## Lecture 11 - The Karush-Kuhn-Tucker Conditions

- The Karush-Kuhn-Tucker conditions are optimality conditions for inequality constrained problems discovered in 1951 (originating from Karush's thesis from 1939).
- Modern nonlinear optimization essentially begins with the discovery of these conditions.


## Lecture 11 - The Karush-Kuhn-Tucker Conditions

- The Karush-Kuhn-Tucker conditions are optimality conditions for inequality constrained problems discovered in 1951 (originating from Karush's thesis from 1939).
- Modern nonlinear optimization essentially begins with the discovery of these conditions.

The basic notion that we will require is the one of feasible descent directions.
Definition. Consider the problem

$$
\begin{array}{ll}
\min & h(\mathbf{x}) \\
\text { s.t. } & \mathbf{x} \in C,
\end{array}
$$

where $h$ is continuously differentiable over the set $C \subseteq \mathbb{R}^{n}$. Then a vector $\mathbf{d} \neq 0$ is called a feasible descent direction at $\mathbf{x} \in C$ if $\nabla f(\mathbf{x})^{T} \mathbf{d}<0$ and there exists $\varepsilon>0$ such that $\mathbf{x}+t \mathbf{d} \in C$ for all $t \in[0, \varepsilon]$.

## The Basic Necessary Condition - No Feasible Descent Directions

Lemma. Consider the problem

$$
\text { (G) } \quad \begin{array}{ll}
\min & f(x) \\
\text { s.t. } & x \in C,
\end{array}
$$

where $h$ is continuously differentiable over $C$. If $\mathbf{x}^{*}$ is a local optimal solution of $(G)$, then there are no feasible descent directions at $\mathbf{x}^{*}$.

## The Basic Necessary Condition - No Feasible Descent Directions

Lemma. Consider the problem

$$
\text { (G) } \quad \begin{array}{ll}
\min & f(x) \\
\text { s.t. } & x \in C,
\end{array}
$$

where $h$ is continuously differentiable over $C$. If $\mathbf{x}^{*}$ is a local optimal solution of $(G)$, then there are no feasible descent directions at $\mathbf{x}^{*}$.

## Proof.

- By contradiction, assume that there exists a vector $\mathbf{d}$ and $\varepsilon_{1}>0$ such that $\mathbf{x}+t \mathbf{d} \in C$ for all $t \in\left[0, \varepsilon_{1}\right]$ and $\nabla f\left(\mathbf{x}^{*}\right)^{T} \mathbf{d}<0$.


## The Basic Necessary Condition - No Feasible Descent Directions

Lemma. Consider the problem

$$
\text { (G) } \quad \begin{array}{ll}
\min & f(x) \\
\text { s.t. } & x \in C,
\end{array}
$$

where $h$ is continuously differentiable over $C$. If $\mathbf{x}^{*}$ is a local optimal solution of $(G)$, then there are no feasible descent directions at $\mathbf{x}^{*}$.

## Proof.

- By contradiction, assume that there exists a vector $\mathbf{d}$ and $\varepsilon_{1}>0$ such that $\mathbf{x}+t \mathbf{d} \in C$ for all $t \in\left[0, \varepsilon_{1}\right]$ and $\nabla f\left(\mathbf{x}^{*}\right)^{T} \mathbf{d}<0$.
- By definition of the directional derivative there exists $\varepsilon_{2}<\varepsilon_{1}$ such that $f\left(\mathbf{x}^{*}+t \mathbf{d}\right)<f\left(\mathbf{x}^{*}\right)$ for all $t \in\left[0, \varepsilon_{2}\right] \Rightarrow$ contradiction to the local optimality of $\mathbf{x}^{*}$.


## Consequence

Lemma. Let $\mathbf{x}^{*}$ be a local minimum of the problem

$$
\begin{array}{ll}
\min & f(\mathbf{x}) \\
\text { s.t. } & g_{i}(\mathbf{x}) \leq 0, \quad i=1,2, \ldots, m,
\end{array}
$$

where $f, g_{1}, \ldots, g_{m}$ are continuously differentiable functions over $\mathbb{R}^{n}$. Let $I\left(\mathbf{x}^{*}\right)$ be the set of active constraints at $\mathbf{x}^{*}$ :

$$
I\left(\mathbf{x}^{*}\right)=\left\{i: g_{i}\left(\mathbf{x}^{*}\right)=0\right\}
$$

Then there does not exist a vector $\mathbf{d} \in \mathbb{R}^{n}$ such that

$$
\begin{array}{ll}
\nabla f\left(\mathbf{x}^{*}\right)^{T} \mathbf{d} & <0, \\
\nabla g_{i}\left(\mathbf{x}^{*}\right)^{T} \mathbf{d} & <0, i \in I\left(\mathbf{x}^{*}\right)
\end{array}
$$

## Proof

- Suppose that $\mathbf{d}$ satisfies the system of inequalities.


## Proof

- Suppose that $\mathbf{d}$ satisfies the system of inequalities.
- Then $\exists \varepsilon_{1}>0$ such that $f\left(\mathbf{x}^{*}+t \mathbf{d}\right)<f\left(\mathbf{x}^{*}\right)$ and $g_{i}\left(\mathbf{x}^{*}+t \mathbf{d}\right)<g_{i}\left(\mathbf{x}^{*}\right)=0$ for any $t \in\left(0, \varepsilon_{1}\right)$ and $i \in I\left(\mathbf{x}^{*}\right)$.


## Proof

- Suppose that $\mathbf{d}$ satisfies the system of inequalities.
- Then $\exists \varepsilon_{1}>0$ such that $f\left(\mathbf{x}^{*}+t \mathbf{d}\right)<f\left(\mathbf{x}^{*}\right)$ and $g_{i}\left(\mathbf{x}^{*}+t \mathbf{d}\right)<g_{i}\left(\mathbf{x}^{*}\right)=0$ for any $t \in\left(0, \varepsilon_{1}\right)$ and $i \in I\left(\mathbf{x}^{*}\right)$.
- For any $i \notin I\left(\mathbf{x}^{*}\right)$ we have that $g_{i}\left(\mathbf{x}^{*}\right)<0$, and hence, by the continuity of $g_{i}$, there exists $\varepsilon_{2}>0$ such that $g_{i}\left(\mathbf{x}^{*}+t \mathbf{d}\right)<0$ for any $t \in\left(0, \varepsilon_{2}\right)$ and $i \notin I\left(x^{*}\right)$.


## Proof

- Suppose that $\mathbf{d}$ satisfies the system of inequalities.
- Then $\exists \varepsilon_{1}>0$ such that $f\left(\mathbf{x}^{*}+t \mathbf{d}\right)<f\left(\mathbf{x}^{*}\right)$ and $g_{i}\left(\mathbf{x}^{*}+t \mathbf{d}\right)<g_{i}\left(\mathbf{x}^{*}\right)=0$ for any $t \in\left(0, \varepsilon_{1}\right)$ and $i \in I\left(\mathbf{x}^{*}\right)$.
- For any $i \notin I\left(\mathbf{x}^{*}\right)$ we have that $g_{i}\left(\mathbf{x}^{*}\right)<0$, and hence, by the continuity of $g_{i}$, there exists $\varepsilon_{2}>0$ such that $g_{i}\left(\mathbf{x}^{*}+t \mathbf{d}\right)<0$ for any $t \in\left(0, \varepsilon_{2}\right)$ and $i \notin I\left(\mathbf{x}^{*}\right)$.
- Consequently,

$$
\begin{array}{ll}
f\left(\mathbf{x}^{*}+t \mathbf{d}\right) & <f\left(\mathbf{x}^{*}\right), \\
g_{i}\left(\mathbf{x}^{*}+t \mathbf{d}\right) & <0, \quad i=1,2, \ldots, m,
\end{array}
$$

for all $t \in\left(0, \min \left\{\varepsilon_{1}, \varepsilon_{2}\right\}\right)$.

## Proof

- Suppose that $\mathbf{d}$ satisfies the system of inequalities.
- Then $\exists \varepsilon_{1}>0$ such that $f\left(\mathbf{x}^{*}+t \mathbf{d}\right)<f\left(\mathbf{x}^{*}\right)$ and $g_{i}\left(\mathbf{x}^{*}+t \mathbf{d}\right)<g_{i}\left(\mathbf{x}^{*}\right)=0$ for any $t \in\left(0, \varepsilon_{1}\right)$ and $i \in I\left(\mathbf{x}^{*}\right)$.
- For any $i \notin I\left(\mathbf{x}^{*}\right)$ we have that $g_{i}\left(\mathbf{x}^{*}\right)<0$, and hence, by the continuity of $g_{i}$, there exists $\varepsilon_{2}>0$ such that $g_{i}\left(\mathbf{x}^{*}+t \mathbf{d}\right)<0$ for any $t \in\left(0, \varepsilon_{2}\right)$ and $i \notin I\left(\mathbf{x}^{*}\right)$.
- Consequently,

$$
\begin{array}{ll}
f\left(\mathbf{x}^{*}+t \mathbf{d}\right) & <f\left(\mathbf{x}^{*}\right), \\
g_{i}\left(\mathbf{x}^{*}+t \mathbf{d}\right) & <0, \quad i=1,2, \ldots, m,
\end{array}
$$

for all $t \in\left(0, \min \left\{\varepsilon_{1}, \varepsilon_{2}\right\}\right)$.

- A contradiction to the local optimality of $\mathbf{x}^{*}$.


