
Lecture 11 - The Karush-Kuhn-Tucker Conditions

I The Karush-Kuhn-Tucker conditions are optimality conditions for inequality
constrained problems discovered in 1951 (originating from Karush’s thesis
from 1939).

I Modern nonlinear optimization essentially begins with the discovery of these
conditions.

The basic notion that we will require is the one of feasible descent directions.

Definition. Consider the problem

min h(x)
s.t. x ∈ C ,

where h is continuously differentiable over the set C ⊆ Rn. Then a vector
d 6= 0 is called a feasible descent direction at x ∈ C if ∇f (x)Td < 0 and
there exists ε > 0 such that x + td ∈ C for all t ∈ [0, ε].
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The Basic Necessary Condition - No Feasible Descent
Directions

Lemma. Consider the problem

(G)
min f (x)
s.t. x ∈ C ,

where h is continuously differentiable over C . If x∗ is a local optimal
solution of (G), then there are no feasible descent directions at x∗.

Proof.

I By contradiction, assume that there exists a vector d and ε1 > 0 such that
x + td ∈ C for all t ∈ [0, ε1] and ∇f (x∗)Td < 0.

I By definition of the directional derivative there exists ε2 < ε1 such that
f (x∗ + td) < f (x∗) for all t ∈ [0, ε2]⇒ contradiction to the local optimality
of x∗.
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Consequence

Lemma. Let x∗ be a local minimum of the problem

min f (x)
s.t. gi (x) ≤ 0, i = 1, 2, . . . ,m,

where f , g1, . . . , gm are continuously differentiable functions over Rn. Let
I (x∗) be the set of active constraints at x∗:

I (x∗) = {i : gi (x∗) = 0}.

Then there does not exist a vector d ∈ Rn such that

∇f (x∗)Td < 0,
∇gi (x∗)Td < 0, i ∈ I (x∗)
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Proof

I Suppose that d satisfies the system of inequalities.

I Then ∃ε1 > 0 such that f (x∗ + td) < f (x∗) and gi (x∗ + td) < gi (x∗) = 0 for
any t ∈ (0, ε1) and i ∈ I (x∗).

I For any i /∈ I (x∗) we have that gi (x∗) < 0, and hence, by the continuity of
gi , there exists ε2 > 0 such that gi (x∗ + td) < 0 for any t ∈ (0, ε2) and
i /∈ I (x∗).

I Consequently,
f (x∗ + td) < f (x∗),
gi (x∗ + td) < 0, i = 1, 2, . . . ,m,

for all t ∈ (0,min{ε1, ε2}).

I A contradiction to the local optimality of x∗.
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The Fritz-John Necessary Condition

Theorem. Let x∗ be a local minimum of the problem

min f (x)
s.t. gi (x) ≤ 0, i = 1, 2, . . . ,m,

where f , g1, . . . , gm are continuously differentiable functions over Rn. Then
there exist multipliers λ0, λ1, . . . , λm ≥ 0, which are not all zeros, such that

λ0∇f (x∗) +
m∑
i=1

λi∇gi (x∗) = 0,

λigi (x∗) = 0, i = 1, 2, . . . ,m.
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Proof of Fritz-John Conditions
I The following system is infeasible

(S) ∇f (x∗)Td < 0,∇gi (x∗)Td < 0, i ∈ I (x∗)

I System (S) is the same as Ad < 0 where A =


∇f (x∗)T

∇gi1(x∗)T

...
∇gik (x∗)T


I By Gordan’s theorem of alternative, system (S) is infeasible if and only if

there exists a vector η = (λ0, λi1 , . . . , λik )T 6= 0 such that

ATη = 0,η ≥ 0,

I which is the same as λ0∇f (x∗) +
∑

i∈I (x∗) λi∇gi (x∗) = 0.
I Define λi = 0 for any i /∈ I (x∗), and we obtain that

λ0∇f (x∗) +
m∑
i=1

λi∇gi (x∗) = 0, λigi (x∗) = 0, i = 1, 2, . . . ,m
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The KKT Conditions for Inequality Constrained Problems

A major drawback of the Fritz-John conditions is that they allow λ0 to be zero.
Under an additional regularity condition, we can assume that λ0 = 1.

