Lecture 11 - The Karush-Kuhn-Tucker Conditions

- The Karush-Kuhn-Tucker conditions are optimality conditions for inequality constrained problems discovered in 1951 (originating from Karush's thesis from 1939).
- Modern nonlinear optimization essentially begins with the discovery of these conditions.

The basic notion that we will require is the one of feasible descent directions.

Definition. Consider the problem

min $h(\mathbf{x})$ s.t. $\mathbf{x} \in C$,

where *h* is continuously differentiable over the set $C \subseteq \mathbb{R}^n$. Then a vector $\mathbf{d} \neq 0$ is called a feasible descent direction at $\mathbf{x} \in C$ if $\nabla f(\mathbf{x})^T \mathbf{d} < 0$ and there exists $\varepsilon > 0$ such that $\mathbf{x} + t\mathbf{d} \in C$ for all $t \in [0, \varepsilon]$.

The Basic Necessary Condition - No Feasible Descent Directions

Lemma. Consider the problem

G) min
$$f(\mathbf{x})$$

s.t. $\mathbf{x} \in C$,

where *h* is continuously differentiable over *C*. If \mathbf{x}^* is a local optimal solution of (G), then there are no feasible descent directions at \mathbf{x}^* .

Proof.

- ▶ By contradiction, assume that there exists a vector **d** and $\varepsilon_1 > 0$ such that $\mathbf{x} + t\mathbf{d} \in C$ for all $t \in [0, \varepsilon_1]$ and $\nabla f(\mathbf{x}^*)^T \mathbf{d} < 0$.
- By definition of the directional derivative there exists ε₂ < ε₁ such that f(x* + td) < f(x*) for all t ∈ [0, ε₂] ⇒ contradiction to the local optimality of x*.

Consequence

Lemma. Let \mathbf{x}^* be a local minimum of the problem

$$\begin{array}{ll} \min & f(\mathbf{x}) \\ \text{s.t.} & g_i(\mathbf{x}) \leq 0, \quad i = 1, 2, \dots, m, \end{array}$$

where f, g_1, \ldots, g_m are continuously differentiable functions over \mathbb{R}^n . Let $I(\mathbf{x}^*)$ be the set of active constraints at \mathbf{x}^* :

 $I(\mathbf{x}^*) = \{i : g_i(\mathbf{x}^*) = 0\}.$

Then there does not exist a vector $\mathbf{d} \in \mathbb{R}^n$ such that

 $egin{array}{lll}
abla f(\mathbf{x}^*)^T \mathbf{d} & < 0, \
abla g_i(\mathbf{x}^*)^T \mathbf{d} & < 0, i \in I(\mathbf{x}^*) \end{array}$

Proof

- Suppose that d satisfies the system of inequalities.
- ▶ Then $\exists \varepsilon_1 > 0$ such that $f(\mathbf{x}^* + t\mathbf{d}) < f(\mathbf{x}^*)$ and $g_i(\mathbf{x}^* + t\mathbf{d}) < g_i(\mathbf{x}^*) = 0$ for any $t \in (0, \varepsilon_1)$ and $i \in I(\mathbf{x}^*)$.
- For any $i \notin I(\mathbf{x}^*)$ we have that $g_i(\mathbf{x}^*) < 0$, and hence, by the continuity of g_i , there exists $\varepsilon_2 > 0$ such that $g_i(\mathbf{x}^* + t\mathbf{d}) < 0$ for any $t \in (0, \varepsilon_2)$ and $i \notin I(\mathbf{x}^*)$.
- Consequently,

$$\begin{array}{ll} f({\bf x}^* + t{\bf d}) & < f({\bf x}^*), \\ g_i({\bf x}^* + t{\bf d}) & < 0, \quad i = 1, 2, \dots, m, \end{array}$$

for all $t \in (0, \min\{\varepsilon_1, \varepsilon_2\})$.

► A contradiction to the local optimality of **x***.

The Fritz-John Necessary Condition

Theorem. Let \mathbf{x}^* be a local minimum of the problem

$$\begin{array}{ll} \min & f(\mathbf{x}) \\ \text{s.t.} & g_i(\mathbf{x}) \leq 0, \quad i = 1, 2, \dots, m, \end{array}$$

where f, g_1, \ldots, g_m are continuously differentiable functions over \mathbb{R}^n . Then there exist multipliers $\lambda_0, \lambda_1, \ldots, \lambda_m \ge 0$, which are not all zeros, such that

$$\lambda_0 \nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x}^*) = \mathbf{0},$$

$$\lambda_i g_i(\mathbf{x}^*) = \mathbf{0}, \quad i = 1, 2, \dots, m.$$

Proof of Fritz-John Conditions

The following system is infeasible

(S) $\nabla f(\mathbf{x}^*)^T \mathbf{d} < 0, \nabla g_i(\mathbf{x}^*)^T \mathbf{d} < 0, i \in I(\mathbf{x}^*)$