## The Fritz-John Necessary Condition

Theorem. Let $\mathbf{x}^{*}$ be a local minimum of the problem

$$
\begin{array}{ll}
\min & f(\mathbf{x}) \\
\mathrm{s.t.} & g_{i}(\mathbf{x}) \leq 0, \quad i=1,2, \ldots, m
\end{array}
$$

where $f, g_{1}, \ldots, g_{m}$ are continuously differentiable functions over $\mathbb{R}^{n}$. Then there exist multipliers $\lambda_{0}, \lambda_{1}, \ldots, \lambda_{m} \geq 0$, which are not all zeros, such that

$$
\begin{aligned}
\lambda_{0} \nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right) & =\mathbf{0}, \\
\lambda_{i} g_{i}\left(\mathbf{x}^{*}\right) & =0, \quad i=1,2, \ldots, m .
\end{aligned}
$$

## Proof of Fritz-John Conditions

- The following system is infeasible
(S) $\nabla f\left(\mathbf{x}^{*}\right)^{T} \mathbf{d}<0, \nabla g_{i}\left(\mathbf{x}^{*}\right)^{T} \mathbf{d}<0, i \in I\left(\mathbf{x}^{*}\right)$


## Proof of Fritz-John Conditions

- The following system is infeasible
(S) $\nabla f\left(\mathbf{x}^{*}\right)^{T} \mathbf{d}<0, \nabla g_{i}\left(\mathbf{x}^{*}\right)^{T} \mathbf{d}<0, i \in I\left(\mathbf{x}^{*}\right)$
- System (S) is the same as Ad $<\mathbf{0}$ where $\mathbf{A}=\left(\begin{array}{c}\nabla f\left(\mathbf{x}^{*}\right)^{T} \\ \nabla g_{i 1}\left(\mathbf{x}^{*}\right)^{T} \\ \vdots \\ \nabla g_{i k}\left(\mathbf{x}^{*}\right)^{T}\end{array}\right)$


## Proof of Fritz-John Conditions

- The following system is infeasible
(S) $\nabla f\left(\mathbf{x}^{*}\right)^{T} \mathbf{d}<0, \nabla g_{i}\left(\mathbf{x}^{*}\right)^{T} \mathbf{d}<0, i \in I\left(\mathbf{x}^{*}\right)$
- System (S) is the same as Ad $<\mathbf{0}$ where $\mathbf{A}=\left(\begin{array}{c}\nabla f\left(\mathbf{x}^{*}\right)^{T} \\ \nabla g_{i 1}\left(\mathbf{x}^{*}\right)^{T} \\ \vdots \\ \nabla g_{i k}\left(\mathbf{x}^{*}\right)^{T}\end{array}\right)$
- By Gordan's theorem of alternative, system (S) is infeasible if and only if there exists a vector $\boldsymbol{\eta}=\left(\lambda_{0}, \lambda_{i_{1}}, \ldots, \lambda_{i_{k}}\right)^{T} \neq \mathbf{0}$ such that

$$
\mathbf{A}^{T} \boldsymbol{\eta}=\mathbf{0}, \boldsymbol{\eta} \geq \mathbf{0}
$$

## Proof of Fritz-John Conditions

- The following system is infeasible

$$
\text { (S) } \nabla f\left(\mathbf{x}^{*}\right)^{T} \mathbf{d}<0, \nabla g_{i}\left(\mathbf{x}^{*}\right)^{T} \mathbf{d}<0, i \in I\left(\mathbf{x}^{*}\right)
$$

- System (S) is the same as $\mathbf{A d}<\mathbf{0}$ where $\mathbf{A}=\left(\begin{array}{c}\nabla f\left(\mathbf{x}^{*}\right)^{T} \\ \nabla g_{i 1}\left(\mathbf{x}^{*}\right)^{T} \\ \vdots \\ \nabla g_{i_{k}}\left(\mathbf{x}^{*}\right)^{T}\end{array}\right)$
- By Gordan's theorem of alternative, system (S) is infeasible if and only if there exists a vector $\boldsymbol{\eta}=\left(\lambda_{0}, \lambda_{i_{1}}, \ldots, \lambda_{i_{k}}\right)^{T} \neq \mathbf{0}$ such that

$$
\mathbf{A}^{T} \boldsymbol{\eta}=\mathbf{0}, \boldsymbol{\eta} \geq \mathbf{0}
$$

- which is the same as $\lambda_{0} \nabla f\left(\mathbf{x}^{*}\right)+\sum_{i \in I\left(\mathbf{x}^{*}\right)} \lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)=\mathbf{0}$.


## Proof of Fritz-John Conditions

- The following system is infeasible

$$
\text { (S) } \nabla f\left(\mathbf{x}^{*}\right)^{T} \mathbf{d}<0, \nabla g_{i}\left(\mathbf{x}^{*}\right)^{T} \mathbf{d}<0, i \in I\left(\mathbf{x}^{*}\right)
$$

- System (S) is the same as Ad $<\mathbf{0}$ where $\mathbf{A}=\left(\begin{array}{c}\nabla f\left(\mathbf{x}^{*}\right)^{T} \\ \nabla g_{i 1}\left(\mathbf{x}^{*}\right)^{T} \\ \vdots \\ \nabla g_{i k}\left(\mathbf{x}^{*}\right)^{T}\end{array}\right)$
- By Gordan's theorem of alternative, system (S) is infeasible if and only if there exists a vector $\boldsymbol{\eta}=\left(\lambda_{0}, \lambda_{i_{1}}, \ldots, \lambda_{i_{k}}\right)^{T} \neq \mathbf{0}$ such that

$$
\mathbf{A}^{T} \boldsymbol{\eta}=\mathbf{0}, \boldsymbol{\eta} \geq \mathbf{0}
$$

- which is the same as $\lambda_{0} \nabla f\left(\mathbf{x}^{*}\right)+\sum_{i \in I\left(\mathbf{x}^{*}\right)} \lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)=\mathbf{0}$.
- Define $\lambda_{i}=0$ for any $i \notin I\left(\mathbf{x}^{*}\right)$, and we obtain that

$$
\lambda_{0} \nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)=\mathbf{0}, \lambda_{i} g_{i}\left(\mathbf{x}^{*}\right)=0, i=1,2, \ldots, m
$$

## The KKT Conditions for Inequality Constrained Problems

A major drawback of the Fritz-John conditions is that they allow $\lambda_{0}$ to be zero. Under an additional regularity condition, we can assume that $\lambda_{0}=1$.

Theorem. Let $\mathbf{x}^{*}$ be a local minimum of the problem

$$
\begin{array}{ll}
\min & f(\mathbf{x}) \\
\text { s.t. } & g_{i}(\mathbf{x}) \leq 0, \quad i=1,2, \ldots, m,
\end{array}
$$

where $f, g_{1}, \ldots, g_{m}$ are continuously differentiable functions over $\mathbb{R}^{n}$. Suppose that the gradients of the active constraints $\left\{\nabla g_{i}\left(\mathbf{x}^{*}\right)\right\}_{i \in l\left(\mathbf{x}^{*}\right)}$ are linearly independent. Then there exist multipliers $\lambda_{1}, \lambda_{2} \ldots, \lambda_{m} \geq 0$ such that

$$
\begin{aligned}
\nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right) & =\mathbf{0} \\
\lambda_{i} g_{i}\left(\mathbf{x}^{*}\right) & =0, \quad i=1,2, \ldots, m .
\end{aligned}
$$

## Proof of the KKT Conditions for Inequality Constrained Problems

- By the Fritz-John conditions it follows that there exists $\tilde{\lambda}_{0}, \tilde{\lambda}_{1}, \ldots, \tilde{\lambda}_{m}$, not all zeros, such that

$$
\begin{aligned}
\tilde{\lambda}_{0} \nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \tilde{\lambda}_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right) & =\mathbf{0} \\
\tilde{\lambda}_{i} g_{i}\left(\mathbf{x}^{*}\right) & =0, \quad i=1,2, \ldots, m .
\end{aligned}
$$

## Proof of the KKT Conditions for Inequality Constrained Problems

- By the Fritz-John conditions it follows that there exists $\tilde{\lambda}_{0}, \tilde{\lambda}_{1}, \ldots, \tilde{\lambda}_{m}$, not all zeros, such that

$$
\begin{aligned}
\tilde{\lambda}_{0} \nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \tilde{\lambda}_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right) & =\mathbf{0} \\
\tilde{\lambda}_{i} g_{i}\left(\mathbf{x}^{*}\right) & =0, \quad i=1,2, \ldots, m .
\end{aligned}
$$

- $\tilde{\lambda}_{0} \neq 0$ since otherwise, if $\tilde{\lambda}_{0}=0$

$$
\sum_{i \in l\left(\mathbf{x}^{*}\right)} \tilde{\lambda}_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)=\mathbf{0},
$$

where not all the scalars $\tilde{\lambda}_{i}, i \in I\left(\mathbf{x}^{*}\right)$ are zeros, which is a contradiction to the regularity condition.

## Proof of the KKT Conditions for Inequality Constrained Problems

- By the Fritz-John conditions it follows that there exists $\tilde{\lambda}_{0}, \tilde{\lambda}_{1}, \ldots, \tilde{\lambda}_{m}$, not all zeros, such that

$$
\begin{aligned}
\tilde{\lambda}_{0} \nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \tilde{\lambda}_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right) & =\mathbf{0} \\
\tilde{\lambda}_{i} g_{i}\left(\mathbf{x}^{*}\right) & =0, \quad i=1,2, \ldots, m .
\end{aligned}
$$

- $\tilde{\lambda}_{0} \neq 0$ since otherwise, if $\tilde{\lambda}_{0}=0$

$$
\sum_{i \in l\left(\mathbf{x}^{*}\right)} \tilde{\lambda}_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)=\mathbf{0},
$$

where not all the scalars $\tilde{\lambda}_{i}, i \in I\left(\mathbf{x}^{*}\right)$ are zeros, which is a contradiction to the regularity condition.

- $\tilde{\lambda}_{0}>0$. Defining $\lambda_{i}=\frac{\tilde{\lambda}_{i}}{\hat{\lambda}_{0}}$, the result follows.


