
Lecture 10 - Linearly Constrained Problems: Separation →
Alternative Theorems → Optimality Conditions

I A hyperplane

H = {x ∈ Rn : aTx = b} (a ∈ Rn\{0}, b ∈ R)

is said to strictly separate a point y /∈ S from S if

aTy > b

and
aTx ≤ b for all y ∈ S .

Theorem (separation of a point from a closed and convex set) Let C ⊆ Rn

be a nonempty closed and convex set, and let y /∈ C . Then there exists
p ∈ Rn\{0} and α ∈ R such that

pTy > α and pTx ≤ α for all x ∈ C .
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Proof of the Separation Theorem

I By the second orthogonal projection theorem, the vector x̄ = PC (y) ∈ C
satisfies

(y − x̄)T (x− x̄) ≤ 0 for all x ∈ C ,

which is the same as

(y − x̄)Tx ≤ (y − x̄)T x̄ for all x ∈ C .

I Denote p = y − x̄ 6= 0 and α = (y − x̄)T x̄. Then

pTx ≤ α for all x ∈ C

I On the other hand,

pTy = (y − x̄)Ty = (y − x̄)T (y − x̄) + (y − x̄)T x̄ = ‖y − x̄‖2 + α > α.
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Farkas Lemma - an Alternative Theorem
Farkas Lemma. Let c ∈ Rn and A ∈ Rm×n. Then exactly one of the
following systems has a solution

I. Ax ≤ 0, cTx > 0.

II. ATy = c, y ≥ 0.

Another equivalent formulation is the following.

Farkas Lemma - second Formulation Let c ∈ Rn and A ∈ Rm×n. Then the
following two claims are equivalent:

(A) The implication Ax ≤ 0⇒ cTx ≤ 0 holds true.

(B) There exists y ∈ Rm
+ such that ATy = c.

What does it mean?

Example. A =

(
1 5
−1 2

)
, c =

(
−1
9

)
,
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Proof of Farkas Lemma
I Suppose that system (B) is feasible:∃y ∈ Rm

+ such that ATy = c.

I To see that the implication (A) holds, suppose that Ax ≤ 0 for some x ∈ Rn.

I Multiplying this inequality from the left by yT :

yTAx ≤ 0.

I Hence,
cTx ≤ 0,

I Suppose that the implication (A) is satisfied, and let us show that the system
(B) is feasible. Suppose in contradiction that system (B) is infeasible.

I Consider the following closed and convex (why?) set

S = {x ∈ Rn : x = ATy for some y ∈ Rm
+}

I c /∈ S .
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Proof Contd.

I By the separation theorem ∃p ∈ Rn\{0} and α ∈ R such that pTc > α and

pTx ≤ α for all x ∈ S . (1)

I 0 ∈ S ⇒ α ≥ 0⇒ pTc > 0.

I (1) is equivalent to
pTATy ≤ α for all y ≥ 0

or to
(Ap)Ty ≤ α for all y ≥ 0, (2)

I Therefore, Ap ≤ 0.

I Contradiction to the assertion that implication (A) holds.
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Gordan’s Alternative Theorem
Theorem. Let A ∈ Rm×n. Then exactly one of the following two systems
has a solution.

(A) Ax < 0.

(B) p 6= 0,ATp = 0,p ≥ 0.

Proof.

I Suppose that system (A) has a solution.
I Assume in contradiction that (B) is feasible: ∃p 6= 0 satisfying

ATp = 0,p ≥ 0.
I Multiplying the equality ATp = 0 from the left by xT yields (Ax)Tp = 0,

which is an impossible equality.
I Suppose that system (A) does not have a solution.
I System (A) is equivalent to (s is a scalar) to Ax + se ≤ 0, s > 0.

I or to Ã

(
x
s

)
≤ 0, cT

(
x
s

)
> 0, where Ã =

(
A e

)
and c = en+1.

I The infeasibility of (A) is thus equivalent to the infeasibility of the system

Ãw ≤ 0, cTw > 0,w ∈ Rn+1.
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Proof of Gordan Contd.

I By Farkas’ lemma, ∃z ∈ Rm
+ such that(

AT

eT

)
z = c

I ⇔ ∃z ∈ Rm
+ : AT z = 0, eT z = 1.

