Lecture 10 - Linearly Constrained Problems: Separation \rightarrow Alternative Theorems \rightarrow Optimality Conditions

A hyperplane

 $H = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} = b\} \ (\mathbf{a} \in \mathbb{R}^n \setminus \{\mathbf{0}\}, b \in \mathbb{R})$

is said to strictly separate a point $\mathbf{y} \notin S$ from S if

 $\mathbf{a}^T \mathbf{y} > b$

and

 $\mathbf{a}^T \mathbf{x} \leq b$ for all $\mathbf{y} \in S$.

Lecture 10 - Linearly Constrained Problems: Separation \rightarrow Alternative Theorems \rightarrow Optimality Conditions

A hyperplane

 $H = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} = b\} \ (\mathbf{a} \in \mathbb{R}^n \setminus \{\mathbf{0}\}, b \in \mathbb{R})$

is said to strictly separate a point $\mathbf{y} \notin S$ from S if

 $\mathbf{a}^T \mathbf{y} > b$

and

$$\mathbf{a}^T \mathbf{x} \leq b$$
 for all $\mathbf{y} \in S$.

Theorem (separation of a point from a closed and convex set) Let $C \subseteq \mathbb{R}^n$ be a nonempty closed and convex set, and let $\mathbf{y} \notin C$. Then there exists $\mathbf{p} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ and $\alpha \in \mathbb{R}$ such that

$$\mathbf{p}^T \mathbf{y} > \alpha$$
 and $\mathbf{p}^T \mathbf{x} \le \alpha$ for all $\mathbf{x} \in C$.

Proof of the Separation Theorem

▶ By the second orthogonal projection theorem, the vector x̄ = P_C(y) ∈ C satisfies

$$(\mathbf{y} - \bar{\mathbf{x}})^T (\mathbf{x} - \bar{\mathbf{x}}) \le 0$$
 for all $\mathbf{x} \in C$,

which is the same as

$$(\mathbf{y} - \bar{\mathbf{x}})^T \mathbf{x} \le (\mathbf{y} - \bar{\mathbf{x}})^T \bar{\mathbf{x}}$$
 for all $\mathbf{x} \in C$.

Proof of the Separation Theorem

▶ By the second orthogonal projection theorem, the vector x̄ = P_C(y) ∈ C satisfies

$$(\mathbf{y} - \bar{\mathbf{x}})^T (\mathbf{x} - \bar{\mathbf{x}}) \le 0$$
 for all $\mathbf{x} \in C$,

which is the same as

$$(\mathbf{y} - \bar{\mathbf{x}})^T \mathbf{x} \le (\mathbf{y} - \bar{\mathbf{x}})^T \bar{\mathbf{x}}$$
 for all $\mathbf{x} \in C$.

• Denote
$$\mathbf{p} = \mathbf{y} - \bar{\mathbf{x}} \neq \mathbf{0}$$
 and $\alpha = (\mathbf{y} - \bar{\mathbf{x}})^T \bar{\mathbf{x}}$. Then

 $\mathbf{p}^T \mathbf{x} \leq \alpha$ for all $\mathbf{x} \in C$

Proof of the Separation Theorem

► By the second orthogonal projection theorem, the vector x̄ = P_C(y) ∈ C satisfies

$$(\mathbf{y} - \bar{\mathbf{x}})^T (\mathbf{x} - \bar{\mathbf{x}}) \le 0$$
 for all $\mathbf{x} \in C$,

which is the same as

$$(\mathbf{y} - \bar{\mathbf{x}})^T \mathbf{x} \le (\mathbf{y} - \bar{\mathbf{x}})^T \bar{\mathbf{x}}$$
 for all $\mathbf{x} \in C$.

▶ Denote
$$\mathbf{p} = \mathbf{y} - \bar{\mathbf{x}} \neq \mathbf{0}$$
 and $\alpha = (\mathbf{y} - \bar{\mathbf{x}})^T \bar{\mathbf{x}}$. Then
 $\mathbf{p}^T \mathbf{x} \leq \alpha$ for all $\mathbf{x} \in C$

On the other hand,

$$\mathbf{p}^{\mathsf{T}}\mathbf{y} = (\mathbf{y} - \bar{\mathbf{x}})^{\mathsf{T}}\mathbf{y} = (\mathbf{y} - \bar{\mathbf{x}})^{\mathsf{T}}(\mathbf{y} - \bar{\mathbf{x}}) + (\mathbf{y} - \bar{\mathbf{x}})^{\mathsf{T}}\bar{\mathbf{x}} = \|\mathbf{y} - \bar{\mathbf{x}}\|^2 + \alpha > \alpha.$$

Farkas Lemma - an Alternative Theorem

Farkas Lemma. Let $\mathbf{c} \in \mathbb{R}^n$ and $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then exactly one of the following systems has a solution 1. $\mathbf{A}\mathbf{x} \leq \mathbf{0}, \mathbf{c}^T \mathbf{x} > 0$. 11. $\mathbf{A}^T \mathbf{y} = \mathbf{c}, \mathbf{y} \geq 0$.

Another equivalent formulation is the following.

Farkas Lemma - second Formulation Let $\mathbf{c} \in \mathbb{R}^n$ and $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then the following two claims are equivalent:

(A) The implication $\mathbf{A}\mathbf{x} \leq \mathbf{0} \Rightarrow \mathbf{c}^T \mathbf{x} \leq \mathbf{0}$ holds true.

(B) There exists $\mathbf{y} \in \mathbb{R}^m_+$ such that $\mathbf{A}^T \mathbf{y} = \mathbf{c}$.

What does it mean? Example. $\mathbf{A} = \begin{pmatrix} 1 & 5 \\ -1 & 2 \end{pmatrix}, \mathbf{c} = \begin{pmatrix} -1 \\ 9 \end{pmatrix},$

Suppose that system (B) is feasible: $\exists \mathbf{y} \in \mathbb{R}^m_+$ such that $\mathbf{A}^T \mathbf{y} = \mathbf{c}$.