## KKT Conditions for Inequality/Equality Constrained Problems

Theorem. Let $\mathbf{x}^{*}$ be a local minimum of the problem

$$
\begin{array}{ll}
\min & f(\mathbf{x}) \\
\text { s.t. } & g_{i}(\mathbf{x}) \leq 0, \quad i=1,2, \ldots, m,  \tag{1}\\
& h_{j}(\mathbf{x})=0, j=1,2, \ldots, p
\end{array}
$$

where $f, g_{1}, \ldots, g_{m}, h_{1}, h_{2}, \ldots, h_{p}$ are continuously differentiable functions over $\mathbb{R}^{n}$. Suppose that the gradients of the active constraints and the equality constraints: $\left\{\nabla g_{i}\left(\mathbf{x}^{*}\right), \nabla h_{j}\left(\mathbf{x}^{*}\right), i \in I\left(\mathbf{x}^{*}\right), j=1,2, \ldots, p\right\}$ are linearly independent. Then there exist multipliers $\lambda_{1}, \lambda_{2} \ldots, \lambda_{m} \geq 0, \mu_{1}, \mu_{2}, \ldots, \mu_{p} \in$ $\mathbb{R}$ such that

$$
\begin{aligned}
\nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)+\sum_{j=1}^{p} \mu_{j} \nabla h_{j}\left(\mathbf{x}^{*}\right) & =\mathbf{0}, \\
\lambda_{i} g_{i}\left(\mathbf{x}^{*}\right) & =0, \quad i=1,2, \ldots, m .
\end{aligned}
$$

## Terminology

Definition (KKT point) Consider problem (1) where $f, g_{1}, \ldots, g_{m}, h_{1}, h_{2}, \ldots, h_{p}$ are continuously differentiable functions over $\mathbb{R}^{n}$. A feasible point $\mathbf{x}^{*}$ is called a KKT point if there exist $\lambda_{1}, \lambda_{2} \ldots, \lambda_{m} \geq 0, \mu_{1}, \mu_{2}, \ldots, \mu_{p} \in \mathbb{R}$ such that

$$
\begin{aligned}
\nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)+\sum_{j=1}^{p} \mu_{j} \nabla h_{j}\left(\mathbf{x}^{*}\right) & =\mathbf{0}, \\
\lambda_{i} g_{i}\left(\mathbf{x}^{*}\right) & =0, \quad i=1,2, \ldots, m .
\end{aligned}
$$

Definition (regularity) A feasible point $\mathbf{x}^{*}$ is called regular if the set $\left\{\nabla g_{i}\left(\mathbf{x}^{*}\right), \nabla h_{j}\left(\mathbf{x}^{*}\right), i \in I\left(\mathbf{x}^{*}\right), j=1,2, \ldots, p\right\}$ is linearly independent.

## Terminology

Definition (KKT point) Consider problem (1) where $f, g_{1}, \ldots, g_{m}, h_{1}, h_{2}, \ldots, h_{p}$ are continuously differentiable functions over $\mathbb{R}^{n}$. A feasible point $\mathbf{x}^{*}$ is called a KKT point if there exist $\lambda_{1}, \lambda_{2} \ldots, \lambda_{m} \geq 0, \mu_{1}, \mu_{2}, \ldots, \mu_{p} \in \mathbb{R}$ such that

$$
\begin{aligned}
\nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)+\sum_{j=1}^{p} \mu_{j} \nabla h_{j}\left(\mathbf{x}^{*}\right) & =\mathbf{0}, \\
\lambda_{i} g_{i}\left(\mathbf{x}^{*}\right) & =0, \quad i=1,2, \ldots, m .
\end{aligned}
$$

Definition (regularity) A feasible point $\mathbf{x}^{*}$ is called regular if the set $\left\{\nabla g_{i}\left(\mathbf{x}^{*}\right), \nabla h_{j}\left(\mathbf{x}^{*}\right), i \in I\left(\mathbf{x}^{*}\right), j=1,2, \ldots, p\right\}$ is linearly independent.

- The KKT theorem states that a necessary local optimality condition of a regular point is that it is a KKT point.
- The additional requirement of regularity is not required in linearly constrained problems in which no such assumption is needed.


## Examples

1. 

$$
\begin{array}{ll}
\min & x_{1}+x_{2} \\
\text { s.t. } & x_{1}^{2}+x_{2}^{2}=1 .
\end{array}
$$

2. 

$$
\begin{array}{ll}
\min & x_{1}+x_{2} \\
\text { s.t. } & \left(x_{1}^{2}+x_{2}^{2}-1\right)^{2}=0 .
\end{array}
$$

In class

## Sufficiency of KKT Conditions in the Convex Case

In the convex case the KKT conditions are always sufficient.
Theorem. Let $\mathbf{x}^{*}$ be a feasible solution of

$$
\begin{array}{ll}
\min & f(\mathbf{x}) \\
\text { s.t. } & g_{i}(\mathbf{x}) \leq 0, \quad i=1,2, \ldots, m,  \tag{2}\\
& h_{j}(\mathbf{x})=0, \quad j=1,2, \ldots, p
\end{array}
$$

where $f, g_{1}, \ldots, g_{m}, h_{1}, \ldots, h_{p}$ are continuously differentiable convex functions over $\mathbb{R}^{n}$ and $h_{1}, h_{2}, \ldots, h_{p}$ are affine functions. Suppose that there exist multipliers $\lambda_{1}, \ldots, \lambda_{m} \geq 0, \mu_{1}, \mu_{2}, \ldots, \mu_{p} \in \mathbb{R}$ such that

$$
\begin{aligned}
\nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)+\sum_{j=1}^{p} \mu_{j} \nabla h_{j}\left(\mathbf{x}^{*}\right) & =\mathbf{0}, \\
\lambda_{i} g_{i}\left(\mathbf{x}^{*}\right) & =0, \quad i=1,2, \ldots, m .
\end{aligned}
$$

Then $x^{*}$ is the optimal solution of (2).

## Proof

- Let $\mathbf{x}$ be a feasible solution of (2). We will show that $f(\mathbf{x}) \geq f\left(\mathbf{x}^{*}\right)$.


## Proof

- Let $\mathbf{x}$ be a feasible solution of (2). We will show that $f(\mathbf{x}) \geq f\left(\mathbf{x}^{*}\right)$. - The function $s(\mathbf{x})=f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})+\sum_{i=1}^{m} \mu_{i} h_{i}(\mathbf{x})$ is convex.


## Proof

- Let $\mathbf{x}$ be a feasible solution of (2). We will show that $f(\mathbf{x}) \geq f\left(\mathbf{x}^{*}\right)$.
- The function $s(\mathbf{x})=f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})+\sum_{i=1}^{m} \mu_{i} h_{i}(\mathbf{x})$ is convex.
- Since $\nabla s\left(\mathbf{x}^{*}\right)=\nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)+\sum_{j=1}^{p} \mu_{j} \nabla h_{j}\left(\mathbf{x}^{*}\right)=\mathbf{0}$, it follows that $\mathbf{x}^{*}$ is a minimizer of $s$ over $\mathbb{R}^{n}$, and in particular $s\left(\mathbf{x}^{*}\right) \leq s(\mathbf{x})$.


## Proof

- Let $\mathbf{x}$ be a feasible solution of (2). We will show that $f(\mathbf{x}) \geq f\left(\mathbf{x}^{*}\right)$.
- The function $s(\mathbf{x})=f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})+\sum_{i=1}^{m} \mu_{i} h_{i}(\mathbf{x})$ is convex.
- Since $\nabla s\left(\mathbf{x}^{*}\right)=\nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)+\sum_{j=1}^{p} \mu_{j} \nabla h_{j}\left(\mathbf{x}^{*}\right)=\mathbf{0}$, it follows that $\mathbf{x}^{*}$ is a minimizer of $s$ over $\mathbb{R}^{n}$, and in particular $s\left(\mathbf{x}^{*}\right) \leq s(\mathbf{x})$.
- Thus,

$$
\begin{aligned}
f\left(\mathbf{x}^{*}\right) & =f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} g_{i}\left(\mathbf{x}^{*}\right)+\sum_{j=1}^{p} \mu_{j} h_{j}\left(\mathbf{x}^{*}\right) \\
& =s\left(\mathbf{x}^{*}\right) \\
& \leq s(\mathbf{x}) \\
& =f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})+\sum_{j=1}^{p} \mu_{j} h_{j}(\mathbf{x}) \\
& \leq f(\mathbf{x})
\end{aligned}
$$

## Convex Constraints - Necessity under Slater's Condition

 If the constraints are convex, regularity can be replaced by Slater's condition.Theorem (necessity of the KKT conditions under Slater's condition) Let $\mathbf{x}^{*}$ be a local optimal solution of the problem

$$
\begin{array}{ll}
\min & f(\mathbf{x}) \\
\text { s.t. } & g_{i}(\mathbf{x}) \leq 0, \quad i=1,2, \ldots, m . \tag{3}
\end{array}
$$

where $f, g_{1}, \ldots, g_{m}$ are continuously differentiable over $\mathbb{R}^{n}$. In addition, $g_{1}, g_{2}, \ldots, g_{m}$ are convex over $\mathbb{R}^{n}$. Suppose $\exists \hat{\mathbf{x}} \in \mathbb{R}^{n}$ such that

$$
g_{i}(\hat{\mathbf{x}})<0, \quad i=1,2, \ldots, m
$$

Then there exist multipliers $\lambda_{1}, \lambda_{2} \ldots, \lambda_{m} \geq 0$ such that

$$
\begin{align*}
\nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right) & =\mathbf{0}  \tag{4}\\
\lambda_{i} g_{i}\left(\mathbf{x}^{*}\right) & =0, \quad i=1,2, \ldots, m \tag{5}
\end{align*}
$$

## Proof

- Since $\mathbf{x}^{*}$ is an optimal solution of (3), the Fritz-John conditions are satisfied: there exist $\tilde{\lambda}_{0}, \tilde{\lambda}_{1}, \ldots, \tilde{\lambda}_{m} \geq 0$ not all zeros, such that

$$
\begin{align*}
\tilde{\lambda}_{0} \nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \tilde{\lambda}_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right) & =\mathbf{0}, \\
\tilde{\lambda}_{i} g_{i}\left(\mathbf{x}^{*}\right) & =0, \quad i=1,2, \ldots, m . \tag{6}
\end{align*}
$$

## Proof

- Since $\mathbf{x}^{*}$ is an optimal solution of (3), the Fritz-John conditions are satisfied: there exist $\tilde{\lambda}_{0}, \tilde{\lambda}_{1}, \ldots, \tilde{\lambda}_{m} \geq 0$ not all zeros, such that

$$
\begin{align*}
\tilde{\lambda}_{0} \nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \tilde{\lambda}_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right) & =\mathbf{0}, \\
\tilde{\lambda}_{i} g_{i}\left(\mathbf{x}^{*}\right) & =0, \quad i=1,2, \ldots, m . \tag{6}
\end{align*}
$$

- We will prove that $\tilde{\lambda}_{0}>0$, and then conditions (4) and (5) will be satisfied with $\lambda_{i}=\frac{\tilde{\lambda}_{i}}{\tilde{\lambda}_{0}}, i=1,2, \ldots, m$.