System (S) is the same as Ad < 0 where A =</p>

$$= \begin{pmatrix} \nabla f(\mathbf{x}^*)^T \\ \nabla g_{i_1}(\mathbf{x}^*)^T \\ \vdots \\ \nabla g_{i_k}(\mathbf{x}^*)^T \end{pmatrix}$$

▶ By Gordan's theorem of alternative, system (S) is infeasible if and only if there exists a vector $\boldsymbol{\eta} = (\lambda_0, \lambda_{i_1}, \dots, \lambda_{i_k})^T \neq \boldsymbol{0}$ such that

 $\mathbf{A}^{T}\boldsymbol{\eta} = \mathbf{0}, \boldsymbol{\eta} \ge \mathbf{0},$

- which is the same as $\lambda_0 \nabla f(\mathbf{x}^*) + \sum_{i \in I(\mathbf{x}^*)} \lambda_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}$.
- Define $\lambda_i = 0$ for any $i \notin I(\mathbf{x}^*)$, and we obtain that

$$\lambda_0 \nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}, \lambda_i g_i(\mathbf{x}^*) = 0, i = 1, 2, \dots, m$$

Amir Beck

The KKT Conditions for Inequality Constrained Problems

A major drawback of the Fritz-John conditions is that they allow λ_0 to be zero. Under an additional regularity condition, we can assume that $\lambda_0 = 1$.

Theorem. Let \mathbf{x}^* be a local minimum of the problem

$$\begin{array}{ll} \min & f(\mathbf{x}) \\ \text{s.t.} & g_i(\mathbf{x}) \leq 0, \quad i = 1, 2, \dots, m, \end{array}$$

where f, g_1, \ldots, g_m are continuously differentiable functions over \mathbb{R}^n . Suppose that the gradients of the active constraints $\{\nabla g_i(\mathbf{x}^*)\}_{i \in I(\mathbf{x}^*)}$ are linearly independent. Then there exist multipliers $\lambda_1, \lambda_2, \ldots, \lambda_m \geq 0$ such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x}^*) = \mathbf{0},$$

$$\lambda_i g_i(\mathbf{x}^*) = \mathbf{0}, \quad i = 1, 2, \dots, m.$$

Proof of the KKT Conditions for Inequality Constrained Problems

▶ By the Fritz-John conditions it follows that there exists $\tilde{\lambda}_0, \tilde{\lambda}_1, \ldots, \tilde{\lambda}_m$, not all zeros, such that

$$\begin{split} \tilde{\lambda}_0 \nabla f(\mathbf{x}^*) + \sum_{i=1}^m \tilde{\lambda}_i \nabla g_i(\mathbf{x}^*) &= \mathbf{0}, \\ \tilde{\lambda}_i g_i(\mathbf{x}^*) &= \mathbf{0}, \quad i = 1, 2, \dots, m. \end{split}$$

• $ilde{\lambda}_0
eq 0$ since otherwise, if $ilde{\lambda}_0 = 0$

$$\sum_{i\in I(\mathbf{x}^*)}\tilde{\lambda}_i\nabla g_i(\mathbf{x}^*)=\mathbf{0},$$

where not all the scalars $\tilde{\lambda}_i$, $i \in I(\mathbf{x}^*)$ are zeros, which is a contradiction to the regularity condition.

•
$$\tilde{\lambda}_0 > 0$$
. Defining $\lambda_i = \frac{\tilde{\lambda}_i}{\tilde{\lambda}_0}$, the result follows.

KKT Conditions for Inequality/Equality Constrained Problems

Theorem. Let \mathbf{x}^* be a local minimum of the problem

min
$$f(\mathbf{x})$$

s.t. $g_i(\mathbf{x}) \le 0, \quad i = 1, 2, ..., m,$ (1)
 $h_j(\mathbf{x}) = 0, j = 1, 2, ..., p.$

where $f, g_1, \ldots, g_m, h_1, h_2, \ldots, h_p$ are continuously differentiable functions over \mathbb{R}^n . Suppose that the gradients of the active constraints and the equality constraints: $\{\nabla g_i(\mathbf{x}^*), \nabla h_j(\mathbf{x}^*), i \in I(\mathbf{x}^*), j = 1, 2, \ldots, p\}$ are linearly independent. Then there exist multipliers $\lambda_1, \lambda_2, \ldots, \lambda_m \ge 0, \mu_1, \mu_2, \ldots, \mu_p \in \mathbb{R}$ such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j \nabla h_j(\mathbf{x}^*) = \mathbf{0},$$
$$\lambda_i g_i(\mathbf{x}^*) = \mathbf{0}, \quad i = 1, 2, \dots, m.$$

Terminology

Definition (KKT point) Consider problem (1) where $f, g_1, \ldots, g_m, h_1, h_2, \ldots, h_p$ are continuously differentiable functions over \mathbb{R}^n . A feasible point \mathbf{x}^* is called a KKT point if there exist $\lambda_1, \lambda_2 \ldots, \lambda_m \ge 0, \mu_1, \mu_2, \ldots, \mu_p \in \mathbb{R}$ such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j \nabla h_j(\mathbf{x}^*) = \mathbf{0},$$
$$\lambda_i g_i(\mathbf{x}^*) = \mathbf{0}, \quad i = 1, 2, \dots, m.$$

Definition (regularity) A feasible point \mathbf{x}^* is called regular if the set $\{\nabla g_i(\mathbf{x}^*), \nabla h_j(\mathbf{x}^*), i \in I(\mathbf{x}^*), j = 1, 2, ..., p\}$ is linearly independent.