Theorem. Let x∗ be a local minimum of the problem

min f (x)
s.t. gi (x) ≤ 0, i = 1, 2, . . . ,m,

where f , g1, . . . , gm are continuously differentiable functions over Rn. Sup-
pose that the gradients of the active constraints {∇gi (x∗)}i∈I (x∗) are linearly
independent. Then there exist multipliers λ1, λ2 . . . , λm ≥ 0 such that

∇f (x∗) +
m∑
i=1

λi∇gi (x∗) = 0,

λigi (x∗) = 0, i = 1, 2, . . . ,m.
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Proof of the KKT Conditions for Inequality Constrained
Problems

I By the Fritz-John conditions it follows that there exists λ̃0, λ̃1, . . . , λ̃m, not
all zeros, such that

λ̃0∇f (x∗) +
m∑
i=1

λ̃i∇gi (x∗) = 0,

λ̃igi (x∗) = 0, i = 1, 2, . . . ,m.

I λ̃0 6= 0 since otherwise, if λ̃0 = 0∑
i∈I (x∗)

λ̃i∇gi (x∗) = 0,

where not all the scalars λ̃i , i ∈ I (x∗) are zeros, which is a contradiction to
the regularity condition.

I λ̃0 > 0. Defining λi = λ̃i

λ̃0
, the result follows.
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KKT Conditions for Inequality/Equality Constrained
Problems

Theorem. Let x∗ be a local minimum of the problem

min f (x)
s.t. gi (x) ≤ 0, i = 1, 2, . . . ,m,

hj(x) = 0, j = 1, 2, . . . , p.
(1)

where f , g1, . . . , gm, h1, h2, . . . , hp are continuously differentiable functions
over Rn. Suppose that the gradients of the active constraints and the equal-
ity constraints: {∇gi (x∗),∇hj(x∗), i ∈ I (x∗), j = 1, 2, . . . , p} are linearly in-
dependent. Then there exist multipliers λ1, λ2 . . . , λm ≥ 0, µ1, µ2, . . . , µp ∈
R such that

∇f (x∗) +
m∑
i=1

λi∇gi (x∗) +

p∑
j=1

µj∇hj(x∗) = 0,

λigi (x∗) = 0, i = 1, 2, . . . ,m.
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Terminology
Definition (KKT point) Consider problem (1) where
f , g1, . . . , gm, h1, h2, . . . , hp are continuously differentiable functions
over Rn. A feasible point x∗ is called a KKT point if there exist
λ1, λ2 . . . , λm ≥ 0, µ1, µ2, . . . , µp ∈ R such that

∇f (x∗) +
m∑
i=1

λi∇gi (x∗) +

p∑
j=1

µj∇hj(x∗) = 0,

λigi (x∗) = 0, i = 1, 2, . . . ,m.

Definition (regularity) A feasible point x∗ is called regular if the set
{∇gi (x∗),∇hj(x∗), i ∈ I (x∗), j = 1, 2, . . . , p} is linearly independent.

I The KKT theorem states that a necessary local optimality condition of a
regular point is that it is a KKT point.

I The additional requirement of regularity is not required in linearly constrained
problems in which no such assumption is needed.
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Examples
1.

min x1 + x2
s.t. x21 + x22 = 1.

2.
min x1 + x2
s.t. (x21 + x22 − 1)2 = 0.

In class
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Sufficiency of KKT Conditions in the Convex Case

In the convex case the KKT conditions are always sufficient.