## Proof

- Since $\mathbf{x}^{*}$ is an optimal solution of (3), the Fritz-John conditions are satisfied: there exist $\tilde{\lambda}_{0}, \tilde{\lambda}_{1}, \ldots, \tilde{\lambda}_{m} \geq 0$ not all zeros, such that

$$
\begin{align*}
\tilde{\lambda}_{0} \nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \tilde{\lambda}_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right) & =\mathbf{0}, \\
\tilde{\lambda}_{i} g_{i}\left(\mathbf{x}^{*}\right) & =0, \quad i=1,2, \ldots, m . \tag{6}
\end{align*}
$$

- We will prove that $\tilde{\lambda}_{0}>0$, and then conditions (4) and (5) will be satisfied with $\lambda_{i}=\frac{\tilde{\lambda}_{i}}{\lambda_{0}}, i=1,2, \ldots, m$.
- Assume in contradiction that $\tilde{\lambda}_{0}=0$. Then

$$
\begin{equation*}
\sum_{i=1}^{m} \tilde{\lambda}_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)=\mathbf{0} \tag{7}
\end{equation*}
$$

## Proof

- Since $\mathbf{x}^{*}$ is an optimal solution of (3), the Fritz-John conditions are satisfied: there exist $\tilde{\lambda}_{0}, \tilde{\lambda}_{1}, \ldots, \tilde{\lambda}_{m} \geq 0$ not all zeros, such that

$$
\begin{align*}
\tilde{\lambda}_{0} \nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \tilde{\lambda}_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right) & =\mathbf{0}, \\
\tilde{\lambda}_{i} g_{i}\left(\mathbf{x}^{*}\right) & =0, \quad i=1,2, \ldots, m . \tag{6}
\end{align*}
$$

- We will prove that $\tilde{\lambda}_{0}>0$, and then conditions (4) and (5) will be satisfied with $\lambda_{i}=\frac{\tilde{\lambda}_{i}}{\lambda_{0}}, i=1,2, \ldots, m$.
- Assume in contradiction that $\tilde{\lambda}_{0}=0$. Then

$$
\begin{equation*}
\sum_{i=1}^{m} \tilde{\lambda}_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)=\mathbf{0} \tag{7}
\end{equation*}
$$

- By the gradient inequality,

$$
0>g_{i}(\hat{\mathbf{x}}) \geq g_{i}\left(\mathbf{x}^{*}\right)+\nabla g_{i}\left(\mathbf{x}^{*}\right)^{T}\left(\hat{\mathbf{x}}-\mathbf{x}^{*}\right), i=1,2, \ldots, m .
$$

## Proof Contd.

- Multiplying the $i$-th equation by $\tilde{\lambda}_{i}$ and summing over $i=1,2, \ldots, m$ we obtain

$$
\begin{equation*}
0>\sum_{i=1}^{m} \tilde{\lambda}_{i} g_{i}\left(\mathbf{x}^{*}\right)+\left[\sum_{i=1}^{m} \tilde{\lambda}_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)\right]^{T}\left(\hat{\mathbf{x}}-\mathbf{x}^{*}\right), \tag{8}
\end{equation*}
$$

## Proof Contd.

- Multiplying the $i$-th equation by $\tilde{\lambda}_{i}$ and summing over $i=1,2, \ldots, m$ we obtain

$$
\begin{equation*}
0>\sum_{i=1}^{m} \tilde{\lambda}_{i} g_{i}\left(\mathbf{x}^{*}\right)+\left[\sum_{i=1}^{m} \tilde{\lambda}_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)\right]^{T}\left(\hat{\mathbf{x}}-\mathbf{x}^{*}\right), \tag{8}
\end{equation*}
$$

- Plugging the identities (7) and (6) into (8) we obtain the impossible statement that $0>0$, thus establishing the result.


## Examples

1. 

$$
\begin{array}{ll}
\min & x_{1}^{2}-x_{2} \\
\text { s.t. } & x_{2}=0 .
\end{array}
$$

2. 

$$
\begin{array}{ll}
\min & x_{1}^{2}-x_{2} \\
\text { s.t. } & x_{2}^{2} \leq 0 .
\end{array}
$$

The optimal solution is $\left(x_{1}, x_{2}\right)=(0,0)$. Satisfies KKT conditions for problem 1, but not for problem 2. In class

## The Convex Case - Generalized Slater's Condition

Definition (Generalized Slater's Condition) Consider the system

$$
\begin{aligned}
& g_{i}(\mathbf{x}) \leq 0, \quad i=1,2, \ldots, m \\
& h_{j}(\mathbf{x}) \leq 0, \quad j=1,2, \ldots, p \\
& s_{k}(\mathbf{x})=0, \quad k=1,2, \ldots, q
\end{aligned}
$$

where $g_{i}, i=1,2, \ldots, m$ are convex functions over $\mathbb{R}^{n}$ and $h_{j}, s_{k}, j=$ $1,2, \ldots, p, k=1,2, \ldots, q$ are affine functions over $\mathbb{R}^{n}$. Then we say that the generalized Slater's condition is satisfied if there exists $\hat{\mathbf{x}} \in \mathbb{R}^{n}$ for which

$$
\begin{aligned}
& g_{i}(\hat{\mathbf{x}})<0, \quad i=1,2, \ldots, m \\
& h_{j}(\hat{\mathbf{x}}) \leq 0, \quad j=1,2, \ldots, p, \\
& s_{k}(\hat{\mathbf{x}})=0, \quad k=1,2, \ldots, q,
\end{aligned}
$$

## Necessity of KKT under Generalized Slater

Theorem. Let $\mathbf{x}^{*}$ be an optimal solution of the problem

$$
\begin{array}{ll}
\min & f(\mathbf{x}) \\
\text { s.t. } & g_{i}(\mathbf{x}) \leq 0, \quad i=1,2, \ldots, m \\
& h_{j}(\mathbf{x}) \leq 0, \quad j=1,2, \ldots, p  \tag{9}\\
& s_{k}(\mathbf{x})=0, \quad k=1,2, \ldots, q
\end{array}
$$

where $f, g_{1}, \ldots, g_{m}$ are continuously differentiable convex functions and $h_{j}, s_{k}, j=1,2, \ldots, p, k=1,2, \ldots, q$ are affine. Suppose that the generalized Slater's condition is satisfied. Then there exist multipliers $\lambda_{1}, \lambda_{2} \ldots, \lambda_{m}, \eta_{1}, \eta_{2}, \ldots, \eta_{p} \geq 0, \mu_{1}, \mu_{2}, \ldots, \mu_{q} \in \mathbb{R}$ such that

$$
\begin{aligned}
& \nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)+\sum_{j=1}^{p} \eta_{j} \nabla h_{j}\left(\mathbf{x}^{*}\right)+\sum_{k=1}^{q} \mu_{k} \nabla s_{k}\left(\mathbf{x}^{*}\right)=\mathbf{0}, \\
& \lambda_{i} g_{i}\left(\mathbf{x}^{*}\right)=0, \quad i=1,2, \ldots, m, \\
& \eta_{j} h_{j}\left(\mathbf{x}^{*}\right)=0, \quad j=1,2, \ldots, p .
\end{aligned}
$$

## Example

$$
\begin{array}{ll}
\min & 4 x_{1}^{2}+x_{2}^{2}-x_{1}-2 x_{2} \\
\text { s.t. } & 2 x_{1}+x_{2} \leq 1 \\
& x_{1}^{2} \leq 1
\end{array}
$$

In class

## Constrained Least Squares

$$
\text { (CLS) } \begin{array}{cc}
\min ^{*} & \|\mathbf{A x}-\mathbf{b}\|^{2}, \\
\text { s.t. } & \|\mathbf{x}\|^{2} \leq \alpha,
\end{array}
$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ has full column rank, $\mathbf{b} \in \mathbb{R}^{m}, \alpha>0$

- Problem (CLS) is a convex problem and satisfies Slater's condition.


## Constrained Least Squares

$$
\text { (CLS) } \begin{array}{cc}
\min & \|\mathbf{A x}-\mathbf{b}\|^{2}, \\
\text { s.t. } & \|\mathbf{x}\|^{2} \leq \alpha,
\end{array}
$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ has full column rank, $\mathbf{b} \in \mathbb{R}^{m}, \alpha>0$

- Problem (CLS) is a convex problem and satisfies Slater's condition.
- Lagrangian: $L(\mathbf{x}, \lambda)=\|\mathbf{A x}-\mathbf{b}\|^{2}+\lambda\left(\|\mathbf{x}\|^{2}-\alpha\right) . \quad(\lambda \geq 0)$


## Constrained Least Squares

$$
\begin{array}{ll}
(C L S) & \min \|\mathbf{A x}-\mathbf{b}\|^{2} \\
\text { s.t. }\|\mathbf{x}\|^{2} \leq \alpha
\end{array}
$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ has full column rank, $\mathbf{b} \in \mathbb{R}^{m}, \alpha>0$

- Problem (CLS) is a convex problem and satisfies Slater's condition.
- Lagrangian: $L(\mathbf{x}, \lambda)=\|\mathbf{A x}-\mathbf{b}\|^{2}+\lambda\left(\|\mathbf{x}\|^{2}-\alpha\right) . \quad(\lambda \geq 0)$
- KKT conditions:

$$
\begin{aligned}
\nabla_{\mathbf{x}} L=2 \mathbf{A}^{T}(\mathbf{A} \mathbf{x}-\mathbf{b})+2 \lambda \mathbf{x} & =0 \\
\lambda\left(\|\mathbf{x}\|^{2}-\alpha\right) & =0 \\
\|\mathbf{x}\|^{2} & \leq \alpha, \lambda \geq 0
\end{aligned}
$$

## Constrained Least Squares

$$
\begin{array}{ll}
(C L S) & \min \|\mathbf{A x}-\mathbf{b}\|^{2} \\
\text { s.t. }\|\mathbf{x}\|^{2} \leq \alpha
\end{array}
$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ has full column rank, $\mathbf{b} \in \mathbb{R}^{m}, \alpha>0$

- Problem (CLS) is a convex problem and satisfies Slater's condition.
- Lagrangian: $L(\mathbf{x}, \lambda)=\|\mathbf{A x}-\mathbf{b}\|^{2}+\lambda\left(\|\mathbf{x}\|^{2}-\alpha\right) . \quad(\lambda \geq 0)$
- KKT conditions:

$$
\begin{aligned}
\nabla_{\mathbf{x}} L=2 \mathbf{A}^{T}(\mathbf{A} \mathbf{x}-\mathbf{b})+2 \lambda \mathbf{x} & =0 \\
\lambda\left(\|\mathbf{x}\|^{2}-\alpha\right) & =0 \\
\|\mathbf{x}\|^{2} & \leq \alpha, \lambda \geq 0
\end{aligned}
$$

- If $\lambda=0$, then by the first equation

$$
\mathbf{x}=\mathbf{x}_{\mathrm{LS}} \equiv\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b} .
$$

Optimal iff $\left\|\mathbf{x}_{L S}\right\|^{2} \leq \alpha$.

