(L*y);
    mu=lambda*mu./max(abs(mu),lambda);
    xde=y-0.5*L'*mu;
    end
figure(5)
plot(t,xde,'.');
axis([0,1, -1,4])
```


I_{1}-regularized solution

Dual of the Linear Separation Problem (Dual SVM)

- $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m} \in \mathbb{R}^{n}$.
- For each i, we are given a scalar y_{i} which is equal to 1 if \mathbf{x}_{i} is in class A or -1 if it is in class B.
- The problem of finding a maximal margin hyperplane that separates the two sets of points is

$$
\begin{array}{ll}
\min & \frac{1}{2}\|\mathbf{w}\|^{2} \\
\text { s.t. } & y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+\beta\right) \geq 1, \quad i=1,2, \ldots, m .
\end{array}
$$

Dual of the Linear Separation Problem (Dual SVM)

- $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m} \in \mathbb{R}^{n}$.
- For each i, we are given a scalar y_{i} which is equal to 1 if \mathbf{x}_{i} is in class A or -1 if it is in class B.
- The problem of finding a maximal margin hyperplane that separates the two sets of points is

$$
\begin{array}{ll}
\min & \frac{1}{2}\|\mathbf{w}\|^{2} \\
\text { s.t. } & y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+\beta\right) \geq 1, \quad i=1,2, \ldots, m .
\end{array}
$$

- The above assumes that the two classes are linearly seperable.

Dual of the Linear Separation Problem (Dual SVM)

- $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{m} \in \mathbb{R}^{n}$.
- For each i, we are given a scalar y_{i} which is equal to 1 if \mathbf{x}_{i} is in class A or -1 if it is in class B.
- The problem of finding a maximal margin hyperplane that separates the two sets of points is

$$
\begin{array}{ll}
\min & \frac{1}{2}\|\mathbf{w}\|^{2} \\
\text { s.t. } & y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+\beta\right) \geq 1, \quad i=1,2, \ldots, m .
\end{array}
$$

- The above assumes that the two classes are linearly seperable.
- A formulation that allows violation of the constraints (with an appropriate penality):

$$
\begin{array}{ll}
\min & \frac{1}{2}\|\mathbf{w}\|^{2}+C \sum_{i=1}^{m} \xi_{i} \\
\text { s.t. } & y_{i}\left(\mathbf{w}^{T} \mathbf{x}_{i}+\beta\right) \geq 1-\xi_{i}, \quad i=1,2, \ldots, m, \\
& \xi_{i} \geq 0, \quad i=1,2, \ldots, m,
\end{array}
$$

where $C>0$ is a penalty parameter.

Dual SVM

- The same as

$$
\begin{array}{ll}
\min & \frac{1}{2}\|\mathbf{w}\|^{2}+C\left(\mathbf{e}^{T} \boldsymbol{\xi}\right) \\
\mathrm{s.t.} & \mathbf{Y}(\mathbf{X} \mathbf{w}+\beta \mathbf{e}) \geq \mathbf{e}-\boldsymbol{\xi} \\
& \boldsymbol{\xi} \geq \mathbf{0}
\end{array}
$$

where $\mathbf{Y}=\operatorname{diag}\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ and \mathbf{X} is the $m \times n$ matrix whose rows are $\mathbf{x}_{1}^{T}, \mathbf{x}_{2}^{T}, \ldots, \mathbf{x}_{m}^{T}$.

Dual SVM

- The same as

$$
\begin{array}{ll}
\min & \frac{1}{2}\|\mathbf{w}\|^{2}+C\left(\mathbf{e}^{T} \boldsymbol{\xi}\right) \\
\mathrm{s.t.} & \mathbf{Y}(\mathbf{X} \mathbf{w}+\beta \mathbf{e}) \geq \mathbf{e}-\boldsymbol{\xi} \\
& \boldsymbol{\xi} \geq \mathbf{0}
\end{array}
$$

where $\mathbf{Y}=\operatorname{diag}\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ and \mathbf{X} is the $m \times n$ matrix whose rows are $\mathbf{x}_{1}^{T}, \mathbf{x}_{2}^{T}, \ldots, \mathbf{x}_{m}^{T}$.