Theorem. Let x∗ be a feasible solution of

min f (x)
s.t. gi (x) ≤ 0, i = 1, 2, . . . ,m,

hj(x) = 0, j = 1, 2, . . . , p.
(2)

where f , g1, . . . , gm, h1, . . . , hp are continuously differentiable convex func-
tions over Rn and h1, h2, . . . , hp are affine functions. Suppose that there
exist multipliers λ1, . . . , λm ≥ 0, µ1, µ2, . . . , µp ∈ R such that

∇f (x∗) +
m∑
i=1

λi∇gi (x∗) +

p∑
j=1

µj∇hj(x∗) = 0,

λigi (x∗) = 0, i = 1, 2, . . . ,m.

Then x∗ is the optimal solution of (2).
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Proof

I Let x be a feasible solution of (2). We will show that f (x) ≥ f (x∗).

I The function s(x) = f (x) +
∑m

i=1 λigi (x) +
∑m

i=1 µihi (x) is convex.

I Since ∇s(x∗) = ∇f (x∗) +
∑m

i=1 λi∇gi (x∗) +
∑p

j=1 µj∇hj(x∗) = 0, it follows
that x∗ is a minimizer of s over Rn, and in particular s(x∗) ≤ s(x).

I Thus,
f (x∗) = f (x∗) +

∑m
i=1 λigi (x∗) +

∑p
j=1 µjhj(x∗)

= s(x∗)
≤ s(x)
= f (x) +

∑m
i=1 λigi (x) +

∑p
j=1 µjhj(x)

≤ f (x)

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - The KKT Conditions 13 / 34



Proof

I Let x be a feasible solution of (2). We will show that f (x) ≥ f (x∗).

I The function s(x) = f (x) +
∑m

i=1 λigi (x) +
∑m

i=1 µihi (x) is convex.

I Since ∇s(x∗) = ∇f (x∗) +
∑m

i=1 λi∇gi (x∗) +
∑p

j=1 µj∇hj(x∗) = 0, it follows
that x∗ is a minimizer of s over Rn, and in particular s(x∗) ≤ s(x).

I Thus,
f (x∗) = f (x∗) +

∑m
i=1 λigi (x∗) +

∑p
j=1 µjhj(x∗)

= s(x∗)
≤ s(x)
= f (x) +

∑m
i=1 λigi (x) +

∑p
j=1 µjhj(x)

≤ f (x)

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - The KKT Conditions 13 / 34



Proof

I Let x be a feasible solution of (2). We will show that f (x) ≥ f (x∗).

I The function s(x) = f (x) +
∑m

i=1 λigi (x) +
∑m

i=1 µihi (x) is convex.

I Since ∇s(x∗) = ∇f (x∗) +
∑m

i=1 λi∇gi (x∗) +
∑p

j=1 µj∇hj(x∗) = 0, it follows
that x∗ is a minimizer of s over Rn, and in particular s(x∗) ≤ s(x).

I Thus,
f (x∗) = f (x∗) +

∑m
i=1 λigi (x∗) +

∑p
j=1 µjhj(x∗)

= s(x∗)
≤ s(x)
= f (x) +

∑m
i=1 λigi (x) +

∑p
j=1 µjhj(x)

≤ f (x)

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - The KKT Conditions 13 / 34



Proof

I Let x be a feasible solution of (2). We will show that f (x) ≥ f (x∗).

I The function s(x) = f (x) +
∑m

i=1 λigi (x) +
∑m

i=1 µihi (x) is convex.

I Since ∇s(x∗) = ∇f (x∗) +
∑m

i=1 λi∇gi (x∗) +
∑p

j=1 µj∇hj(x∗) = 0, it follows
that x∗ is a minimizer of s over Rn, and in particular s(x∗) ≤ s(x).

I Thus,
f (x∗) = f (x∗) +

∑m
i=1 λigi (x∗) +

∑p
j=1 µjhj(x∗)

= s(x∗)
≤ s(x)
= f (x) +

∑m
i=1 λigi (x) +

∑p
j=1 µjhj(x)

≤ f (x)

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - The KKT Conditions 13 / 34



Convex Constraints - Necessity under Slater’s Condition
If the constraints are convex, regularity can be replaced by Slater’s condition.