## Constrained Least Squares Contd.

- On the other hand, if $\left\|\mathbf{x}_{L S}\right\|^{2}>\alpha$, then necessarily $\lambda>0$. By the C-S condition we have that $\|\mathbf{x}\|^{2}=\alpha$ and the first equation implies that

$$
\mathbf{x}=\mathbf{x}_{\lambda} \equiv\left(\mathbf{A}^{T} \mathbf{A}+\lambda \mathbf{I}\right)^{-1} \mathbf{A}^{\top} \mathbf{b} .
$$

## Constrained Least Squares Contd.

- On the other hand, if $\left\|\mathbf{x}_{\mathrm{LS}}\right\|^{2}>\alpha$, then necessarily $\lambda>0$. By the C-S condition we have that $\|\mathbf{x}\|^{2}=\alpha$ and the first equation implies that

$$
\mathbf{x}=\mathbf{x}_{\lambda} \equiv\left(\mathbf{A}^{\top} \mathbf{A}+\lambda \mathbf{I}\right)^{-1} \mathbf{A}^{\top} \mathbf{b} .
$$

The multiplier $\lambda>0$ should be chosen to satisfy $\left\|\mathbf{x}_{\lambda}\right\|^{2}=\alpha$, that is, $\lambda$ is the solution of

$$
f(\lambda)=\left\|\left(\mathbf{A}^{T} \mathbf{A}+\lambda \mathbf{I}\right)^{-1} \mathbf{A}^{T} \mathbf{b}\right\|^{2}-\alpha=0 .
$$

## Constrained Least Squares Contd.

- On the other hand, if $\left\|\mathbf{x}_{\mathrm{LS}}\right\|^{2}>\alpha$, then necessarily $\lambda>0$. By the C-S condition we have that $\|\mathbf{x}\|^{2}=\alpha$ and the first equation implies that

$$
\mathbf{x}=\mathbf{x}_{\lambda} \equiv\left(\mathbf{A}^{\top} \mathbf{A}+\lambda \mathbf{I}\right)^{-1} \mathbf{A}^{\top} \mathbf{b} .
$$

The multiplier $\lambda>0$ should be chosen to satisfy $\left\|\mathbf{x}_{\lambda}\right\|^{2}=\alpha$, that is, $\lambda$ is the solution of

$$
f(\lambda)=\left\|\left(\mathbf{A}^{T} \mathbf{A}+\lambda \mathbf{I}\right)^{-1} \mathbf{A}^{T} \mathbf{b}\right\|^{2}-\alpha=0 .
$$

- $f(0)=\left\|\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b}\right\|^{2}-\alpha=\left\|\mathbf{x}_{\mathrm{LS}}\right\|^{2}-\alpha>0, f$ strictly decreasing and $f(\lambda) \rightarrow-\alpha$ as $\lambda \rightarrow \infty$.


## Constrained Least Squares Contd.

- On the other hand, if $\left\|\mathbf{x}_{\mathrm{LS}}\right\|^{2}>\alpha$, then necessarily $\lambda>0$. By the C-S condition we have that $\|\mathbf{x}\|^{2}=\alpha$ and the first equation implies that

$$
\mathbf{x}=\mathbf{x}_{\lambda} \equiv\left(\mathbf{A}^{\top} \mathbf{A}+\lambda \mathbf{I}\right)^{-1} \mathbf{A}^{\top} \mathbf{b} .
$$

The multiplier $\lambda>0$ should be chosen to satisfy $\left\|\mathbf{x}_{\lambda}\right\|^{2}=\alpha$, that is, $\lambda$ is the solution of

$$
f(\lambda)=\left\|\left(\mathbf{A}^{T} \mathbf{A}+\lambda \mathbf{I}\right)^{-1} \mathbf{A}^{T} \mathbf{b}\right\|^{2}-\alpha=0 .
$$

- $f(0)=\left\|\left(\mathbf{A}^{\top} \mathbf{A}\right)^{-1} \mathbf{A}^{\top} \mathbf{b}\right\|^{2}-\alpha=\left\|\mathbf{x}_{\mathrm{LS}}\right\|^{2}-\alpha>0, f$ strictly decreasing and $f(\lambda) \rightarrow-\alpha$ as $\lambda \rightarrow \infty$.
- Conclusion: the optimal solution of the CLS problem is given by

$$
\mathbf{x}= \begin{cases}\mathbf{x}_{\mathrm{LS}} & \left\|\mathbf{x}_{\mathrm{LS}}\right\|^{2} \leq \alpha, \\ \left(\mathbf{A}^{T} \mathbf{A}+\lambda \mathbf{I}\right)^{-1} \mathbf{A}^{T} \mathbf{b} & \left\|\mathbf{x}_{\mathrm{LS}}\right\|^{2}>\alpha\end{cases}
$$

where $\lambda$ is the unique root of $f(\lambda)$ over $(0, \infty)$.

## Second Order Necessary Optimality Conditions

Theorem. Consider the problem

$$
\begin{array}{ll}
\min & f(\mathbf{x}) \\
\text { s.t. } & f_{i}(\mathbf{x}) \leq 0, \quad i=1,2, \ldots, m
\end{array}
$$

where $f_{0}, f_{1}, \ldots, f_{m}$ are continuously differentiable over $\mathbb{R}^{n}$. Let $\mathbf{x}^{*}$ be a local minimum, and suppose that $\mathbf{x}^{*}$ is regular meaning that $\left\{\nabla f_{i}\left(\mathbf{x}^{*}\right)\right\}_{i \in l\left(\mathbf{x}^{*}\right)}$ are linearly independent. Then $\exists \lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \geq 0$ such that

$$
\begin{aligned}
\nabla_{\mathrm{x}} L\left(\mathbf{x}^{*}, \boldsymbol{\lambda}\right) & =\mathbf{0} \\
\lambda_{i} f_{i}\left(\mathbf{x}^{*}\right) & =0, \quad i=1,2, \ldots, m
\end{aligned}
$$

and $\mathbf{y}^{\top} \nabla_{\mathbf{x x}}^{2} L\left(\mathbf{x}^{*}, \boldsymbol{\lambda}\right) \mathbf{y} \geq 0$ for all $\mathbf{y} \in \Lambda\left(\mathbf{x}^{*}\right)$ where

$$
\Lambda\left(\mathbf{x}^{*}\right) \equiv\left\{\mathbf{d} \in \mathbb{R}^{n}: \nabla f_{i}\left(\mathbf{x}^{*}\right)^{T} \mathbf{d}=0, i \in I\left(\mathbf{x}^{*}\right)\right\} .
$$

See proof of Theorem 11.18 in the book

## Second Order Necessary Optimality Conditions for Inequality/Equality Constrained Problems

Theorem. Consider the problem

$$
\begin{array}{ll}
\min & f(\mathbf{x}) \\
\text { s.t. } & g_{i}(\mathbf{x}) \leq 0, \quad i=1,2, \ldots, m, \\
& h_{j}(\mathbf{x})=0, j=1,2, \ldots, p
\end{array}
$$

where $f, g_{1}, \ldots, g_{m}, h_{1}, \ldots, h_{p}$ are continuously differentiable. Let $\mathbf{x}^{*}$ be a local minimum and suppose that $\mathbf{x}^{*}$ is regular meaning that the set $\left\{\nabla g_{i}\left(\mathbf{x}^{*}\right), \nabla h_{j}\left(\mathbf{x}^{*}\right), i \in I\left(\mathbf{x}^{*}\right), j=1,2, \ldots, p\right\}$ is linearly independent. Then $\exists \lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \geq 0$ and $\mu_{1}, \mu_{2}, \ldots, \mu_{p} \in \mathbb{R}$ such that

$$
\begin{aligned}
\nabla_{\mathrm{x}} L\left(\mathbf{x}^{*}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) & =\mathbf{0} \\
\lambda_{i} g_{i}\left(\mathbf{x}^{*}\right) & =0, \quad i=1,2, \ldots, m,
\end{aligned}
$$

and $\mathbf{d}^{T} \nabla_{\mathbf{x x}}^{2} L\left(\mathbf{x}^{*}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) \mathbf{d} \geq 0$ for all $\mathbf{d} \in \Lambda\left(\mathbf{x}^{*}\right) \equiv\left\{\mathbf{d} \in \mathbb{R}^{n}: \nabla g_{i}\left(\mathbf{x}^{*}\right)^{T} \mathbf{d}=\right.$ $\left.0, \nabla h_{j}\left(\mathbf{x}^{*}\right)^{T} \mathbf{d}=0, i \in I\left(\mathbf{x}^{*}\right), j=1,2, \ldots, p\right\}$.