- Lagrangian $\left(\boldsymbol{\alpha} \in \mathbb{R}_{+}^{m}\right)$:

$$
\begin{aligned}
L(\mathbf{w}, \beta, \boldsymbol{\xi}, \boldsymbol{\alpha}) & =\frac{1}{2}\|\mathbf{w}\|^{2}+C\left(\mathbf{e}^{T} \boldsymbol{\xi}\right)-\boldsymbol{\alpha}^{T}[\mathbf{Y X} \mathbf{w}+\beta \mathbf{Y e}-\mathbf{e}+\boldsymbol{\xi}] \\
& =\frac{1}{2}\|\mathbf{w}\|^{2}-\mathbf{w}^{T}\left[\mathbf{X}^{T} \mathbf{Y} \boldsymbol{\alpha}\right]-\beta\left(\boldsymbol{\alpha}^{T} \mathbf{Y} \mathbf{e}\right)+\boldsymbol{\xi}^{T}(C \mathbf{e}-\boldsymbol{\alpha})+\boldsymbol{\alpha}^{T} \mathbf{e}
\end{aligned}
$$

Dual SVM

- The same as

$$
\begin{array}{ll}
\min & \frac{1}{2}\|\mathbf{w}\|^{2}+C\left(\mathbf{e}^{T} \boldsymbol{\xi}\right) \\
\mathrm{s.t.} & \mathbf{Y}(\mathbf{X} \mathbf{w}+\beta \mathbf{e}) \geq \mathbf{e}-\boldsymbol{\xi} \\
& \boldsymbol{\xi} \geq \mathbf{0}
\end{array}
$$

where $\mathbf{Y}=\operatorname{diag}\left(y_{1}, y_{2}, \ldots, y_{m}\right)$ and \mathbf{X} is the $m \times n$ matrix whose rows are $\mathbf{x}_{1}^{T}, \mathbf{x}_{2}^{T}, \ldots, \mathbf{x}_{m}^{T}$.

- Lagrangian $\left(\boldsymbol{\alpha} \in \mathbb{R}_{+}^{m}\right)$:

$$
\begin{aligned}
L(\mathbf{w}, \beta, \boldsymbol{\xi}, \boldsymbol{\alpha}) & =\frac{1}{2}\|\mathbf{w}\|^{2}+C\left(\mathbf{e}^{T} \boldsymbol{\xi}\right)-\boldsymbol{\alpha}^{T}[\mathbf{Y} \mathbf{X} \mathbf{w}+\beta \mathbf{Y e}-\mathbf{e}+\boldsymbol{\xi}] \\
& =\frac{1}{2}\|\mathbf{w}\|^{2}-\mathbf{w}^{T}\left[\mathbf{X}^{T} \mathbf{Y} \boldsymbol{\alpha}\right]-\beta\left(\boldsymbol{\alpha}^{T} \mathbf{Y} \mathbf{e}\right)+\boldsymbol{\xi}^{T}(C \mathbf{e}-\boldsymbol{\alpha})+\boldsymbol{\alpha}^{T} \mathbf{e}
\end{aligned}
$$

$$
q(\boldsymbol{\alpha})=\left[\min _{\mathbf{w}} \frac{1}{2}\|\mathbf{w}\|^{2}-\mathbf{w}^{T}\left[\mathbf{X}^{T} \mathbf{Y} \boldsymbol{\alpha}\right]\right]+\left[\min _{\beta}\left(-\beta\left(\boldsymbol{\alpha}^{T} \mathbf{Y} \mathbf{e}\right)\right)\right]+\left[\min _{\boldsymbol{\xi} \geq \mathbf{0}} \boldsymbol{\xi}^{T}(C \mathbf{e}-\boldsymbol{\alpha})\right]+\boldsymbol{\alpha}^{T} \mathbf{e}
$$

Dual SVM

$$
\begin{aligned}
\min _{\mathbf{w}} \frac{1}{2}\|\mathbf{w}\|^{2}-\mathbf{w}^{T}\left[\mathbf{X}^{T} \mathbf{Y} \boldsymbol{\alpha}\right] & =-\frac{1}{2} \boldsymbol{\alpha}^{T} \mathbf{Y} \mathbf{X} \mathbf{X}^{T} \mathbf{Y} \boldsymbol{\alpha} \\