- The KKT theorem states that a necessary local optimality condition of a regular point is that it is a KKT point.
- The additional requirement of regularity is not required in linearly constrained problems in which no such assumption is needed.

Amir Beck

Examples

1.

2.

 $\begin{array}{ll} \min & x_1 + x_2 \\ {\rm s.t.} & x_1^2 + x_2^2 = 1. \end{array}$

min
$$x_1 + x_2$$

s.t. $(x_1^2 + x_2^2 - 1)^2 = 0.$

In class

Sufficiency of KKT Conditions in the Convex Case

In the convex case the KKT conditions are always sufficient.

Theorem. Let \mathbf{x}^* be a feasible solution of

min
$$f(\mathbf{x})$$

s.t. $g_i(\mathbf{x}) \le 0, \quad i = 1, 2, ..., m,$
 $h_j(\mathbf{x}) = 0, \quad j = 1, 2, ..., p.$ (2)

where $f, g_1, \ldots, g_m, h_1, \ldots, h_p$ are continuously differentiable convex functions over \mathbb{R}^n and h_1, h_2, \ldots, h_p are affine functions. Suppose that there exist multipliers $\lambda_1, \ldots, \lambda_m \geq 0, \mu_1, \mu_2, \ldots, \mu_p \in \mathbb{R}$ such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j \nabla h_j(\mathbf{x}^*) = \mathbf{0},$$
$$\lambda_i g_i(\mathbf{x}^*) = \mathbf{0}, \quad i = 1, 2, \dots, m.$$

Then \mathbf{x}^* is the optimal solution of (2).

Proof

- Let **x** be a feasible solution of (2). We will show that $f(\mathbf{x}) \ge f(\mathbf{x}^*)$.
- The function $s(\mathbf{x}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{i=1}^{m} \mu_i h_i(\mathbf{x})$ is convex.
- ► Since $\nabla s(\mathbf{x}^*) = \nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j \nabla h_j(\mathbf{x}^*) = \mathbf{0}$, it follows that \mathbf{x}^* is a minimizer of *s* over \mathbb{R}^n , and in particular $s(\mathbf{x}^*) \leq s(\mathbf{x})$.
- Thus,

$$\begin{aligned} f(\mathbf{x}^*) &= f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j h_j(\mathbf{x}^*) \\ &= s(\mathbf{x}^*) \\ &\leq s(\mathbf{x}) \\ &= f(\mathbf{x}) + \sum_{i=1}^m \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^p \mu_j h_j(\mathbf{x}) \\ &\leq f(\mathbf{x}) \end{aligned}$$

Convex Constraints - Necessity under Slater's Condition

If the constraints are convex, regularity can be replaced by Slater's condition.

Theorem (necessity of the KKT conditions under Slater's condition) Let \mathbf{x}^* be a local optimal solution of the problem

min
$$f(\mathbf{x})$$

s.t. $g_i(\mathbf{x}) \le 0, \quad i = 1, 2, \dots, m.$ (3)

where f, g_1, \ldots, g_m are continuously differentiable over \mathbb{R}^n . In addition, g_1, g_2, \ldots, g_m are convex over \mathbb{R}^n . Suppose $\exists \hat{\mathbf{x}} \in \mathbb{R}^n$ such that

 $g_i(\hat{\mathbf{x}}) < 0, \quad i = 1, 2, \ldots, m.$

Then there exist multipliers $\lambda_1, \lambda_2 \dots, \lambda_m \geq 0$ such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}, \qquad (4)$$
$$\lambda_i g_i(\mathbf{x}^*) = 0, \quad i = 1, 2, \dots, m. \qquad (5)$$

Proof

Since x^{*} is an optimal solution of (3), the Fritz-John conditions are satisfied: there exist λ̃₀, λ̃₁,..., λ̃_m ≥ 0 not all zeros, such that

$$\tilde{\lambda}_0 \nabla f(\mathbf{x}^*) + \sum_{i=1}^m \tilde{\lambda}_i \nabla g_i(\mathbf{x}^*) = \mathbf{0},$$
$$\tilde{\lambda}_i g_i(\mathbf{x}^*) = 0, \quad i = 1, 2, \dots, m.$$
(6)

- We will prove that λ̃₀ > 0, and then conditions (4) and (5) will be satisfied with λ_i = λ̃_i/λ₀, i = 1, 2, ..., m.
- Assume in contradiction that $\tilde{\lambda}_0 = 0$. Then

$$\sum_{i=1}^{m} \tilde{\lambda}_i \nabla g_i(\mathbf{x}^*) = \mathbf{0}.$$
 (7)

By the gradient inequality,

$$0 > g_i(\hat{\mathbf{x}}) \ge g_i(\mathbf{x}^*) + \nabla g_i(\mathbf{x}^*)^T (\hat{\mathbf{x}} - \mathbf{x}^*), i = 1, 2, \dots, m.$$

Proof Contd.