## Optimality Conditions for the Trust Region Subproblem

The Trust Region Subproblem (TRS) is the problem consisting of minimizing an indefinite quadratic function subject to an $I_{2}$-norm constraint:

$$
\text { (TRS): } \quad \min \left\{f(\mathbf{x}) \equiv \mathbf{x}^{T} \mathbf{A} \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c:\|\mathbf{x}\|^{2} \leq \alpha\right\}
$$

where $\mathbf{A}=\mathbf{A}^{T} \in \mathbb{R}^{n \times n}, \mathbf{b} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$. Although the problem is nonconvex, it possesses necessary and sufficient optimality conditions.

Theorem A vector $\mathbf{x}^{*}$ is an optimal solution of problem (TRS) if and only if there exists $\lambda^{*} \geq 0$ such that

$$
\begin{align*}
\left(\mathbf{A}+\lambda^{*} \mathbf{I}\right) \mathbf{x}^{*} & =-\mathbf{b}  \tag{10}\\
\left\|\mathbf{x}^{*}\right\|^{2} & \leq \alpha,  \tag{11}\\
\lambda^{*}\left(\left\|\mathbf{x}^{*}\right\|^{2}-\alpha\right) & =0,  \tag{12}\\
\mathbf{A}+\lambda^{*} \mathbf{I} & \succeq \mathbf{0} . \tag{13}
\end{align*}
$$

## Proof

## Sufficiency:

- Assume that $\mathbf{x}^{*}$ satisfies (10)-(13) for some $\lambda^{*} \geq 0$.


## Proof

## Sufficiency:

- Assume that $\mathbf{x}^{*}$ satisfies (10)-(13) for some $\lambda^{*} \geq 0$.
- Define the function

$$
h(\mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c+\lambda^{*}\left(\|\mathbf{x}\|^{2}-\alpha\right)=\mathbf{x}^{T}\left(\mathbf{A}+\lambda^{*} \mathbf{I}\right) \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c-\alpha \lambda^{*}
$$

## Proof

## Sufficiency:

- Assume that $\mathbf{x}^{*}$ satisfies (10)-(13) for some $\lambda^{*} \geq 0$.
- Define the function

$$
\begin{equation*}
h(\mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c+\lambda^{*}\left(\|\mathbf{x}\|^{2}-\alpha\right)=\mathbf{x}^{T}\left(\mathbf{A}+\lambda^{*} \mathbf{I}\right) \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c-\alpha \lambda^{*} . \tag{14}
\end{equation*}
$$

- Then by (13) we have that $h$ is a convex quadratic function. By (10) it follows that $\nabla h\left(\mathbf{x}^{*}\right)=0$, which implies that $\mathbf{x}^{*}$ is the unconstrained minimizer of $h$ over $\mathbb{R}^{n}$.


## Proof

## Sufficiency:

- Assume that $\mathbf{x}^{*}$ satisfies (10)-(13) for some $\lambda^{*} \geq 0$.
- Define the function

$$
\begin{equation*}
h(\mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c+\lambda^{*}\left(\|\mathbf{x}\|^{2}-\alpha\right)=\mathbf{x}^{T}\left(\mathbf{A}+\lambda^{*} \mathbf{I}\right) \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c-\alpha \lambda^{*} . \tag{14}
\end{equation*}
$$

- Then by (13) we have that $h$ is a convex quadratic function. By (10) it follows that $\nabla h\left(\mathbf{x}^{*}\right)=0$, which implies that $\mathbf{x}^{*}$ is the unconstrained minimizer of $h$ over $\mathbb{R}^{n}$.
- Let $\mathbf{x}$ be a feasible point, i.e., $\|\mathbf{x}\|^{2} \leq \alpha$. Then

$$
\begin{align*}
f(\mathbf{x}) & \geq f(\mathbf{x})+\lambda^{*}\left(\|\mathbf{x}\|^{2}-\alpha\right) & & \left(\lambda^{*} \geq 0,\|\mathbf{x}\|^{2}-\alpha \leq 0\right) \\
& =h(\mathbf{x}) & & (\text { by }(14)) \\
& \geq h\left(\mathbf{x}^{*}\right) & & \left(\mathbf{x}^{*} \text { is the minimizer of } h\right) \\
& =f\left(\mathbf{x}^{*}\right)+\lambda^{*}\left(\left\|\mathbf{x}^{*}\right\|^{2}-\alpha\right) & & \\
& =f\left(\mathbf{x}^{*}\right) & & (\text { by }(12)) \tag{12}
\end{align*}
$$

## Proof Contd.

## Necessity:

- If $\mathbf{x}^{*}$ is a minimizer of (TRS), then by the second order necessary conditions there exists $\lambda^{*} \geq 0$ such that

$$
\begin{align*}
\left(\mathbf{A}+\lambda^{*} \mathbf{I}\right) \mathbf{x}^{*} & =-\mathbf{b}  \tag{15}\\
\left\|\mathbf{x}^{*}\right\|^{2} & \leq \alpha  \tag{16}\\
\lambda^{*}\left(\left\|\mathbf{x}^{*}\right\|^{2}-\alpha\right) & =0  \tag{17}\\
\mathbf{d}^{T}\left(\mathbf{A}+\lambda^{*} \mathbf{I}\right) \mathbf{d} & \geq 0 \quad \text { for all } \mathbf{d} \text { satisfying } \mathbf{d}^{T} \mathbf{x}^{*}=0 \tag{18}
\end{align*}
$$

## Proof Contd.

## Necessity:

- If $\mathbf{x}^{*}$ is a minimizer of (TRS), then by the second order necessary conditions there exists $\lambda^{*} \geq 0$ such that

$$
\begin{align*}
\left(\mathbf{A}+\lambda^{*} \mathbf{I}\right) \mathbf{x}^{*} & =-\mathbf{b}  \tag{15}\\
\left\|\mathbf{x}^{*}\right\|^{2} & \leq \alpha  \tag{16}\\
\lambda^{*}\left(\left\|\mathbf{x}^{*}\right\|^{2}-\alpha\right) & =0  \tag{17}\\
\mathbf{d}^{T}\left(\mathbf{A}+\lambda^{*} \mathbf{I}\right) \mathbf{d} & \geq 0 \quad \text { for all } \mathbf{d} \text { satisfying } \mathbf{d}^{T} \mathbf{x}^{*}=0 \tag{18}
\end{align*}
$$

- Need to show that (18) is true for any d.


## Proof Contd.

## Necessity:

- If $\mathbf{x}^{*}$ is a minimizer of (TRS), then by the second order necessary conditions there exists $\lambda^{*} \geq 0$ such that

$$
\begin{align*}
\left(\mathbf{A}+\lambda^{*} \mathbf{I}\right) \mathbf{x}^{*} & =-\mathbf{b}  \tag{15}\\
\left\|\mathbf{x}^{*}\right\|^{2} & \leq \alpha  \tag{16}\\
\lambda^{*}\left(\left\|\mathbf{x}^{*}\right\|^{2}-\alpha\right) & =0  \tag{17}\\
\mathbf{d}^{T}\left(\mathbf{A}+\lambda^{*} \mathbf{I}\right) \mathbf{d} & \geq 0 \quad \text { for all } \mathbf{d} \text { satisfying } \mathbf{d}^{T} \mathbf{x}^{*}=0 \tag{18}
\end{align*}
$$

- Need to show that (18) is true for any d.
- Suppose on the contrary that there exists a $\mathbf{d}$ such that $\mathbf{d}^{T} \mathbf{x}^{*}>0$ and $\mathbf{d}^{T}\left(\mathbf{A}+\lambda^{*} \mathbf{I}\right) \mathbf{d}<0$.


## Proof Contd.

## Necessity:

- If $\mathbf{x}^{*}$ is a minimizer of (TRS), then by the second order necessary conditions there exists $\lambda^{*} \geq 0$ such that

$$
\begin{align*}
\left(\mathbf{A}+\lambda^{*} \mathbf{I}\right) \mathbf{x}^{*} & =-\mathbf{b}  \tag{15}\\
\left\|\mathbf{x}^{*}\right\|^{2} & \leq \alpha  \tag{16}\\
\lambda^{*}\left(\left\|\mathbf{x}^{*}\right\|^{2}-\alpha\right) & =0  \tag{17}\\
\mathbf{d}^{T}\left(\mathbf{A}+\lambda^{*} \mathbf{I}\right) \mathbf{d} & \geq 0 \quad \text { for all } \mathbf{d} \text { satisfying } \mathbf{d}^{T} \mathbf{x}^{*}=0 \tag{18}
\end{align*}
$$

- Need to show that (18) is true for any d.
- Suppose on the contrary that there exists a d such that $\mathbf{d}^{T} \mathbf{x}^{*}>0$ and $\mathbf{d}^{T}\left(\mathbf{A}+\lambda^{*} \mathbf{I}\right) \mathbf{d}<0$.
- Consider the point $\overline{\mathbf{x}}=\mathbf{x}^{*}+t \mathbf{d}$, where $t=-2 \frac{\mathbf{d}^{\top} \mathbf{x}^{*}}{\|\mathbf{d}\|^{2}}$. The vector $\overline{\mathbf{x}}$ is a feasible point since

$$
\begin{aligned}
\|\overline{\mathbf{x}}\|^{2} & =\left\|\mathbf{x}^{*}+t \mathbf{d}\right\|^{2}=\left\|\mathbf{x}^{*}\right\|^{2}+2 t \mathbf{d}^{T} \mathbf{x}^{*}+t^{2}\|\mathbf{d}\|^{2} \\
& =\left\|\mathbf{x}^{*}\right\|^{2}-4 \frac{\left(\mathbf{d}^{T} \mathbf{x}^{*}\right)^{2}}{\|\mathbf{d}\|^{2}}+4 \frac{\left(\mathbf{d}^{T} \mathbf{x}^{*}\right)^{2}}{\|\mathbf{d}\|^{2}}=\left\|\mathbf{x}^{*}\right\|^{2} \leq \alpha
\end{aligned}
$$