- Suppose that system (B) is feasible: $\exists \mathbf{y} \in \mathbb{R}^m_+$ such that $\mathbf{A}^T \mathbf{y} = \mathbf{c}$.
- ▶ To see that the implication (A) holds, suppose that $Ax \leq 0$ for some $x \in \mathbb{R}^n$.

- ▶ Suppose that system (B) is feasible: $\exists y \in \mathbb{R}^m_+$ such that $A^T y = c$.
- ▶ To see that the implication (A) holds, suppose that $Ax \leq 0$ for some $x \in \mathbb{R}^n$.
- Multiplying this inequality from the left by y^T:

 $\mathbf{y}^{T}\mathbf{A}\mathbf{x} \leq \mathbf{0}.$

- ▶ Suppose that system (B) is feasible: $\exists y \in \mathbb{R}^m_+$ such that $A^T y = c$.
- ▶ To see that the implication (A) holds, suppose that $Ax \leq 0$ for some $x \in \mathbb{R}^n$.
- Multiplying this inequality from the left by y^T:

 $\mathbf{y}^T \mathbf{A} \mathbf{x} \leq \mathbf{0}.$

Hence,

 $\mathbf{c}^{\mathsf{T}}\mathbf{x} \leq \mathbf{0},$

- Suppose that system (B) is feasible: $\exists y \in \mathbb{R}^m_+$ such that $A^T y = c$.
- ▶ To see that the implication (A) holds, suppose that $Ax \leq 0$ for some $x \in \mathbb{R}^n$.
- Multiplying this inequality from the left by y^T:

 $\mathbf{y}^T \mathbf{A} \mathbf{x} \leq \mathbf{0}.$

Hence,

$$\mathbf{c}^T \mathbf{x} \leq \mathbf{0},$$

 Suppose that the implication (A) is satisfied, and let us show that the system (B) is feasible. Suppose in contradiction that system (B) is infeasible.

- Suppose that system (B) is feasible: $\exists \mathbf{y} \in \mathbb{R}^m_+$ such that $\mathbf{A}^T \mathbf{y} = \mathbf{c}$.
- ▶ To see that the implication (A) holds, suppose that $Ax \leq 0$ for some $x \in \mathbb{R}^n$.
- Multiplying this inequality from the left by y^T:

 $\mathbf{y}^{T}\mathbf{A}\mathbf{x} \leq \mathbf{0}.$

Hence,

$$\mathbf{c}^{\mathsf{T}}\mathbf{x} \leq \mathbf{0},$$

- Suppose that the implication (A) is satisfied, and let us show that the system (B) is feasible. Suppose in contradiction that system (B) is infeasible.
- Consider the following closed and convex (why?) set

$$S = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x} = \mathbf{A}^T \mathbf{y} \text{ for some } \mathbf{y} \in \mathbb{R}^m_+ \}$$

- Suppose that system (B) is feasible: $\exists \mathbf{y} \in \mathbb{R}^m_+$ such that $\mathbf{A}^T \mathbf{y} = \mathbf{c}$.
- ▶ To see that the implication (A) holds, suppose that $Ax \leq 0$ for some $x \in \mathbb{R}^n$.
- Multiplying this inequality from the left by y^T:

 $\mathbf{y}^T \mathbf{A} \mathbf{x} \leq \mathbf{0}.$

Hence,

$$\mathbf{c}^{\mathsf{T}}\mathbf{x} \leq \mathbf{0},$$

- Suppose that the implication (A) is satisfied, and let us show that the system (B) is feasible. Suppose in contradiction that system (B) is infeasible.
- Consider the following closed and convex (why?) set

$$S = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x} = \mathbf{A}^T \mathbf{y} \text{ for some } \mathbf{y} \in \mathbb{R}^m_+ \}$$

▶ By the separation theorem $\exists \mathbf{p} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ and $\alpha \in \mathbb{R}$ such that $\mathbf{p}^T \mathbf{c} > \alpha$ and

 $\mathbf{p}^{\mathsf{T}}\mathbf{x} \le \alpha \text{ for all } \mathbf{x} \in S.$ (1)

▶ By the separation theorem $\exists \mathbf{p} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ and $\alpha \in \mathbb{R}$ such that $\mathbf{p}^T \mathbf{c} > \alpha$ and

 $\mathbf{p}^{\mathsf{T}}\mathbf{x} \le \alpha \text{ for all } \mathbf{x} \in S.$ (1)

 $\bullet \ \mathbf{0} \in S \Rightarrow \alpha \ge \mathbf{0} \Rightarrow \mathbf{p}^T \mathbf{c} > \mathbf{0}.$

▶ By the separation theorem $\exists \mathbf{p} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ and $\alpha \in \mathbb{R}$ such that $\mathbf{p}^T \mathbf{c} > \alpha$ and

 $\mathbf{p}^{\mathsf{T}}\mathbf{x} \le \alpha \text{ for all } \mathbf{x} \in S.$ (1)

•
$$\mathbf{0} \in S \Rightarrow \alpha \ge \mathbf{0} \Rightarrow \mathbf{p}^T \mathbf{c} > \mathbf{0}.$$

▶ (1) is equivalent to

 $\mathbf{p}^T \mathbf{A}^T \mathbf{y} \leq \alpha$ for all $\mathbf{y} \geq \mathbf{0}$

or to

 $(\mathbf{A}\mathbf{p})^T \mathbf{y} \le \alpha \text{ for all } \mathbf{y} \ge \mathbf{0},$ (2)

▶ By the separation theorem $\exists \mathbf{p} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ and $\alpha \in \mathbb{R}$ such that $\mathbf{p}^T \mathbf{c} > \alpha$ and

 $\mathbf{p}^{\mathsf{T}}\mathbf{x} \le \alpha \text{ for all } \mathbf{x} \in S.$ (1)

(2)

•
$$\mathbf{0} \in S \Rightarrow \alpha \ge \mathbf{0} \Rightarrow \mathbf{p}^T \mathbf{c} > \mathbf{0}.$$

▶ (1) is equivalent to

 $\mathbf{p}^T \mathbf{A}^T \mathbf{y} \leq \alpha$ for all $\mathbf{y} \geq \mathbf{0}$

or to

 $(\mathbf{Ap})^T \mathbf{y} \leq \alpha$ for all $\mathbf{y} \geq \mathbf{0}$,

• Therefore, $Ap \leq 0$.