Multiplying the *i*-th equation by λ̃_i and summing over *i* = 1, 2, ..., *m* we obtain

$$0 > \sum_{i=1}^{m} \tilde{\lambda}_{i} g_{i}(\mathbf{x}^{*}) + \left[\sum_{i=1}^{m} \tilde{\lambda}_{i} \nabla g_{i}(\mathbf{x}^{*})\right]^{T} (\hat{\mathbf{x}} - \mathbf{x}^{*}), \qquad (8)$$

Plugging the identities (7) and (6) into (8) we obtain the impossible statement that 0 > 0, thus establishing the result.

The optimal solution is $(x_1, x_2) = (0, 0)$. Satisfies KKT conditions for problem 1, but not for problem 2. In class

The Convex Case - Generalized Slater's Condition

Definition (Generalized Slater's Condition) Consider the system

$$egin{array}{rll} g_{i}({f x}) &\leq 0, & i=1,2,\ldots,m, \ h_{j}({f x}) &\leq 0, & j=1,2,\ldots,p, \ s_{k}({f x}) &= 0, & k=1,2,\ldots,q, \end{array}$$

where $g_i, i = 1, 2, ..., m$ are convex functions over \mathbb{R}^n and $h_j, s_k, j = 1, 2, ..., p, k = 1, 2, ..., q$ are affine functions over \mathbb{R}^n . Then we say that the generalized Slater's condition is satisfied if there exists $\hat{\mathbf{x}} \in \mathbb{R}^n$ for which

$$egin{array}{rcl} g_i(\hat{\mathbf{x}}) &< 0, & i=1,2,\ldots,m, \ h_j(\hat{\mathbf{x}}) &\leq 0, & j=1,2,\ldots,p, \ s_k(\hat{\mathbf{x}}) &= 0, & k=1,2,\ldots,q, \end{array}$$

Necessity of KKT under Generalized Slater

Theorem. Let \mathbf{x}^* be an optimal solution of the problem

$$\begin{array}{ll} \min & f(\mathbf{x}) \\ \text{s.t.} & g_i(\mathbf{x}) \leq 0, \quad i = 1, 2, \dots, m, \\ & h_j(\mathbf{x}) \leq 0, \quad j = 1, 2, \dots, p, \\ & s_k(\mathbf{x}) = 0, \quad k = 1, 2, \dots, q, \end{array}$$

where f, g_1, \ldots, g_m are continuously differentiable convex functions and $h_j, s_k, j = 1, 2, \ldots, p, k = 1, 2, \ldots, q$ are affine. Suppose that the generalized Slater's condition is satisfied. Then there exist multipliers $\lambda_1, \lambda_2, \ldots, \lambda_m, \eta_1, \eta_2, \ldots, \eta_p \ge 0, \mu_1, \mu_2, \ldots, \mu_q \in \mathbb{R}$ such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x}^*) + \sum_{j=1}^p \eta_j \nabla h_j(\mathbf{x}^*) + \sum_{k=1}^q \mu_k \nabla s_k(\mathbf{x}^*) = \mathbf{0},$$

$$\lambda_i g_i(\mathbf{x}^*) = 0, \quad i = 1, 2, \dots, m,$$

$$\eta_j h_j(\mathbf{x}^*) = 0, \quad j = 1, 2, \dots, p.$$

Example

$$\begin{array}{ll} \mbox{min} & 4x_1^2 + x_2^2 - x_1 - 2x_2 \\ \mbox{s.t.} & 2x_1 + x_2 \leq 1, \\ & x_1^2 \leq 1. \end{array}$$

In class

Constrained Least Squares

(CLS) min
$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$$
,
s.t. $\|\mathbf{x}\|^2 \le \alpha$,

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ has full column rank, $\mathbf{b} \in \mathbb{R}^m, \alpha > 0$

- Problem (CLS) is a convex problem and satisfies Slater's condition.
- ► Lagrangian: $L(\mathbf{x}, \lambda) = \|\mathbf{A}\mathbf{x} \mathbf{b}\|^2 + \lambda(\|\mathbf{x}\|^2 \alpha).$ $(\lambda \ge 0)$
- KKT conditions:

$$\begin{aligned} \nabla_{\mathbf{x}} L &= 2 \mathbf{A}^T (\mathbf{A} \mathbf{x} - \mathbf{b}) + 2\lambda \mathbf{x} &= 0, \\ \lambda (\|\mathbf{x}\|^2 - \alpha) &= 0, \\ \|\mathbf{x}\|^2 &\leq \alpha, \lambda \geq 0. \end{aligned}$$

• If $\lambda = 0$, then by the first equation

$$\mathbf{x} = \mathbf{x}_{\mathrm{LS}} \equiv (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}.$$

Optimal iff $\|\mathbf{x}_{LS}\|^2 \leq \alpha$.