## Proof Contd.

- In addition,

$$
\begin{aligned}
f(\overline{\mathbf{x}})= & \overline{\mathbf{x}}^{T} \mathbf{A} \overline{\mathbf{x}}+2 \mathbf{b}^{T} \overline{\mathbf{x}}+c \\
= & \left(\mathbf{x}^{*}+t \mathbf{d}\right)^{T} \mathbf{A}\left(\mathbf{x}^{*}+t \mathbf{d}\right)+2 \mathbf{b}^{T}\left(\mathbf{x}^{*}+t \mathbf{d}\right)+c \\
= & \underbrace{\left(\mathbf{x}^{*}\right)^{T} \mathbf{A} \mathbf{x}^{*}+2 \mathbf{b}^{T} \mathbf{x}^{*}+c}_{f\left(\mathbf{x}^{*}\right)}+t^{2} \mathbf{d}^{T} \mathbf{A d}+2 t \mathbf{d}^{T}\left(\mathbf{A} \mathbf{x}^{*}+\mathbf{b}\right) \\
= & f\left(\mathbf{x}^{*}\right)+t^{2} \mathbf{d}^{T}\left(\mathbf{A}+\lambda^{*} \mathbf{I}\right) \mathbf{d}+2 t \mathbf{d}^{T}(\underbrace{\left(\mathbf{A}+\lambda^{*} \mathbf{I}\right) \mathbf{x}^{*}+\mathbf{b}}_{=\mathbf{0} \text { by }(15)}) \\
& -\lambda^{*} t \underbrace{\left[t\|\mathbf{d}\|^{2}+2 \mathbf{d}^{T} \mathbf{x}^{*}\right]}_{=0} \\
= & f\left(\mathbf{x}^{*}\right)+t^{2} \mathbf{d}^{T}\left(\mathbf{A}+\lambda^{*} \mathbf{I}\right) \mathbf{d} \\
< & f\left(\mathbf{x}^{*}\right),
\end{aligned}
$$

which is a contradiction to the optimality of $\mathbf{x}^{*}$.

## Total Least Squares

Consider the approximate set of linear equations:

$$
\mathbf{A x} \approx \mathbf{b}
$$

## Total Least Squares

Consider the approximate set of linear equations:

$$
\mathbf{A x} \approx \mathbf{b}
$$

- In the Least Squares (LS) approach we only assume that the RHS vector $\mathbf{b}$ is subjected to noise.

$$
\begin{array}{ll}
\min _{\mathbf{w}, \mathrm{x}} & \|\mathbf{w}\|^{2} \\
\text { s.t. } & \mathbf{A x}=\mathbf{b}+\mathbf{w}, \\
& \mathbf{w} \in \mathbb{R}^{m} .
\end{array}
$$

## Total Least Squares

Consider the approximate set of linear equations:

$$
\mathbf{A x} \approx \mathbf{b}
$$

- In the Least Squares (LS) approach we only assume that the RHS vector $\mathbf{b}$ is subjected to noise.

$$
\begin{array}{ll}
\min _{\mathbf{w}, \mathrm{x}} & \|\mathbf{w}\|^{2} \\
\text { s.t. } & \mathbf{A x}=\mathbf{b}+\mathbf{w}, \\
& \mathbf{w} \in \mathbb{R}^{m} .
\end{array}
$$

- In the Total Least Squares (TLS) we assume that both the RHS vector $\mathbf{b}$ and the model matrix $\mathbf{A}$ are subjected to noise

$$
\begin{array}{ll}
(\mathrm{TLS}) \quad \text { s.t. } & (\mathbf{A}+\mathbf{E}) \mathbf{x}=\mathbf{b}+\mathbf{w}, \\
& \mathbf{E} \in \mathbb{R}^{m \times n}, \mathbf{w} \in \mathbb{R}^{m} .
\end{array}
$$

The TLS problem - as formulated - seems like a difficult nonconvex problem. We will see that it can be solved efficiently.

## Eliminating the $\mathbf{E}$ and $\mathbf{w}$ variables

- Fixing $\mathbf{x}$, we will solve the problem

$$
\begin{array}{lll}
\left(P_{\mathbf{x}}\right) & \min _{\mathbf{E}, \mathbf{w}} & \|\mathbf{E}\|_{F}^{2}+\|\mathbf{w}\|^{2} \\
\text { s.t. } & (\mathbf{A}+\mathbf{E}) \mathbf{x}=\mathbf{b}+\mathbf{w} .
\end{array}
$$

## Eliminating the $\mathbf{E}$ and $\mathbf{w}$ variables

- Fixing $\mathbf{x}$, we will solve the problem

$$
\begin{array}{lll}
\left(P_{\mathbf{x}}\right) & \min _{\mathbf{E}, \mathbf{w}} & \|\mathbf{E}\|_{F}^{2}+\|\mathbf{w}\|^{2} \\
\text { s.t. } & (\mathbf{A}+\mathbf{E}) \mathbf{x}=\mathbf{b}+\mathbf{w} .
\end{array}
$$

- The KKT conditions are necessary and sufficient for problem ( $P_{\mathrm{x}}$ ).


## Eliminating the $\mathbf{E}$ and $\mathbf{w}$ variables

- Fixing $\mathbf{x}$, we will solve the problem

$$
\begin{array}{lll}
\left(P_{\mathbf{x}}\right) & \min _{\mathbf{E}, \mathbf{w}} & \|\mathbf{E}\|_{F}^{2}+\|\mathbf{w}\|^{2} \\
\text { s.t. } & (\mathbf{A}+\mathbf{E}) \mathbf{x}=\mathbf{b}+\mathbf{w} .
\end{array}
$$

- The KKT conditions are necessary and sufficient for problem $\left(P_{\mathbf{x}}\right)$.
- Lagrangian: $L(\mathbf{E}, \mathbf{w}, \boldsymbol{\lambda})=\|\mathbf{E}\|_{F}^{2}+\|\mathbf{w}\|^{2}+2 \boldsymbol{\lambda}^{\top}[(\mathbf{A}+\mathbf{E}) \mathbf{x}-\mathbf{b}-\mathbf{w}]$.


## Eliminating the $\mathbf{E}$ and $\mathbf{w}$ variables

- Fixing $\mathbf{x}$, we will solve the problem

$$
\begin{array}{ll}
\left(P_{\mathrm{x}}\right) & \min _{\mathbf{E}, \mathbf{w}} \\
\text { s.t. } & \|\mathbf{E}\|_{F}^{2}+\|\mathbf{w}\|^{2} \\
(\mathbf{A}+\mathbf{E}) \mathbf{x}=\mathbf{b}+\mathbf{w} .
\end{array}
$$

- The KKT conditions are necessary and sufficient for problem $\left(P_{\mathbf{x}}\right)$.
- Lagrangian: $L(\mathbf{E}, \mathbf{w}, \boldsymbol{\lambda})=\|\mathbf{E}\|_{F}^{2}+\|\mathbf{w}\|^{2}+2 \boldsymbol{\lambda}^{\top}[(\mathbf{A}+\mathbf{E}) \mathbf{x}-\mathbf{b}-\mathbf{w}]$.
- By the KKT conditions, ( $\mathbf{E}, \mathbf{w}$ ) is an optimal solution of $\left(P_{\mathrm{x}}\right)$ if and only if there exists $\boldsymbol{\lambda} \in \mathbb{R}^{m}$ such that

$$
\begin{array}{ll}
2 \mathbf{E}+2 \boldsymbol{\lambda} \mathbf{x}^{T}=\mathbf{0} & \left(\nabla_{\mathbf{E}} L=\mathbf{0}\right), \\
2 \mathbf{w}-2 \boldsymbol{\lambda}=\mathbf{0} & \left(\nabla_{\mathbf{w}} L=\mathbf{0}\right), \\
(\mathbf{A}+\mathbf{E}) \mathbf{x}=\mathbf{b}+\mathbf{w} & (\text { feasibility }) \tag{21}
\end{array}
$$

- By (19), (20) and (21), $\mathbf{E}=-\boldsymbol{\lambda} \mathbf{x}^{T}, \mathbf{w}=\boldsymbol{\lambda}$ and $\boldsymbol{\lambda}=\frac{\mathbf{A x - b}}{\|\mathbf{x}\|^{2}+1}$. Plugging this into the objectve function, a reduced formulation in the variables $\mathbf{x}$ is obtained.


## The New Formulation of (TLS)

$$
\left(\mathrm{TLS}^{\prime}\right) \min _{\mathbf{x} \in \mathbb{R}^{n}} \frac{\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}}{\|\mathbf{x}\|^{2}+1}
$$

Theorem $\mathbf{x}$ is an optimal solution of (TLS') if and only if ( $\mathbf{x}, \mathbf{E}, \mathbf{w}$ ) is an optimal solution of (TLS) where $\mathbf{E}=-\frac{(\mathbf{A} \mathbf{x}-\mathbf{b}) \mathbf{x}^{\top}}{\|\mathbf{x}\|^{2}+1}$ and $\mathbf{w}=\frac{\mathbf{A} \times \mathbf{b}}{\|\mathbf{x}\|^{2}+1}$

## The New Formulation of (TLS)

$$
\left(\mathrm{TLS}^{\prime}\right) \min _{\mathbf{x} \in \mathbb{R}^{n}} \frac{\|\mathbf{A} \mathbf{x}-\mathbf{b}\|^{2}}{\|\mathbf{x}\|^{2}+1}
$$

Theorem $\mathbf{x}$ is an optimal solution of (TLS') if and only if ( $\mathbf{x}, \mathbf{E}, \mathbf{w}$ ) is an optimal solution of (TLS) where $\mathbf{E}=-\frac{(\mathbf{A} \mathbf{x}-\mathbf{b})^{\top}}{\|\mathbf{x}\|^{2}+1}$ and $\mathbf{w}=\frac{\mathbf{A}-\mathbf{b}}{\|\mathbf{x}\|^{2}+1}$

- Still a nonconvex problem.
- Resembles the problem of minimizing the Rayleigh quotient.


## Solving the Fractional Quadratic Formulation

Under a rather mild condition, the optimal solution of (TLS') can be derived via a homogenization argument.

## Solving the Fractional Quadratic Formulation

Under a rather mild condition, the optimal solution of (TLS') can be derived via a homogenization argument.