▶ By the separation theorem $\exists \mathbf{p} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ and $\alpha \in \mathbb{R}$ such that $\mathbf{p}^T \mathbf{c} > \alpha$ and

 $\mathbf{p}^{\mathsf{T}}\mathbf{x} \le \alpha \text{ for all } \mathbf{x} \in S.$ (1)

•
$$\mathbf{0} \in S \Rightarrow \alpha \ge \mathbf{0} \Rightarrow \mathbf{p}^T \mathbf{c} > \mathbf{0}.$$

▶ (1) is equivalent to

 $\mathbf{p}^T \mathbf{A}^T \mathbf{y} \leq \alpha$ for all $\mathbf{y} \geq \mathbf{0}$

or to

 $(\mathbf{A}\mathbf{p})^T\mathbf{y} \leq \alpha \text{ for all } \mathbf{y} \geq \mathbf{0},$

(2)

- Therefore, $Ap \leq 0$.
- Contradiction to the assertion that implication (A) holds.

Theorem. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then exactly one of the following two systems has a solution.

Theorem. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then exactly one of the following two systems has a solution.

(A) Ax < 0.

(B) $\mathbf{p} \neq \mathbf{0}, \mathbf{A}^T \mathbf{p} = \mathbf{0}, \mathbf{p} \ge \mathbf{0}.$

Proof.

Suppose that system (A) has a solution.

Theorem. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then exactly one of the following two systems has a solution.

(A) Ax < 0.

(B) $p \neq 0, A^T p = 0, p \ge 0.$

- Suppose that system (A) has a solution.
- ▶ Assume in contradiction that (B) is feasible: $\exists p \neq 0$ satisfying $A^T p = 0, p \ge 0$.

Theorem. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then exactly one of the following two systems has a solution.

(A) Ax < 0.

(B) $p \neq 0, A^T p = 0, p \ge 0.$

- Suppose that system (A) has a solution.
- ▶ Assume in contradiction that (B) is feasible: $\exists p \neq 0$ satisfying $A^T p = 0, p \ge 0$.
- ► Multiplying the equality A^Tp = 0 from the left by x^T yields (Ax)^Tp = 0, which is an impossible equality.

Theorem. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then exactly one of the following two systems has a solution.

(A) Ax < 0.

(B) $p \neq 0, A^T p = 0, p \ge 0.$

- Suppose that system (A) has a solution.
- ▶ Assume in contradiction that (B) is feasible: $\exists p \neq 0$ satisfying $A^T p = 0, p \ge 0$.
- ► Multiplying the equality A^Tp = 0 from the left by x^T yields (Ax)^Tp = 0, which is an impossible equality.
- Suppose that system (A) does not have a solution.

Theorem. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then exactly one of the following two systems has a solution.

(A) Ax < 0.

(B) $p \neq 0, A^T p = 0, p \ge 0.$

- Suppose that system (A) has a solution.
- ▶ Assume in contradiction that (B) is feasible: $\exists p \neq 0$ satisfying $A^T p = 0, p \ge 0$.
- ► Multiplying the equality A^Tp = 0 from the left by x^T yields (Ax)^Tp = 0, which is an impossible equality.
- Suppose that system (A) does not have a solution.
- System (A) is equivalent to (s is a scalar) to $Ax + se \le 0, s > 0$.

Theorem. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then exactly one of the following two systems has a solution.

(A) Ax < 0.

(B) $p \neq 0, A^T p = 0, p \ge 0.$

- Suppose that system (A) has a solution.
- ▶ Assume in contradiction that (B) is feasible: $\exists p \neq 0$ satisfying $A^T p = 0, p \ge 0$.
- ► Multiplying the equality A^Tp = 0 from the left by x^T yields (Ax)^Tp = 0, which is an impossible equality.
- Suppose that system (A) does not have a solution.
- System (A) is equivalent to (s is a scalar) to $Ax + se \le 0, s > 0$.

► or to
$$\tilde{A}\begin{pmatrix} x\\ s \end{pmatrix} \le 0, c^T \begin{pmatrix} x\\ s \end{pmatrix} > 0$$
, where $\tilde{A} = \begin{pmatrix} A & e \end{pmatrix}$ and $c = e_{n+1}$.

Theorem. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then exactly one of the following two systems has a solution.

(A) Ax < 0.

(B) $p \neq 0, A^T p = 0, p \ge 0.$

- Suppose that system (A) has a solution.
- ▶ Assume in contradiction that (B) is feasible: $\exists p \neq 0$ satisfying $A^T p = 0, p \ge 0$.
- ► Multiplying the equality A^Tp = 0 from the left by x^T yields (Ax)^Tp = 0, which is an impossible equality.
- Suppose that system (A) does not have a solution.
- System (A) is equivalent to (s is a scalar) to $Ax + se \le 0, s > 0$.
- ► or to $\tilde{\mathbf{A}}\begin{pmatrix} \mathbf{x}\\ s \end{pmatrix} \leq \mathbf{0}, \mathbf{c}^{\mathsf{T}}\begin{pmatrix} \mathbf{x}\\ s \end{pmatrix} > 0$, where $\tilde{\mathbf{A}} = \begin{pmatrix} \mathbf{A} & \mathbf{e} \end{pmatrix}$ and $\mathbf{c} = \mathbf{e}_{n+1}$.
- \blacktriangleright The infeasibility of (A) is thus equivalent to the infeasibility of the system

$$\tilde{\mathbf{A}}\mathbf{w} \leq \mathbf{0}, \mathbf{c}^T \mathbf{w} > \mathbf{0}, \mathbf{w} \in \mathbb{R}^{n+1}.$$