Theorem (necessity of the KKT conditions under Slater’s condition) Let x∗

be a local optimal solution of the problem

min f (x)
s.t. gi (x) ≤ 0, i = 1, 2, . . . ,m.

(3)

where f , g1, . . . , gm are continuously differentiable over Rn. In addition,
g1, g2, . . . , gm are convex over Rn. Suppose ∃x̂ ∈ Rn such that

gi (x̂) < 0, i = 1, 2, . . . ,m.

Then there exist multipliers λ1, λ2 . . . , λm ≥ 0 such that

∇f (x∗) +
m∑
i=1

λi∇gi (x∗) = 0, (4)

λigi (x∗) = 0, i = 1, 2, . . . ,m. (5)
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Proof
I Since x∗ is an optimal solution of (3), the Fritz-John conditions are satisfied:

there exist λ̃0, λ̃1, . . . , λ̃m ≥ 0 not all zeros, such that

λ̃0∇f (x∗) +
m∑
i=1

λ̃i∇gi (x∗) = 0,

λ̃igi (x∗) = 0, i = 1, 2, . . . ,m. (6)

I We will prove that λ̃0 > 0, and then conditions (4) and (5) will be satisfied

with λi = λ̃i

λ̃0
, i = 1, 2, . . . ,m.

I Assume in contradiction that λ̃0 = 0. Then
m∑
i=1

λ̃i∇gi (x∗) = 0. (7)

I By the gradient inequality,

0 > gi (x̂) ≥ gi (x∗) +∇gi (x∗)T (x̂− x∗), i = 1, 2, . . . ,m.
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Proof Contd.

I Multiplying the i-th equation by λ̃i and summing over i = 1, 2, . . . ,m we
obtain

0 >
m∑
i=1

λ̃igi (x∗) +

[
m∑
i=1

λ̃i∇gi (x∗)

]T
(x̂− x∗), (8)

I Plugging the identities (7) and (6) into (8) we obtain the impossible
statement that 0 > 0, thus establishing the result.
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Examples
1.

min x21 − x2
s.t. x2 = 0.

.

2.
min x21 − x2
s.t. x22 ≤ 0.

The optimal solution is (x1, x2) = (0, 0). Satisfies KKT conditions for problem 1,
but not for problem 2. In class
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The Convex Case - Generalized Slater’s Condition

Definition (Generalized Slater’s Condition) Consider the system

gi (x) ≤ 0, i = 1, 2, . . . ,m,

hj(x) ≤ 0, j = 1, 2, . . . , p,

sk(x) = 0, k = 1, 2, . . . , q,

where gi , i = 1, 2, . . . ,m are convex functions over Rn and hj , sk , j =
1, 2, . . . , p, k = 1, 2, . . . , q are affine functions over Rn. Then we say that
the generalized Slater’s condition is satisfied if there exists x̂ ∈ Rn for which

gi (x̂) < 0, i = 1, 2, . . . ,m,

hj(x̂) ≤ 0, j = 1, 2, . . . , p,

sk(x̂) = 0, k = 1, 2, . . . , q,
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Necessity of KKT under Generalized Slater
Theorem. Let x∗ be an optimal solution of the problem

min f (x)
s.t. gi (x) ≤ 0, i = 1, 2, . . . ,m,

hj(x) ≤ 0, j = 1, 2, . . . , p,
sk(x) = 0, k = 1, 2, . . . , q,

(9)

where f , g1, . . . , gm are continuously differentiable convex functions and
hj , sk , j = 1, 2, . . . , p, k = 1, 2, . . . , q are affine. Suppose that the
generalized Slater’s condition is satisfied. Then there exist multipliers
λ1, λ2 . . . , λm, η1, η2, . . . , ηp ≥ 0, µ1, µ2, . . . , µq ∈ R such that

∇f (x∗) +
m∑
i=1

λi∇gi (x∗) +

p∑
j=1

ηj∇hj(x∗) +

q∑
k=1

µk∇sk(x∗) = 0,

λigi (x∗) = 0, i = 1, 2, . . . ,m,

ηjhj(x∗) = 0, j = 1, 2, . . . , p.
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Example

min 4x21 + x22 − x1 − 2x2
s.t. 2x1 + x2 ≤ 1,

x21 ≤ 1.