Amir Beck

"Introduction to Nonlinear Optimization" Lecture Slides - The KKT Conditions

Constrained Least Squares Contd.

• On the other hand, if $\|\mathbf{x}_{LS}\|^2 > \alpha$, then necessarily $\lambda > 0$. By the C-S condition we have that $\|\mathbf{x}\|^2 = \alpha$ and the first equation implies that

$$\mathbf{x} = \mathbf{x}_{\lambda} \equiv (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{b}.$$

The multiplier $\lambda > 0$ should be chosen to satisfy $\|\mathbf{x}_{\lambda}\|^2 = \alpha$, that is, λ is the solution of

$$f(\lambda) = \| (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{b} \|^2 - \alpha = 0.$$

- ► $f(0) = \|(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}\|^2 \alpha = \|\mathbf{x}_{LS}\|^2 \alpha > 0$, f strictly decreasing and $f(\lambda) \to -\alpha$ as $\lambda \to \infty$.
- Conclusion: the optimal solution of the CLS problem is given by

$$\mathbf{x} = \begin{cases} \mathbf{x}_{\mathrm{LS}} & \|\mathbf{x}_{\mathrm{LS}}\|^2 \leq \alpha, \\ (\mathbf{A}^T \mathbf{A} + \lambda \mathbf{I})^{-1} \mathbf{A}^T \mathbf{b} & \|\mathbf{x}_{\mathrm{LS}}\|^2 > \alpha \end{cases}$$

where λ is the unique root of $f(\lambda)$ over $(0,\infty)$.

Second Order Necessary Optimality Conditions

Theorem. Consider the problem

$$\begin{array}{ll} \min & f(\mathbf{x}) \\ \text{s.t.} & f_i(\mathbf{x}) \leq 0, \quad i = 1, 2, \dots, m, \end{array}$$

where f_0, f_1, \ldots, f_m are continuously differentiable over \mathbb{R}^n . Let \mathbf{x}^* be a local minimum, and suppose that \mathbf{x}^* is regular meaning that $\{\nabla f_i(\mathbf{x}^*)\}_{i \in I(\mathbf{x}^*)}$ are linearly independent. Then $\exists \lambda_1, \lambda_2, \ldots, \lambda_m \geq 0$ such that

$$\begin{aligned} \nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}) &= \mathbf{0}, \\ \lambda_i f_i(\mathbf{x}^*) &= \mathbf{0}, \quad i = 1, 2, \dots, m, \end{aligned}$$

and $\mathbf{y}^T \nabla^2_{\mathbf{x}\mathbf{x}} L(\mathbf{x}^*, \boldsymbol{\lambda}) \mathbf{y} \ge 0$ for all $\mathbf{y} \in \Lambda(\mathbf{x}^*)$ where

$$\Lambda(\mathbf{x}^*) \equiv \{\mathbf{d} \in \mathbb{R}^n : \nabla f_i(\mathbf{x}^*)^T \mathbf{d} = 0, i \in I(\mathbf{x}^*)\}.$$

See proof of Theorem 11.18 in the book

Amir Beck

Second Order Necessary Optimality Conditions for Inequality/Equality Constrained Problems

Theorem. Consider the problem

$$\begin{array}{ll} \min & f(\mathbf{x}) \\ \text{s.t.} & g_i(\mathbf{x}) \leq 0, \quad i = 1, 2, \dots, m, \\ & h_j(\mathbf{x}) = 0, j = 1, 2, \dots, p. \end{array}$$

where $f, g_1, \ldots, g_m, h_1, \ldots, h_p$ are continuously differentiable. Let \mathbf{x}^* be a local minimum and suppose that \mathbf{x}^* is regular meaning that the set $\{\nabla g_i(\mathbf{x}^*), \nabla h_j(\mathbf{x}^*), i \in I(\mathbf{x}^*), j = 1, 2, \ldots, p\}$ is linearly independent. Then $\exists \lambda_1, \lambda_2, \ldots, \lambda_m \geq 0$ and $\mu_1, \mu_2, \ldots, \mu_p \in \mathbb{R}$ such that

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}, \boldsymbol{\mu}) = \mathbf{0},$$

$$\lambda_i g_i(\mathbf{x}^*) = 0, \quad i = 1, 2, \dots, m,$$

and $\mathbf{d}^T \nabla^2_{\mathbf{x}\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}, \boldsymbol{\mu}) \mathbf{d} \geq 0$ for all $\mathbf{d} \in \Lambda(\mathbf{x}^*) \equiv \{\mathbf{d} \in \mathbb{R}^n : \nabla g_i(\mathbf{x}^*)^T \mathbf{d} = 0, \nabla h_j(\mathbf{x}^*)^T \mathbf{d} = 0, i \in I(\mathbf{x}^*), j = 1, 2, ..., p\}.$