▶ By Farkas' lemma, $\exists z \in \mathbb{R}^m_+$ such that

$$\begin{pmatrix} \mathbf{A}^T \\ \mathbf{e}^T \end{pmatrix} \mathbf{z} = \mathbf{c}$$

▶ By Farkas' lemma, $\exists z \in \mathbb{R}^m_+$ such that

$$\begin{pmatrix} \mathbf{A}^T \\ \mathbf{e}^T \end{pmatrix} \mathbf{z} = \mathbf{c}$$

 $\blacktriangleright \Leftrightarrow \exists \mathbf{z} \in \mathbb{R}^m_+ : \mathbf{A}^T \mathbf{z} = \mathbf{0}, \mathbf{e}^T \mathbf{z} = 1.$

▶ By Farkas' lemma, $\exists z \in \mathbb{R}^m_+$ such that

$$\begin{pmatrix} \mathbf{A}^T \\ \mathbf{e}^T \end{pmatrix} \mathbf{z} = \mathbf{c}$$

- $\blacktriangleright \Leftrightarrow \exists z \in \mathbb{R}^m_+ : \mathbf{A}^T z = \mathbf{0}, \mathbf{e}^T z = 1.$
- $\blacktriangleright \Leftrightarrow \exists \mathbf{0} \neq \mathbf{z} \in \mathbb{R}^m_+ : \mathbf{A}^T \mathbf{z} = \mathbf{0}.$

▶ By Farkas' lemma, $\exists z \in \mathbb{R}^m_+$ such that

$$\begin{pmatrix} \mathbf{A}^T \\ \mathbf{e}^T \end{pmatrix} \mathbf{z} = \mathbf{c}$$

- $\blacktriangleright \Leftrightarrow \exists \mathbf{z} \in \mathbb{R}^m_+ : \mathbf{A}^T \mathbf{z} = \mathbf{0}, \mathbf{e}^T \mathbf{z} = 1.$
- $\blacktriangleright \Leftrightarrow \exists \mathbf{0} \neq \mathbf{z} \in \mathbb{R}^m_+ : \mathbf{A}^T \mathbf{z} = \mathbf{0}.$
- \blacktriangleright \Rightarrow System (B) is feasible.

KKT Conditions for Linearly Constrained Problems

Theorem (KKT conditions for linearly constrained problems - necessary optimality conditions)

Consider the minimization problem

$$(\mathsf{P}) \quad \begin{array}{l} \min \quad f(\mathbf{x}), \\ \mathsf{s.t.} \quad \mathbf{a}_i^T \mathbf{x} \leq b_i, i = 1, 2, \dots, m \end{array}$$

where f is continuously differentiable over \mathbb{R}^n , $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m \in \mathbb{R}^n, b_1, b_2, \ldots, b_m \in \mathbb{R}$ and let \mathbf{x}^* be a local minimum point of (P). Then there exist $\lambda_1, \lambda_2, \ldots, \lambda_m \geq 0$ such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \mathbf{a}_i = \mathbf{0}.$$
 (3)

and

$$\lambda_i(\mathbf{a}_i^T \mathbf{x}^* - b_i) = 0, \quad i = 1, 2, \dots, m.$$
(4)

8 / 21

• \mathbf{x}^* is a local minimum $\Rightarrow \mathbf{x}^*$ is a stationary point.

- \mathbf{x}^* is a local minimum $\Rightarrow \mathbf{x}^*$ is a stationary point.
- ▶ $\nabla f(\mathbf{x}^*)^T(\mathbf{x} \mathbf{x}^*) \ge 0$ for every $\mathbf{x} \in \mathbb{R}^n$ satisfying $\mathbf{a}_i^T \mathbf{x} \le b_i$ for any i = 1, 2, ..., m.

- \mathbf{x}^* is a local minimum $\Rightarrow \mathbf{x}^*$ is a stationary point.
- ▶ $\nabla f(\mathbf{x}^*)^T(\mathbf{x} \mathbf{x}^*) \ge 0$ for every $\mathbf{x} \in \mathbb{R}^n$ satisfying $\mathbf{a}_i^T \mathbf{x} \le b_i$ for any i = 1, 2, ..., m.
- Denote the set of active constraints by

$$I(\mathbf{x}^*) = \{i : \mathbf{a}_i^T \mathbf{x}^* = b_i\}.$$

- \mathbf{x}^* is a local minimum $\Rightarrow \mathbf{x}^*$ is a stationary point.
- ▶ $\nabla f(\mathbf{x}^*)^T(\mathbf{x} \mathbf{x}^*) \ge 0$ for every $\mathbf{x} \in \mathbb{R}^n$ satisfying $\mathbf{a}_i^T \mathbf{x} \le b_i$ for any i = 1, 2, ..., m.
- Denote the set of active constraints by

$$I(\mathbf{x}^*) = \{i : \mathbf{a}_i^T \mathbf{x}^* = b_i\}.$$

▶ Making the change of variables $\mathbf{y} = \mathbf{x} - \mathbf{x}^*$, we have $\nabla f(\mathbf{x}^*)^T \mathbf{y} \ge 0$ for any $\mathbf{y} \in \mathbb{R}^m$ satisfying $\mathbf{a}_i^T(\mathbf{y} + \mathbf{x}^*) \le b_i, i = 1, 2, ..., m$.