In class

Amir Beck “Introduction to Nonlinear Optimization” Lecture Slides - The KKT Conditions 20 / 34



Constrained Least Squares

(CLS)
min ‖Ax− b‖2,
s.t. ‖x‖2 ≤ α,

where A ∈ Rm×n has full column rank, b ∈ Rm, α > 0

I Problem (CLS) is a convex problem and satisfies Slater’s condition.

I Lagrangian: L(x, λ) = ‖Ax− b‖2 + λ(‖x‖2 − α). (λ ≥ 0)

I KKT conditions:

∇xL = 2AT (Ax− b) + 2λx = 0,

λ(‖x‖2 − α) = 0,

‖x‖2 ≤ α, λ ≥ 0.

I If λ = 0, then by the first equation

x = xLS ≡ (ATA)−1ATb.

Optimal iff ‖xLS‖2 ≤ α.
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Constrained Least Squares Contd.

I On the other hand, if ‖xLS‖2 > α, then necessarily λ > 0. By the C-S
condition we have that ‖x‖2 = α and the first equation implies that

x = xλ ≡ (ATA + λI)−1ATb.

The multiplier λ > 0 should be chosen to satisfy ‖xλ‖2 = α, that is, λ is the
solution of

f (λ) = ‖(ATA + λI)−1ATb‖2 − α = 0.

I f (0) = ‖(ATA)−1ATb‖2 − α = ‖xLS‖2 − α > 0, f strictly decreasing and
f (λ)→ −α as λ→∞.

I Conclusion: the optimal solution of the CLS problem is given by

x =

{
xLS ‖xLS‖2 ≤ α,
(ATA + λI)−1ATb ‖xLS‖2 > α

where λ is the unique root of f (λ) over (0,∞).
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Second Order Necessary Optimality Conditions

Theorem. Consider the problem

min f (x)
s.t. fi (x) ≤ 0, i = 1, 2, . . . ,m,

where f0, f1, . . . , fm are continuously differentiable over Rn. Let x∗ be a local
minimum, and suppose that x∗ is regular meaning that {∇fi (x∗)}i∈I (x∗) are
linearly independent. Then ∃λ1, λ2, . . . , λm ≥ 0 such that

∇xL(x∗,λ) = 0,

λi fi (x∗) = 0, i = 1, 2, . . . ,m,

and yT∇2
xxL(x∗,λ)y ≥ 0 for all y ∈ Λ(x∗) where

Λ(x∗) ≡ {d ∈ Rn : ∇fi (x∗)Td = 0, i ∈ I (x∗)}.

See proof of Theorem 11.18 in the book
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Second Order Necessary Optimality Conditions for
Inequality/Equality Constrained Problems

Theorem. Consider the problem

min f (x)
s.t. gi (x) ≤ 0, i = 1, 2, . . . ,m,

hj(x) = 0, j = 1, 2, . . . , p.

where f , g1, . . . , gm, h1, . . . , hp are continuously differentiable. Let x∗ be
a local minimum and suppose that x∗ is regular meaning that the set
{∇gi (x∗),∇hj(x∗), i ∈ I (x∗), j = 1, 2, . . . , p} is linearly independent. Then
∃λ1, λ2, . . . , λm ≥ 0 and µ1, µ2, . . . , µp ∈ R such that