\min _{\beta}\left(-\beta\left(\boldsymbol{\alpha}^{T} \mathbf{Y e}\right)\right) & = \begin{cases}0 & \boldsymbol{\alpha}^{T} \mathbf{Y e}=0 \\
-\infty & \text { else }\end{cases} \\
\min _{\boldsymbol{\xi} \geq \mathbf{0}} \boldsymbol{\xi}^{T}(C \mathbf{e}-\boldsymbol{\alpha}) & = \begin{cases}0 & \boldsymbol{\alpha} \leq C \mathbf{e} \\
-\infty & \text { else }\end{cases}
\end{aligned}
$$

- Therefore, the dual objective function is given by

$$
q(\boldsymbol{\alpha})= \begin{cases}\boldsymbol{\alpha}^{T} \mathbf{e}-\frac{1}{2} \boldsymbol{\alpha}^{T} \mathbf{Y} \mathbf{X X} \mathbf{X}^{T} \mathbf{Y} \boldsymbol{\alpha} & \boldsymbol{\alpha}^{T} \mathbf{Y e}=0, \mathbf{0} \leq \boldsymbol{\alpha} \leq C \mathbf{e} \\ -\infty & \text { else. }\end{cases}
$$

Dual SVM

$$
\begin{aligned}
\min _{\mathbf{w}} \frac{1}{2}\|\mathbf{w}\|^{2}-\mathbf{w}^{T}\left[\mathbf{X}^{T} \mathbf{Y} \boldsymbol{\alpha}\right] & =-\frac{1}{2} \boldsymbol{\alpha}^{T} \mathbf{Y} \mathbf{X} \mathbf{X}^{T} \mathbf{Y} \boldsymbol{\alpha} \\
\min _{\beta}\left(-\beta\left(\boldsymbol{\alpha}^{T} \mathbf{Y e}\right)\right) & = \begin{cases}0 & \boldsymbol{\alpha}^{T} \mathbf{Y e}=0 \\
-\infty & \text { else }\end{cases} \\
\min _{\boldsymbol{\xi} \geq \mathbf{0}} \boldsymbol{\xi}^{T}(C \mathbf{e}-\boldsymbol{\alpha}) & = \begin{cases}0 & \boldsymbol{\alpha} \leq C \mathbf{e} \\
-\infty & \text { else }\end{cases}
\end{aligned}
$$

- Therefore, the dual objective function is given by

$$
\begin{aligned}
& \qquad q(\boldsymbol{\alpha})= \begin{cases}\boldsymbol{\alpha}^{T} \mathbf{e}-\frac{1}{2} \boldsymbol{\alpha}^{T} \mathbf{Y} \mathbf{X} \mathbf{X}^{T} \mathbf{Y} \boldsymbol{\alpha} & \boldsymbol{\alpha}^{T} \mathbf{Y e}=0, \mathbf{0} \leq \boldsymbol{\alpha} \leq \mathrm{C} \\
-\infty & \text { else. }\end{cases} \\
& \qquad \begin{array}{ll}
\max & \boldsymbol{\alpha}^{T} \mathbf{e}-\frac{1}{2} \boldsymbol{\alpha}^{T} \mathbf{Y} \mathbf{X X}^{T} \mathbf{Y} \boldsymbol{\alpha}
\end{array} \\
& \text { The dual problem is s.t. } \begin{array}{l}
\boldsymbol{\alpha}^{T} \mathbf{Y e}=0, \\
\\
\mathbf{0} \leq \boldsymbol{\alpha} \leq \mathbf{C} .
\end{array}
\end{aligned}
$$

- or

$$
\begin{array}{ll}
\max & \sum_{i=1}^{m} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right) \\
\text { s.t. } & \sum_{i=1}^{m} y_{i} \alpha_{i}=0, \\
& 0 \leq \alpha_{i} \leq C, \quad i=1,2, \ldots, m
\end{array}
$$