- ▶ \mathbf{x}^* is a local minimum $\Rightarrow \mathbf{x}^*$ is a stationary point.
- ▶ $\nabla f(\mathbf{x}^*)^T(\mathbf{x} \mathbf{x}^*) \ge 0$ for every $\mathbf{x} \in \mathbb{R}^n$ satisfying $\mathbf{a}_i^T \mathbf{x} \le b_i$ for any i = 1, 2, ..., m.
- Denote the set of active constraints by

$$I(\mathbf{x}^*) = \{i : \mathbf{a}_i^T \mathbf{x}^* = b_i\}.$$

- Making the change of variables $\mathbf{y} = \mathbf{x} \mathbf{x}^*$, we have $\nabla f(\mathbf{x}^*)^T \mathbf{y} \ge 0$ for any $\mathbf{y} \in \mathbb{R}^m$ satisfying $\mathbf{a}_i^T(\mathbf{y} + \mathbf{x}^*) \le b_i, i = 1, 2, ..., m$.
- or $\nabla f(\mathbf{x}^*)^T \mathbf{y} \ge 0$ for any \mathbf{y} satisfying

$$\begin{aligned} \mathbf{a}_i^T \mathbf{y} &\leq 0 & i \in I(\mathbf{x}^*), \\ \mathbf{a}_i^T \mathbf{y} &\leq b_i - \mathbf{a}_i^T \mathbf{x}^* & i \notin I(\mathbf{x}^*). \end{aligned}$$

- \mathbf{x}^* is a local minimum $\Rightarrow \mathbf{x}^*$ is a stationary point.
- ▶ $\nabla f(\mathbf{x}^*)^T(\mathbf{x} \mathbf{x}^*) \ge 0$ for every $\mathbf{x} \in \mathbb{R}^n$ satisfying $\mathbf{a}_i^T \mathbf{x} \le b_i$ for any i = 1, 2, ..., m.
- Denote the set of active constraints by

$$I(\mathbf{x}^*) = \{i : \mathbf{a}_i^T \mathbf{x}^* = b_i\}.$$

- Making the change of variables $\mathbf{y} = \mathbf{x} \mathbf{x}^*$, we have $\nabla f(\mathbf{x}^*)^T \mathbf{y} \ge 0$ for any $\mathbf{y} \in \mathbb{R}^m$ satisfying $\mathbf{a}_i^T(\mathbf{y} + \mathbf{x}^*) \le b_i, i = 1, 2, ..., m$.
- or $\nabla f(\mathbf{x}^*)^T \mathbf{y} \ge 0$ for any \mathbf{y} satisfying

$$\begin{aligned} \mathbf{a}_i^T \mathbf{y} &\leq 0 & i \in I(\mathbf{x}^*), \\ \mathbf{a}_i^T \mathbf{y} &\leq b_i - \mathbf{a}_i^T \mathbf{x}^* & i \notin I(\mathbf{x}^*). \end{aligned}$$

► The second set of inequalities can be removed, that is, we will prove that $\mathbf{a}_i^T \mathbf{y} \leq 0$ for all $i \in I(\mathbf{x}^*) \Rightarrow \nabla f(\mathbf{x}^*)^T \mathbf{y} \geq 0$.

• Suppose then that **y** satisfies $\mathbf{a}_i^T \mathbf{y} \leq 0$ for all $i \in I(\mathbf{x}^*)$

- Suppose then that **y** satisfies $\mathbf{a}_i^T \mathbf{y} \leq 0$ for all $i \in I(\mathbf{x}^*)$
- ► Since $b_i \mathbf{a}_i^T \mathbf{x}^* > 0$ for all $i \notin I(\mathbf{x}^*)$, it follows that there exists a small enough $\alpha > 0$ for which $\mathbf{a}_i^T(\alpha \mathbf{y}) \leq b_i \mathbf{a}_i^T \mathbf{x}^*$.

- Suppose then that **y** satisfies $\mathbf{a}_i^T \mathbf{y} \leq \mathbf{0}$ for all $i \in I(\mathbf{x}^*)$
- ► Since $b_i \mathbf{a}_i^T \mathbf{x}^* > 0$ for all $i \notin I(\mathbf{x}^*)$, it follows that there exists a small enough $\alpha > 0$ for which $\mathbf{a}_i^T(\alpha \mathbf{y}) \leq b_i \mathbf{a}_i^T \mathbf{x}^*$.
- Thus, since in addition a^T_i(αy) ≤ 0 for any i ∈ I(x*), it follows by the stationarity condition that ∇f(x*)^Ty ≥ 0.

- Suppose then that **y** satisfies $\mathbf{a}_i^T \mathbf{y} \leq \mathbf{0}$ for all $i \in I(\mathbf{x}^*)$
- ► Since $b_i \mathbf{a}_i^T \mathbf{x}^* > 0$ for all $i \notin I(\mathbf{x}^*)$, it follows that there exists a small enough $\alpha > 0$ for which $\mathbf{a}_i^T(\alpha \mathbf{y}) \leq b_i \mathbf{a}_i^T \mathbf{x}^*$.
- Thus, since in addition a^T_i(αy) ≤ 0 for any i ∈ I(x*), it follows by the stationarity condition that ∇f(x*)^Ty ≥ 0.
- We have shown $\mathbf{a}_i^T \mathbf{y} \leq 0$ for all $i \in I(\mathbf{x}^*) \Rightarrow \nabla f(\mathbf{x}^*)^T \mathbf{y} \geq 0$.