∇xL(x∗,λ,µ) = 0,

λigi (x∗) = 0, i = 1, 2, . . . ,m,

and dT∇2
xxL(x∗,λ,µ)d ≥ 0 for all d ∈ Λ(x∗) ≡ {d ∈ Rn : ∇gi (x∗)Td =

0,∇hj(x∗)Td = 0, i ∈ I (x∗), j = 1, 2, . . . , p}.
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Optimality Conditions for the Trust Region Subproblem

The Trust Region Subproblem (TRS) is the problem consisting of minimizing an
indefinite quadratic function subject to an l2-norm constraint:

(TRS): min{f (x) ≡ xTAx + 2bTx + c : ‖x‖2 ≤ α},

where A = AT ∈ Rn×n,b ∈ Rn and c ∈ R. Although the problem is nonconvex,
it possesses necessary and sufficient optimality conditions.

Theorem A vector x∗ is an optimal solution of problem (TRS) if and only if
there exists λ∗ ≥ 0 such that

(A + λ∗I)x∗ = −b (10)

‖x∗‖2 ≤ α, (11)

λ∗(‖x∗‖2 − α) = 0, (12)

A + λ∗I � 0. (13)
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Proof
Sufficiency:

I Assume that x∗ satisfies (10)-(13) for some λ∗ ≥ 0.

I Define the function

h(x) = xTAx+2bTx+c+λ∗(‖x‖2−α) = xT (A+λ∗I)x+2bTx+c−αλ∗. (14)

I Then by (13) we have that h is a convex quadratic function. By (10) it
follows that ∇h(x∗) = 0, which implies that x∗ is the unconstrained
minimizer of h over Rn.

I Let x be a feasible point, i.e., ‖x‖2 ≤ α. Then

f (x) ≥ f (x) + λ∗(‖x‖2 − α) (λ∗ ≥ 0, ‖x‖2 − α ≤ 0)
= h(x) (by (14))
≥ h(x∗) (x∗ is the minimizer of h)
= f (x∗) + λ∗(‖x∗‖2 − α)
= f (x∗) (by (12))
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Proof Contd.
Necessity:

I If x∗ is a minimizer of (TRS), then by the second order necessary conditions
there exists λ∗ ≥ 0 such that

(A + λ∗I)x∗ = −b (15)

‖x∗‖2 ≤ α, (16)

λ∗(‖x∗‖2 − α) = 0, (17)

dT (A + λ∗I)d ≥ 0 for all d satisfying dTx∗ = 0. (18)

I Need to show that (18) is true for any d.
I Suppose on the contrary that there exists a d such that dTx∗ > 0 and

dT (A + λ∗I)d < 0.

I Consider the point x̄ = x∗ + td, where t = −2 dT x∗

‖d‖2 . The vector x̄ is a feasible
point since

‖x̄‖2 = ‖x∗ + td‖2 = ‖x∗‖2 + 2tdTx∗ + t2‖d‖2

= ‖x∗‖2 − 4
(dTx∗)2

‖d‖2
+ 4

(dTx∗)2

‖d‖2
= ‖x∗‖2 ≤ α.
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Proof Contd.

I In addition,

f (x̄) = x̄TAx̄ + 2bT x̄ + c

= (x∗ + td)TA(x∗ + td) + 2bT (x∗ + td) + c

= (x∗)TAx∗ + 2bTx∗ + c︸ ︷︷ ︸
f (x∗)

+t2dTAd + 2tdT (Ax∗ + b)

= f (x∗) + t2dT (A + λ∗I)d + 2tdT ((A + λ∗I)x∗ + b︸ ︷︷ ︸
=0 by(15)

)

−λ∗t
[
t‖d‖2 + 2dTx∗

]︸ ︷︷ ︸
=0

= f (x∗) + t2dT (A + λ∗I)d

< f (x∗),

which is a contradiction to the optimality of x∗.
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Total Least Squares
Consider the approximate set of linear equations:

Ax ≈ b

I In the Least Squares (LS) approach we only assume that the RHS vector b is
subjected to noise.

minw,x ‖w‖2
s.t. Ax = b + w,

w ∈ Rm.