Optimality Conditions for the Trust Region Subproblem

The Trust Region Subproblem (TRS) is the problem consisting of minimizing an indefinite quadratic function subject to an l_2 -norm constraint:

(TRS): $\min\{f(\mathbf{x}) \equiv \mathbf{x}^T \mathbf{A} \mathbf{x} + 2\mathbf{b}^T \mathbf{x} + c : \|\mathbf{x}\|^2 \le \alpha\},\$

where $\mathbf{A} = \mathbf{A}^T \in \mathbb{R}^{n \times n}$, $\mathbf{b} \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Although the problem is nonconvex, it possesses necessary and sufficient optimality conditions.

Theorem A vector \mathbf{x}^* is an optimal solution of problem (TRS) if and only if there exists $\lambda^* \ge 0$ such that

$(\mathbf{A} + \lambda^* \mathbf{I}) \mathbf{x}^*$	$= -\mathbf{b}$	(10)
--	-----------------	------

$\ \mathbf{x}^*\ ^2 \leq lpha,$	(11)
---------------------------------	------

$$\lambda^*(\|\mathbf{x}^*\|^2 - \alpha) = 0,$$
 (12)

$$\mathbf{A} + \lambda^* \mathbf{I} \succeq \mathbf{0}. \tag{13}$$

Proof

Sufficiency:

- Assume that \mathbf{x}^* satisfies (10)-(13) for some $\lambda^* \geq 0$.
- Define the function

 $h(\mathbf{x}) = \mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{x} + 2\mathbf{b}^{\mathsf{T}} \mathbf{x} + c + \lambda^* (\|\mathbf{x}\|^2 - \alpha) = \mathbf{x}^{\mathsf{T}} (\mathbf{A} + \lambda^* \mathbf{I}) \mathbf{x} + 2\mathbf{b}^{\mathsf{T}} \mathbf{x} + c - \alpha \lambda^*.$ (14)

- Then by (13) we have that h is a convex quadratic function. By (10) it follows that ∇h(x*) = 0, which implies that x* is the unconstrained minimizer of h over ℝⁿ.
- Let **x** be a feasible point, i.e., $\|\mathbf{x}\|^2 \leq \alpha$. Then

$$\begin{aligned} f(\mathbf{x}) &\geq f(\mathbf{x}) + \lambda^* (\|\mathbf{x}\|^2 - \alpha) & (\lambda^* \geq 0, \|\mathbf{x}\|^2 - \alpha \leq 0) \\ &= h(\mathbf{x}) & (by \ (14)) \\ &\geq h(\mathbf{x}^*) & (\mathbf{x}^* \text{ is the minimizer of } h) \\ &= f(\mathbf{x}^*) + \lambda^* (\|\mathbf{x}^*\|^2 - \alpha) \\ &= f(\mathbf{x}^*) & (by \ (12)) \end{aligned}$$

Proof Contd.

Necessity:

If x^{*} is a minimizer of (TRS), then by the second order necessary conditions there exists λ^{*} ≥ 0 such that

$$(\mathbf{A} + \lambda^* \mathbf{I}) \mathbf{x}^* = -\mathbf{b}$$
(15)

$$\|\mathbf{x}^*\|^2 \leq \alpha, \tag{16}$$

$$^{*}(\|\mathbf{x}^{*}\|^{2}-\alpha) = 0, \qquad (17)$$

$$\mathbf{d}^{\mathcal{T}}(\mathbf{A} + \lambda^* \mathbf{I})\mathbf{d} \geq 0$$
 for all \mathbf{d} satisfying $\mathbf{d}^{\mathcal{T}} \mathbf{x}^* = 0.$ (18)

▶ Need to show that (18) is true for any d.

λ

- Suppose on the contrary that there exists a **d** such that $\mathbf{d}^T \mathbf{x}^* > 0$ and $\mathbf{d}^T (\mathbf{A} + \lambda^* \mathbf{I}) \mathbf{d} < 0$.
- ► Consider the point \$\overline{x} = x^* + td\$, where \$t = -2 \frac{d^T x^*}{\|d\|^2}\$. The vector \$\overline{x}\$ is a feasible point since

$$\begin{aligned} \|\bar{\mathbf{x}}\|^2 &= \|\mathbf{x}^* + t\mathbf{d}\|^2 = \|\mathbf{x}^*\|^2 + 2t\mathbf{d}^T\mathbf{x}^* + t^2\|\mathbf{d}\|^2 \\ &= \|\mathbf{x}^*\|^2 - 4\frac{(\mathbf{d}^T\mathbf{x}^*)^2}{\|\mathbf{d}\|^2} + 4\frac{(\mathbf{d}^T\mathbf{x}^*)^2}{\|\mathbf{d}\|^2} = \|\mathbf{x}^*\|^2 \le \alpha. \end{aligned}$$

Amir Beck

"Introduction to Nonlinear Optimization" Lecture Slides - The KKT Conditions

Proof Contd.