- Suppose then that **y** satisfies $\mathbf{a}_i^T \mathbf{y} \leq \mathbf{0}$ for all $i \in I(\mathbf{x}^*)$
- ► Since $b_i \mathbf{a}_i^T \mathbf{x}^* > 0$ for all $i \notin I(\mathbf{x}^*)$, it follows that there exists a small enough $\alpha > 0$ for which $\mathbf{a}_i^T(\alpha \mathbf{y}) \leq b_i \mathbf{a}_i^T \mathbf{x}^*$.
- Thus, since in addition a^T_i(αy) ≤ 0 for any i ∈ I(x*), it follows by the stationarity condition that ∇f(x*)^Ty ≥ 0.
- We have shown $\mathbf{a}_i^T \mathbf{y} \leq 0$ for all $i \in I(\mathbf{x}^*) \Rightarrow \nabla f(\mathbf{x}^*)^T \mathbf{y} \geq 0$.
- ▶ By Farkas' lemma $\exists \lambda_i \ge 0, i \in I(\mathbf{x}^*)$ such that

$$-\nabla f(\mathbf{x}^*) = \sum_{i \in I(\mathbf{x}^*)} \lambda_i \mathbf{a}_i.$$

- Suppose then that **y** satisfies $\mathbf{a}_i^T \mathbf{y} \leq \mathbf{0}$ for all $i \in I(\mathbf{x}^*)$
- ► Since $b_i \mathbf{a}_i^T \mathbf{x}^* > 0$ for all $i \notin I(\mathbf{x}^*)$, it follows that there exists a small enough $\alpha > 0$ for which $\mathbf{a}_i^T(\alpha \mathbf{y}) \leq b_i \mathbf{a}_i^T \mathbf{x}^*$.
- Thus, since in addition a^T_i(αy) ≤ 0 for any i ∈ I(x*), it follows by the stationarity condition that ∇f(x*)^Ty ≥ 0.
- We have shown $\mathbf{a}_i^T \mathbf{y} \leq 0$ for all $i \in I(\mathbf{x}^*) \Rightarrow \nabla f(\mathbf{x}^*)^T \mathbf{y} \geq 0$.
- ▶ By Farkas' lemma $\exists \lambda_i \ge 0, i \in I(\mathbf{x}^*)$ such that

$$-\nabla f(\mathbf{x}^*) = \sum_{i \in I(\mathbf{x}^*)} \lambda_i \mathbf{a}_i.$$

• Defining $\lambda_i = 0$ for all $i \notin I(\mathbf{x}^*)$ we get that $\lambda_i(\mathbf{a}_i^T \mathbf{x}^* - b_i) = 0$ for all $i \in \{1, 2, ..., m\}$ and

$$abla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \mathbf{a}_i = \mathbf{0}.$$

The Convex Case

Theorem [KKT conditions for convex linearly constrained problems - necessary and sufficient optimality conditions]

Consider the minimization problem

(P)
$$\begin{array}{l} \min \quad f(\mathbf{x}), \\ \text{s.t.} \quad \mathbf{a}_i^T \mathbf{x} \leq b_i, i = 1, 2, \dots, m \end{array}$$

where f is a convex continuously differentiable function over \mathbb{R}^n , $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m \in \mathbb{R}^n, b_1, b_2, \ldots, b_m \in \mathbb{R}$ and let \mathbf{x}^* be a feasible solution of (P). Then \mathbf{x}^* is an optimal solution if and only if there exist $\lambda_1, \lambda_2, \ldots, \lambda_m \geq 0$ such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \mathbf{a}_i = \mathbf{0}.$$
 (5)

and

$$\lambda_i(\mathbf{a}_i^T \mathbf{x}^* - b_i) = 0, \quad i = 1, 2, \dots, m.$$
(6)

Necessity was proven.

- Necessity was proven.
- Suppose that x* is a feasible solution of (P) satisfying (5) and (6). Let x be a feasible solution of (P).

- Necessity was proven.
- Suppose that x* is a feasible solution of (P) satisfying (5) and (6). Let x be a feasible solution of (P).
- Define the function

$$h(\mathbf{x}) = f(\mathbf{x}) + \sum_{i=1}^m \lambda_i (\mathbf{a}_i^T \mathbf{x} - b_i).$$

- Necessity was proven.
- Suppose that x* is a feasible solution of (P) satisfying (5) and (6). Let x be a feasible solution of (P).
- Define the function

$$h(\mathbf{x}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i (\mathbf{a}_i^T \mathbf{x} - b_i).$$

• $\nabla h(\mathbf{x}^*) = \mathbf{0} \Rightarrow \mathbf{x}^*$ is a minimizer of h over \mathbb{R}^n .

- Necessity was proven.
- Suppose that x* is a feasible solution of (P) satisfying (5) and (6). Let x be a feasible solution of (P).
- Define the function

$$h(\mathbf{x}) = f(\mathbf{x}) + \sum_{i=1}^m \lambda_i (\mathbf{a}_i^T \mathbf{x} - b_i).$$

• $\nabla h(\mathbf{x}^*) = \mathbf{0} \Rightarrow \mathbf{x}^*$ is a minimizer of h over \mathbb{R}^n .

$$f(\mathbf{x}^*) = f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i (\mathbf{a}_i^T \mathbf{x}^* - b_i) \leq f(\mathbf{x}) + \sum_{i=1}^m \lambda_i (\mathbf{a}_i^T \mathbf{x} - b_i) \leq f(\mathbf{x}),$$

►

Problems with Equality and Inequality Constraints

Theorem **[KKT conditions for linearly constrained problems]** Consider the minimization problem

(Q) min
$$f(\mathbf{x})$$
,
(Q) s.t. $\mathbf{a}_i^T \mathbf{x} \le b_i, i = 1, 2, ..., m$,
 $\mathbf{c}_j^T \mathbf{x} = d_j, \quad j = 1, 2, ..., p$.

where f cont. dif., $\mathbf{a}_i, \mathbf{c}_j \in \mathbb{R}^n, b_i, d_j \in \mathbb{R}$.