I In the Total Least Squares (TLS) we assume that both the RHS vector b and
the model matrix A are subjected to noise

(TLS)
minE,w,x ‖E‖2F + ‖w‖2
s.t. (A + E)x = b + w,

E ∈ Rm×n,w ∈ Rm.

The TLS problem – as formulated – seems like a difficult nonconvex problem. We
will see that it can be solved efficiently.
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Eliminating the E and w variables
I Fixing x, we will solve the problem

(Px)
minE,w ‖E‖2F + ‖w‖2
s.t. (A + E)x = b + w.

I The KKT conditions are necessary and sufficient for problem (Px).

I Lagrangian: L(E,w,λ) = ‖E‖2F + ‖w‖2 + 2λT [(A + E)x− b−w].

I By the KKT conditions, (E,w) is an optimal solution of (Px) if and only if
there exists λ ∈ Rm such that

2E + 2λxT = 0 (∇EL = 0), (19)

2w − 2λ = 0 (∇wL = 0), (20)

(A + E)x = b + w (feasibility). (21)

I By (19), (20) and (21), E = −λxT ,w = λ and λ = Ax−b
‖x‖2+1 . Plugging this

into the objectve function, a reduced formulation in the variables x is
obtained.
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The New Formulation of (TLS)

(TLS’) min
x∈Rn

‖Ax− b‖2

‖x‖2 + 1
.

Theorem x is an optimal solution of (TLS’) if and only if (x,E,w) is an

optimal solution of (TLS) where E = − (Ax−b)xT

‖x‖2+1 and w = Ax−b
‖x‖2+1

I Still a nonconvex problem.
I Resembles the problem of minimizing the Rayleigh quotient.
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Solving the Fractional Quadratic Formulation

Under a rather mild condition, the optimal solution of (TLS’) can be derived via a
homogenization argument.

I (TLS’) is the same as

min
x∈Rn,t∈R

{
‖Ax− tb‖2

‖x‖2 + t2
: t = 1

}
.

I the same as (denoting y =

(
x
t

)
):

f ∗ = min
y∈Rn+1

{
yTBy

‖y‖2
: yn+1 = 1

}
, (22)

where

B =

(
ATA −ATb
−bTA ‖b‖2

)
.
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Solving the Fractional Quadratic Formulation Contd.
We will consider the following relaxed version:

g∗ = min
y∈Rn+1

{
yTBy

‖y‖2
: y 6= 0

}
, (23)

Lemma. Let y∗ be an optimal solution of (23) and assume that y∗n+1 6= 0.
Then ỹ = 1

y∗
n+1

y∗ is an optimal solution of (22).

Proof.

I f ∗ ≥ g∗.

I ỹ is feasible for (22) and we have

f ∗ ≤ ỹTBỹ

‖ỹ‖2
=

1
(y∗

n+1)
2 (y∗)TBy∗

1
(y∗

n+1)
2 ‖y∗‖2

=
(y∗)TBy∗

‖y∗‖2
= g∗.

I Therefore, ỹ is an optimal solution of both (22) and (23).
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Main Result on TLS
Theorem. Assume that the following condition holds:

λmin(B) < λmin(ATA), (24)

where

B =

(
ATA −ATb
−bTA ‖b‖2

)
.

Then the optimal solution of problem (TLS’) is given by 1
yn+1

v, where

y =

(
v

yn+1

)
is an eigenvector corresponding to the min. eigenvalue of B.

Proof.
I All we need to prove is that under condition (24), an optimal solution y∗ of

(23) must satisfy y∗n+1 6= 0.
I Assume on the contrary that y∗n+1 = 0. Then

λmin(B) =
(y∗)TBy∗

‖y∗‖2
=

vTATAv

‖v‖2
≥ λmin(ATA),

which is a contradiction to (24).
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