► In addition,

$$f(\bar{\mathbf{x}}) = \bar{\mathbf{x}}^T \mathbf{A} \bar{\mathbf{x}} + 2\mathbf{b}^T \bar{\mathbf{x}} + c$$

$$= (\mathbf{x}^* + t\mathbf{d})^T \mathbf{A} (\mathbf{x}^* + t\mathbf{d}) + 2\mathbf{b}^T (\mathbf{x}^* + t\mathbf{d}) + c$$

$$= \underbrace{(\mathbf{x}^*)^T \mathbf{A} \mathbf{x}^* + 2\mathbf{b}^T \mathbf{x}^* + c}_{f(\mathbf{x}^*)} + t^2 \mathbf{d}^T \mathbf{A} \mathbf{d} + 2t \mathbf{d}^T (\mathbf{A} \mathbf{x}^* + \mathbf{b})$$

$$= f(\mathbf{x}^*) + t^2 \mathbf{d}^T (\mathbf{A} + \lambda^* \mathbf{I}) \mathbf{d} + 2t \mathbf{d}^T (\underbrace{(\mathbf{A} + \lambda^* \mathbf{I}) \mathbf{x}^* + \mathbf{b}}_{=\mathbf{0} \text{ by}(15)}$$

$$-\lambda^* t \underbrace{[t || \mathbf{d} ||^2 + 2\mathbf{d}^T \mathbf{x}^*]}_{=0}$$

$$= f(\mathbf{x}^*) + t^2 \mathbf{d}^T (\mathbf{A} + \lambda^* \mathbf{I}) \mathbf{d}$$

$$< f(\mathbf{x}^*),$$

which is a contradiction to the optimality of \mathbf{x}^* .

Amir Beck

Total Least Squares

Consider the approximate set of linear equations:

$\mathbf{A}\mathbf{x} pprox \mathbf{b}$

In the Least Squares (LS) approach we only assume that the RHS vector b is subjected to noise.

$$\begin{array}{ll} \min_{\mathbf{w},\mathbf{x}} & \|\mathbf{w}\|^2 \\ \text{s.t.} & \mathbf{A}\mathbf{x} = \mathbf{b} + \mathbf{w}, \\ & \mathbf{w} \in \mathbb{R}^m. \end{array}$$

In the Total Least Squares (TLS) we assume that both the RHS vector b and the model matrix A are subjected to noise

(TLS)
$$\begin{array}{l} \min_{\mathbf{E}, \mathbf{w}, \mathbf{x}} & \|\mathbf{E}\|_F^2 + \|\mathbf{w}\|^2 \\ \text{s.t.} & (\mathbf{A} + \mathbf{E})\mathbf{x} = \mathbf{b} + \mathbf{w}, \\ \mathbf{E} \in \mathbb{R}^{m \times n}, \mathbf{w} \in \mathbb{R}^m. \end{array}$$

The TLS problem – as formulated – seems like a difficult nonconvex problem. We will see that it can be solved efficiently.

Amir Beck

"Introduction to Nonlinear Optimization" Lecture Slides - The KKT Conditions

Eliminating the **E** and **w** variables

Fixing **x**, we will solve the problem

$$(P_{\mathbf{x}}) \quad \begin{array}{l} \min_{\mathbf{E},\mathbf{w}} & \|\mathbf{E}\|_{F}^{2} + \|\mathbf{w}\|^{2} \\ \text{s.t.} & (\mathbf{A} + \mathbf{E})\mathbf{x} = \mathbf{b} + \mathbf{w}. \end{array}$$

- The KKT conditions are necessary and sufficient for problem (P_x) .
- ► Lagrangian: $L(\mathbf{E}, \mathbf{w}, \lambda) = \|\mathbf{E}\|_F^2 + \|\mathbf{w}\|^2 + 2\lambda^T [(\mathbf{A} + \mathbf{E})\mathbf{x} \mathbf{b} \mathbf{w}].$
- By the KKT conditions, (E, w) is an optimal solution of (P_x) if and only if there exists λ ∈ ℝ^m such that

$$2\mathbf{E} + 2\lambda \mathbf{x}' = \mathbf{0} \qquad (\nabla_{\mathbf{E}} L = \mathbf{0}), \tag{19}$$

$$2\mathbf{w} - 2\boldsymbol{\lambda} = \mathbf{0} \qquad (\nabla_{\mathbf{w}} L = \mathbf{0}), \tag{20}$$

$$(\mathbf{A} + \mathbf{E})\mathbf{x} = \mathbf{b} + \mathbf{w}$$
 (feasibility). (21)

By (19), (20) and (21), E = −λx^T, w = λ and λ = Ax−b/||x||²+1. Plugging this into the objectve function, a reduced formulation in the variables x is obtained.