(i) (necessity of the KKT conditions) If \mathbf{x}^* is a local minimum of (Q), then there exist $\lambda_1, \lambda_2, \ldots, \lambda_m \geq 0$ and $\mu_1, \mu_2, \ldots, \mu_p \in \mathbb{R}$ such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \mathbf{a}_i + \sum_{i=1}^p \mu_i \mathbf{c}_i = \mathbf{0}, \qquad (7)$$

$$\lambda_i(\mathbf{a}_i^T \mathbf{x}^* - b_i) = 0, \quad i = 1, 2, \dots, m.$$
 (8)

(ii) (sufficiency in the convex case) If f is convex over ℝⁿ and x^{*} is a feasible solution of (Q) for which there exist λ₁,..., λ_m ≥ 0 and μ₁,..., μ_p ∈ ℝ such that (7) and (8) are satisfied, then x^{*} is an optimal solution of (Q).

Representation Via the Lagrangian

Given the a problem

(NLP) min
$$f(\mathbf{x})$$

(NLP) s.t. $g_i(\mathbf{x}) \le 0, i = 1, 2, ..., m,$
 $h_j(\mathbf{x}) = 0, j = 1, 2, ..., p.$

The associated Lagrangian function os

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{x}).$$

The KKT conditions can be written as

$$\nabla_{\mathbf{x}} L(\mathbf{x}^*, \boldsymbol{\lambda}, \boldsymbol{\mu}) = \nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j \nabla h_j(\mathbf{x}^*) = \mathbf{0}$$
$$\lambda_i g_i(\mathbf{x}^*) = 0, \quad i = 1, 2, \dots, m.$$

Examples

 $\begin{array}{ll} \min & \frac{1}{2}(x_1^2 + x_2^2 + x_3^2) \\ \text{s.t.} & x_1 + x_2 + x_3 = 3. \end{array}$

$$\begin{array}{ll} \mbox{min} & x_1^2 + 2 x_2^2 + 4 x_1 x_2 \\ \mbox{s.t.} & x_1 + x_2 = 1, \\ & x_1, x_2 \geq 0. \end{array}$$

In class

Projection onto Affine Spaces

Lemma. Let C be the affine space

 $C = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{b} \},\$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Then

$$P_{\mathcal{C}}(\mathbf{y}) = \mathbf{y} - \mathbf{A}^{\mathcal{T}} (\mathbf{A}\mathbf{A}^{\mathcal{T}})^{-1} (\mathbf{A}\mathbf{y} - \mathbf{b}).$$

Proof. In class

Orthogonal Projection onto Hyperplanes

Consider the hyperplane

$$H = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} = b\} \quad (\mathbf{0} \neq \mathbf{a} \in \mathbb{R}^n, b \in \mathbb{R}).$$

Then by the previous slide:

$$P_H(\mathbf{y}) = \mathbf{y} - \mathbf{a}(\mathbf{a}^T\mathbf{a})^{-1}(\mathbf{a}^T\mathbf{y} - b) = \mathbf{y} - \frac{\mathbf{a}^T\mathbf{y} - b}{\|\mathbf{a}\|^2}\mathbf{a}.$$

Orthogonal Projection onto Hyperplanes

Consider the hyperplane

$$H = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} = b\} \quad (\mathbf{0} \neq \mathbf{a} \in \mathbb{R}^n, b \in \mathbb{R}).$$

Then by the previous slide:

$$P_{H}(\mathbf{y}) = \mathbf{y} - \mathbf{a}(\mathbf{a}^{T}\mathbf{a})^{-1}(\mathbf{a}^{T}\mathbf{y} - b) = \mathbf{y} - \frac{\mathbf{a}^{T}\mathbf{y} - b}{\|\mathbf{a}\|^{2}}\mathbf{a}.$$

Lemma (distance of a point from a hyperplane) Let $H = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} = b \}$, where $\mathbf{0} \neq \mathbf{a} \in \mathbb{R}^n$ and $b \in \mathbb{R}$. Then

$$d(\mathbf{y},H) = \frac{|\mathbf{a}^T \mathbf{y} - b|}{\|\mathbf{a}\|}.$$

Proof.

$$d(\mathbf{y}, H) = \|\mathbf{y} - P_H(\mathbf{y})\| = \left\|\mathbf{y} - \left(\mathbf{y} - \frac{\mathbf{a}^T \mathbf{y} - b}{\|\mathbf{a}\|^2} \mathbf{a}\right)\right\| = \frac{|\mathbf{a}^T \mathbf{y} - b|}{\|\mathbf{a}\|}$$

Amir Beck

Orthogonal Projection onto Half-Spaces

Let $H^- = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} \le b \}$, where $\mathbf{0} \neq \mathbf{a} \in \mathbb{R}^n$ and $b \in \mathbb{R}$. Then

$$P_{H^-}(\mathbf{x}) = \mathbf{x} - \frac{[\mathbf{a}^T \mathbf{x} - b]_+}{\|\mathbf{a}\|^2} \mathbf{a}$$

Proof. In class

▶
$$\mathbf{a}_1, \ldots, \mathbf{a}_m \in \mathbb{R}^n$$
.

- ▶ $\mathbf{a}_1, \ldots, \mathbf{a}_m \in \mathbb{R}^n$.
- For a given 0 ≠ x ∈ ℝⁿ and y ∈ ℝ, we define the hyperplane:

$$H_{\mathbf{x},y} := \left\{ \mathbf{a} \in \mathbb{R}^n : \mathbf{x}^T \mathbf{a} = y \right\}.$$

a₁,..., a_m ∈ ℝⁿ.
For a given 0 ≠ x ∈ ℝⁿ and y ∈ ℝ, we define the hyperplane:

 $H_{\mathbf{x},y} := \left\{ \mathbf{a} \in \mathbb{R}^n : \mathbf{x}^T \mathbf{a} = y \right\}.$

In the orthogonal regression problem we seek to find a nonzero vector x ∈ ℝⁿ and y ∈ ℝ such that the sum of squared Euclidean distances between the points a₁,..., a_m to H_{x,y} is minimal:

$$\min_{\mathbf{x},y} \left\{ \sum_{i=1}^m d(\mathbf{a}_i, H_{\mathbf{x},y})^2 : \mathbf{0} \neq \mathbf{x} \in \mathbb{R}^n, y \in \mathbb{R} \right\}.$$