- (TLS') is the same as

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}, t \in \mathbb{R}}\left\{\frac{\|\mathbf{A} \mathbf{x}-t \mathbf{b}\|^{2}}{\|\mathbf{x}\|^{2}+t^{2}}: t=1\right\} .
$$

## Solving the Fractional Quadratic Formulation

Under a rather mild condition, the optimal solution of (TLS') can be derived via a homogenization argument.

- (TLS') is the same as

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}, t \in \mathbb{R}}\left\{\frac{\|\mathbf{A} \mathbf{x}-t \mathbf{b}\|^{2}}{\|\mathbf{x}\|^{2}+t^{2}}: t=1\right\} .
$$

- the same as (denoting $\mathbf{y}=\binom{\mathbf{x}}{t}$ ):

$$
\begin{equation*}
f^{*}=\min _{\mathbf{y} \in \mathbb{R}^{n+1}}\left\{\frac{\mathbf{y}^{\top} \mathbf{B y}}{\|\mathbf{y}\|^{2}}: y_{n+1}=1\right\}, \tag{22}
\end{equation*}
$$

where

$$
\mathbf{B}=\left(\begin{array}{cc}
\mathbf{A}^{T} \mathbf{A} & -\mathbf{A}^{T} \mathbf{b} \\
-\mathbf{b}^{T} \mathbf{A} & \|\mathbf{b}\|^{2}
\end{array}\right) .
$$

## Solving the Fractional Quadratic Formulation Contd.

We will consider the following relaxed version:

$$
\begin{equation*}
g^{*}=\min _{\mathbf{y} \in \mathbb{R}^{n+1}}\left\{\frac{\mathbf{y}^{\top} \mathbf{B y}}{\|\mathbf{y}\|^{2}}: \mathbf{y} \neq \mathbf{0}\right\} \tag{23}
\end{equation*}
$$

## Solving the Fractional Quadratic Formulation Contd.

We will consider the following relaxed version:

$$
\begin{equation*}
g^{*}=\min _{\mathbf{y} \in \mathbb{R}^{n+1}}\left\{\frac{\mathbf{y}^{\top} \mathbf{B y}}{\|\mathbf{y}\|^{2}}: \mathbf{y} \neq \mathbf{0}\right\} \tag{23}
\end{equation*}
$$

Lemma. Let $\boldsymbol{y}^{*}$ be an optimal solution of (23) and assume that $y_{n+1}^{*} \neq 0$. Then $\tilde{\mathbf{y}}=\frac{1}{y_{n+1}^{*}} \mathbf{y}^{*}$ is an optimal solution of (22).

## Solving the Fractional Quadratic Formulation Contd.

We will consider the following relaxed version:

$$
\begin{equation*}
g^{*}=\min _{\mathbf{y} \in \mathbb{R}^{n+1}}\left\{\frac{\mathbf{y}^{\top} \mathbf{B y}}{\|\mathbf{y}\|^{2}}: \mathbf{y} \neq \mathbf{0}\right\} \tag{23}
\end{equation*}
$$

Lemma. Let $\mathbf{y}^{*}$ be an optimal solution of (23) and assume that $y_{n+1}^{*} \neq 0$. Then $\tilde{\mathbf{y}}=\frac{1}{y_{n+1}^{*}} \mathbf{y}^{*}$ is an optimal solution of (22).

## Proof.

- $f^{*} \geq g^{*}$.


## Solving the Fractional Quadratic Formulation Contd.

We will consider the following relaxed version:

$$
\begin{equation*}
g^{*}=\min _{\mathbf{y} \in \mathbb{R}^{n+1}}\left\{\frac{\mathbf{y}^{\top} \mathbf{B y}}{\|\mathbf{y}\|^{2}}: \mathbf{y} \neq \mathbf{0}\right\} \tag{23}
\end{equation*}
$$

Lemma. Let $\mathbf{y}^{*}$ be an optimal solution of (23) and assume that $y_{n+1}^{*} \neq 0$. Then $\tilde{\mathbf{y}}=\frac{1}{y_{n+1}^{*}} \mathbf{y}^{*}$ is an optimal solution of (22).

## Proof.

- $f^{*} \geq g^{*}$.
- $\tilde{\mathbf{y}}$ is feasible for (22) and we have

$$
f^{*} \leq \frac{\tilde{\mathbf{y}}^{\top} \mathbf{B} \tilde{\mathbf{y}}}{\|\tilde{\mathbf{y}}\|^{2}}=\frac{\frac{1}{\left(y_{n+1}^{*}\right)^{2}}\left(\mathbf{y}^{*}\right)^{\top} \mathbf{B} \mathbf{y}^{*}}{\frac{1}{\left(y_{n+1}^{*}\right)^{2}}\left\|\mathbf{y}^{*}\right\|^{2}}=\frac{\left(\mathbf{y}^{*}\right)^{T} \mathbf{B y}^{*}}{\left\|\mathbf{y}^{*}\right\|^{2}}=g^{*} .
$$

## Solving the Fractional Quadratic Formulation Contd.

We will consider the following relaxed version:

$$
\begin{equation*}
g^{*}=\min _{\mathbf{y} \in \mathbb{R}^{n+1}}\left\{\frac{\mathbf{y}^{\top} \mathbf{B y}}{\|\mathbf{y}\|^{2}}: \mathbf{y} \neq \mathbf{0}\right\} \tag{23}
\end{equation*}
$$

Lemma. Let $\mathbf{y}^{*}$ be an optimal solution of (23) and assume that $y_{n+1}^{*} \neq 0$. Then $\tilde{\mathbf{y}}=\frac{1}{y_{n+1}^{*}} \mathbf{y}^{*}$ is an optimal solution of (22).

## Proof.

- $f^{*} \geq g^{*}$.
- $\tilde{\mathbf{y}}$ is feasible for (22) and we have

$$
f^{*} \leq \frac{\tilde{\mathbf{y}}^{\top} \mathbf{B} \tilde{\mathbf{y}}}{\|\tilde{\mathbf{y}}\|^{2}}=\frac{\frac{1}{\left(y_{n+1}^{*}\right)^{2}}\left(\mathbf{y}^{*}\right)^{\top} \mathbf{B} \mathbf{y}^{*}}{\frac{1}{\left(y_{n+1}^{*}\right)^{2}}\left\|\mathbf{y}^{*}\right\|^{2}}=\frac{\left(\mathbf{y}^{*}\right)^{T} \mathbf{B y}^{*}}{\left\|\mathbf{y}^{*}\right\|^{2}}=g^{*} .
$$

- Therefore, $\tilde{\mathbf{y}}$ is an optimal solution of both (22) and (23).


## Main Result on TLS

Theorem. Assume that the following condition holds:

$$
\begin{equation*}
\lambda_{\min }(\mathbf{B})<\lambda_{\min }\left(\mathbf{A}^{T} \mathbf{A}\right), \tag{24}
\end{equation*}
$$

where

$$
\mathbf{B}=\left(\begin{array}{cc}
\mathbf{A}^{T} \mathbf{A} & -\mathbf{A}^{T} \mathbf{b} \\
-\mathbf{b}^{T} \mathbf{A} & \|\mathbf{b}\|^{2}
\end{array}\right) .
$$

Then the optimal solution of problem (TLS') is given by $\frac{1}{y_{n+1}} \mathbf{v}$, where $\mathbf{y}=\binom{\mathbf{v}}{y_{n+1}}$ is an eigenvector corresponding to the min. eigenvalue of $\mathbf{B}$.

## Main Result on TLS

Theorem. Assume that the following condition holds:

$$
\begin{equation*}
\lambda_{\min }(\mathbf{B})<\lambda_{\min }\left(\mathbf{A}^{T} \mathbf{A}\right), \tag{24}
\end{equation*}
$$

where

$$
\mathbf{B}=\left(\begin{array}{cc}
\mathbf{A}^{T} \mathbf{A} & -\mathbf{A}^{T} \mathbf{b} \\
-\mathbf{b}^{T} \mathbf{A} & \|\mathbf{b}\|^{2}
\end{array}\right) .
$$

Then the optimal solution of problem (TLS') is given by $\frac{1}{y_{n+1}} \mathbf{v}$, where $\mathbf{y}=\binom{\mathbf{v}}{y_{n+1}}$ is an eigenvector corresponding to the min. eigenvalue of $\mathbf{B}$.

## Proof.

- All we need to prove is that under condition (24), an optimal solution $\mathbf{y}^{*}$ of (23) must satisfy $y_{n+1}^{*} \neq 0$.


## Main Result on TLS

Theorem. Assume that the following condition holds:

$$
\begin{equation*}
\lambda_{\min }(\mathbf{B})<\lambda_{\min }\left(\mathbf{A}^{T} \mathbf{A}\right) \tag{24}
\end{equation*}
$$

where

$$
\mathbf{B}=\left(\begin{array}{cc}
\mathbf{A}^{T} \mathbf{A} & -\mathbf{A}^{T} \mathbf{b} \\
-\mathbf{b}^{T} \mathbf{A} & \|\mathbf{b}\|^{2}
\end{array}\right) .
$$

Then the optimal solution of problem (TLS') is given by $\frac{1}{y_{n+1}} \mathbf{v}$, where $\mathbf{y}=\binom{\mathbf{v}}{y_{n+1}}$ is an eigenvector corresponding to the min. eigenvalue of $\mathbf{B}$.

## Proof.

- All we need to prove is that under condition (24), an optimal solution $\mathbf{y}^{*}$ of (23) must satisfy $y_{n+1}^{*} \neq 0$.
- Assume on the contrary that $y_{n+1}^{*}=0$. Then

$$
\lambda_{\min }(\mathbf{B})=\frac{\left(\mathbf{y}^{*}\right)^{T} \mathbf{B y}^{*}}{\left\|\mathbf{y}^{*}\right\|^{2}}=\frac{\mathbf{v}^{\top} \mathbf{A}^{T} \mathbf{A} \mathbf{v}}{\|\mathbf{v}\|^{2}} \geq \lambda_{\min }\left(\mathbf{A}^{T} \mathbf{A}\right)
$$

which is a contradiction to (24).