Amir Beck

The New Formulation of (TLS)

(TLS')
$$\min_{\mathbf{x}\in\mathbb{R}^n} \frac{\|\mathbf{A}\mathbf{x}-\mathbf{b}\|^2}{\|\mathbf{x}\|^2+1}$$

Theorem **x** is an optimal solution of (TLS') if and only if $(\mathbf{x}, \mathbf{E}, \mathbf{w})$ is an optimal solution of (TLS) where $\mathbf{E} = -\frac{(\mathbf{A}\mathbf{x} - \mathbf{b})\mathbf{x}^T}{\|\mathbf{x}\|^2 + 1}$ and $\mathbf{w} = \frac{\mathbf{A}\mathbf{x} - \mathbf{b}}{\|\mathbf{x}\|^2 + 1}$

- Still a nonconvex problem.
- Resembles the problem of minimizing the Rayleigh quotient.

Solving the Fractional Quadratic Formulation

Under a rather mild condition, the optimal solution of (TLS') can be derived via a homogenization argument.

► (TLS') is the same as

$$\min_{\mathbf{x}\in\mathbb{R}^n,t\in\mathbb{R}}\left\{\frac{\|\mathbf{A}\mathbf{x}-t\mathbf{b}\|^2}{\|\mathbf{x}\|^2+t^2}:t=1\right\}.$$

• the same as (denoting $\mathbf{y} = \begin{pmatrix} \mathbf{x} \\ t \end{pmatrix}$):

$$f^* = \min_{\mathbf{y} \in \mathbb{R}^{n+1}} \left\{ \frac{\mathbf{y}^T \mathbf{B} \mathbf{y}}{\|\mathbf{y}\|^2} : y_{n+1} = 1 \right\},$$
(22)

where

$$\mathbf{B} = \begin{pmatrix} \mathbf{A}^T \mathbf{A} & -\mathbf{A}^T \mathbf{b} \\ -\mathbf{b}^T \mathbf{A} & \|\mathbf{b}\|^2 \end{pmatrix}.$$

Solving the Fractional Quadratic Formulation Contd.

We will consider the following relaxed version:

$$g^* = \min_{\mathbf{y} \in \mathbb{R}^{n+1}} \left\{ \frac{\mathbf{y}^T \mathbf{B} \mathbf{y}}{\|\mathbf{y}\|^2} : \mathbf{y} \neq \mathbf{0} \right\},$$
(23)

Lemma. Let \mathbf{y}^* be an optimal solution of (23) and assume that $y_{n+1}^* \neq 0$. Then $\tilde{\mathbf{y}} = \frac{1}{y_{n+1}^*} \mathbf{y}^*$ is an optimal solution of (22).

Proof.

- $f^* \ge g^*$.
- $\blacktriangleright~\tilde{y}$ is feasible for (22) and we have

$$f^* \leq \frac{\tilde{\mathbf{y}}^T \mathbf{B} \tilde{\mathbf{y}}}{\|\tilde{\mathbf{y}}\|^2} = \frac{\frac{1}{(y_{n+1}^*)^2} (\mathbf{y}^*)^T \mathbf{B} \mathbf{y}^*}{\frac{1}{(y_{n+1}^*)^2} \|\mathbf{y}^*\|^2} = \frac{(\mathbf{y}^*)^T \mathbf{B} \mathbf{y}^*}{\|\mathbf{y}^*\|^2} = g^*.$$

• Therefore, $\tilde{\mathbf{y}}$ is an optimal solution of both (22) and (23).

Main Result on TLS

Theorem. Assume that the following condition holds:

$$\lambda_{\min}(\mathbf{B}) < \lambda_{\min}(\mathbf{A}^{\mathsf{T}}\mathbf{A}), \tag{24}$$

where

$$\mathbf{B} = egin{pmatrix} \mathbf{A}^{\mathsf{T}}\mathbf{A} & -\mathbf{A}^{\mathsf{T}}\mathbf{b} \ -\mathbf{b}^{\mathsf{T}}\mathbf{A} & \|\mathbf{b}\|^2 \end{pmatrix}.$$

Then the optimal solution of problem (TLS') is given by $\frac{1}{y_{n+1}}\mathbf{v}$, where $\mathbf{y} = \begin{pmatrix} \mathbf{v} \\ y_{n+1} \end{pmatrix}$ is an eigenvector corresponding to the min. eigenvalue of **B**.

Proof.

- All we need to prove is that under condition (24), an optimal solution y^{*} of (23) must satisfy y^{*}_{n+1} ≠ 0.
- Assume on the contrary that $y_{n+1}^* = 0$. Then

$$\lambda_{\min}(\mathbf{B}) = \frac{(\mathbf{y}^*)^T \mathbf{B} \mathbf{y}^*}{\|\mathbf{y}^*\|^2} = \frac{\mathbf{v}^T \mathbf{A}^T \mathbf{A} \mathbf{v}}{\|\mathbf{v}\|^2} \ge \lambda_{\min}(\mathbf{A}^T \mathbf{A}),$$

which is a contradiction to (24).

Amir Beck