Orthogonal Regression • $d(\mathbf{a}_i, H_{\mathbf{x},y})^2 = \frac{(\mathbf{a}_i^T \mathbf{x} - y)^2}{\|\mathbf{x}\|^2}, \quad i = 1, \dots, m.$

- $d(\mathbf{a}_i, H_{\mathbf{x},y})^2 = \frac{(\mathbf{a}_i^T \mathbf{x} y)^2}{\|\mathbf{x}\|^2}, \quad i = 1, \dots, m.$
- ▶ The Orthogonal Regression problem is the same as

$$\min\left\{\sum_{i=1}^m \frac{(\mathbf{a}_i^T \mathbf{x} - y)^2}{\|\mathbf{x}\|^2} : \mathbf{0} \neq \mathbf{x} \in \mathbb{R}^n, y \in \mathbb{R}\right\}.$$

- $d(\mathbf{a}_i, H_{\mathbf{x},y})^2 = \frac{(\mathbf{a}_i^T \mathbf{x} y)^2}{\|\mathbf{x}\|^2}, \quad i = 1, \dots, m.$
- The Orthogonal Regression problem is the same as

$$\min\left\{\sum_{i=1}^{m} \frac{(\mathbf{a}_{i}^{T}\mathbf{x} - y)^{2}}{\|\mathbf{x}\|^{2}} : \mathbf{0} \neq \mathbf{x} \in \mathbb{R}^{n}, y \in \mathbb{R}\right\}.$$

Fixing **x** and minimizing first with respect to y we obtain that the optimal y is given by $y = \frac{1}{m} \sum_{i=1}^{m} \mathbf{a}_{i}^{T} \mathbf{x} = \frac{1}{m} \mathbf{e}^{T} \mathbf{A} \mathbf{x}$.

- $d(\mathbf{a}_i, H_{\mathbf{x},y})^2 = \frac{(\mathbf{a}_i^T \mathbf{x} y)^2}{\|\mathbf{x}\|^2}, \quad i = 1, \dots, m.$
- The Orthogonal Regression problem is the same as

$$\min\left\{\sum_{i=1}^m \frac{(\mathbf{a}_i^T \mathbf{x} - y)^2}{\|\mathbf{x}\|^2} : \mathbf{0} \neq \mathbf{x} \in \mathbb{R}^n, y \in \mathbb{R}\right\}.$$

- Fixing **x** and minimizing first with respect to y we obtain that the optimal y is given by $y = \frac{1}{m} \sum_{i=1}^{m} \mathbf{a}_{i}^{T} \mathbf{x} = \frac{1}{m} \mathbf{e}^{T} \mathbf{A} \mathbf{x}$.
- Using the above expression for y we obtain that

$$\sum_{i=1}^{m} \left(\mathbf{a}_{i}^{T} \mathbf{x} - y\right)^{2} = \sum_{i=1}^{m} \left(\mathbf{a}_{i}^{T} \mathbf{x} - \frac{1}{m} \mathbf{e}^{T} \mathbf{A} \mathbf{x}\right)^{2}$$
$$= \sum_{i=1}^{m} (\mathbf{a}_{i}^{T} \mathbf{x})^{2} - \frac{2}{m} \sum_{i=1}^{m} (\mathbf{e}^{T} \mathbf{A} \mathbf{x}) (\mathbf{a}_{i}^{T} \mathbf{x}) + \frac{1}{m} (\mathbf{e}^{T} \mathbf{A} \mathbf{x})^{2}$$
$$= \sum_{i=1}^{m} (\mathbf{a}_{i}^{T} \mathbf{x})^{2} - \frac{1}{m} (\mathbf{e}^{T} \mathbf{A} \mathbf{x})^{2} = \|\mathbf{A}\mathbf{x}\|^{2} - \frac{1}{m} (\mathbf{e}^{T} \mathbf{A} \mathbf{x})^{2}$$
$$= \mathbf{x}^{T} \mathbf{A}^{T} \left(\mathbf{I}_{m} - \frac{1}{m} \mathbf{e} \mathbf{e}^{T}\right) \mathbf{A} \mathbf{x}.$$

▶ Therefore, a reformulation of the problem is

$$\min_{\mathbf{x}} \left\{ \frac{\mathbf{x}^{\mathsf{T}} [\mathbf{A}^{\mathsf{T}} (\mathbf{I}_m - \frac{1}{m} \mathbf{e} \mathbf{e}^{\mathsf{T}}) \mathbf{A}] \mathbf{x}}{\|\mathbf{x}\|^2} : \mathbf{x} \neq \mathbf{0} \right\}.$$

Therefore, a reformulation of the problem is

$$\min_{\mathbf{x}} \left\{ \frac{\mathbf{x}^{\mathsf{T}} [\mathbf{A}^{\mathsf{T}} (\mathbf{I}_m - \frac{1}{m} \mathbf{e} \mathbf{e}^{\mathsf{T}}) \mathbf{A}] \mathbf{x}}{\|\mathbf{x}\|^2} : \mathbf{x} \neq \mathbf{0} \right\}.$$

Proposition. An optimal solution of the orthogonal regression problem (\mathbf{x}, y) where \mathbf{x} is an eigenvector of $\mathbf{A}^T (\mathbf{I}_m - \frac{1}{m} \mathbf{e} \mathbf{e}^T) \mathbf{A}$ associated with the minimum eigenvalue and $y = \frac{1}{m} \sum_{i=1}^{m} \mathbf{a}_i^T \mathbf{x}$. The optimal function value of the problem is $\lambda_{\min} [\mathbf{A}^T (\mathbf{I}_m - \frac{1}{m} \mathbf{e} \mathbf{e}^T) \mathbf{A}]$.