I ⇔ ∃0 6= z ∈ Rm
+ : AT z = 0.

I ⇒ System (B) is feasible.
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KKT Conditions for Linearly Constrained Problems

Theorem (KKT conditions for linearly constrained problems - necessary op-
timality conditions)
Consider the minimization problem

(P)
min f (x),
s.t. aT

i x ≤ bi , i = 1, 2, . . . ,m

where f is continuously differentiable over Rn, a1, a2, . . . , am ∈
Rn, b1, b2, . . . , bm ∈ R and let x∗ be a local minimum point of (P). Then
there exist λ1, λ2, . . . , λm ≥ 0 such that

∇f (x∗) +
m∑
i=1

λiai = 0. (3)

and
λi (aT

i x∗ − bi ) = 0, i = 1, 2, . . . ,m. (4)
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Proof of KKT Theorem
I x∗ is a local minimum ⇒ x∗ is a stationary point.

I ∇f (x∗)T (x− x∗) ≥ 0 for every x ∈ Rn satisfying aT
i x ≤ bi for any

i = 1, 2, . . . ,m.
I Denote the set of active constraints by

I (x∗) = {i : aT
i x∗ = bi}.

I Making the change of variables y = x− x∗, we have

∇f (x∗)Ty ≥ 0 for any y ∈ Rm satisfying aT
i (y + x∗) ≤ bi , i = 1, 2, . . . ,m.

I or ∇f (x∗)Ty ≥ 0 for any y satisfying

aT
i y ≤ 0 i ∈ I (x∗),

aT
i y ≤ bi − aT

i x∗ i /∈ I (x∗).

I The second set of inequalities can be removed, that is, we will prove that

aT
i y ≤ 0 for all i ∈ I (x∗)⇒ ∇f (x∗)Ty ≥ 0.
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Proof Contd.

I Suppose then that y satisfies aT
i y ≤ 0 for all i ∈ I (x∗)

I Since bi − aT
i x∗ > 0 for all i /∈ I (x∗), it follows that there exists a small

enough α > 0 for which aT
i (αy) ≤ bi − aT

i x∗.

I Thus, since in addition aT
i (αy) ≤ 0 for any i ∈ I (x∗), it follows by the

stationarity condition that ∇f (x∗)Ty ≥ 0.

I We have shown aT
i y ≤ 0 for all i ∈ I (x∗)⇒ ∇f (x∗)Ty ≥ 0.

I By Farkas’ lemma ∃λi ≥ 0, i ∈ I (x∗) such that

−∇f (x∗) =
∑

i∈I (x∗)

λiai .

I Defining λi = 0 for all i /∈ I (x∗) we get that λi (aT
i x∗ − bi ) = 0 for all

i ∈ {1, 2, . . . ,m} and

∇f (x∗) +
m∑
i=1

λiai = 0.
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The Convex Case

Theorem [KKT conditions for convex linearly constrained problems -
necessary and sufficient optimality conditions]
Consider the minimization problem

(P)
min f (x),
s.t. aT

i x ≤ bi , i = 1, 2, . . . ,m

where f is a convex continuously differentiable function over Rn,
a1, a2, . . . , am ∈ Rn, b1, b2, . . . , bm ∈ R and let x∗ be a feasible solu-
tion of (P). Then x∗ is an optimal solution if and only if there exist
λ1, λ2, . . . , λm ≥ 0 such that

∇f (x∗) +
m∑
i=1

λiai = 0. (5)

and
λi (aT

i x∗ − bi ) = 0, i = 1, 2, . . . ,m. (6)
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Proof of KKT in Convex Case

I Necessity was proven.

I Suppose that x∗ is a feasible solution of (P) satisfying (5) and (6). Let x be
a feasible solution of (P).

I Define the function

h(x) = f (x) +
m∑
i=1

λi (aT
i x− bi ).

I ∇h(x∗) = 0⇒ x∗ is a minimizer of h over Rn.

I

f (x∗) = f (x∗) +
m∑
i=1

λi (aT
i x∗ − bi ) ≤ f (x) +

m∑
i=1

λi (aT
i x− bi ) ≤ f (x),
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Problems with Equality and Inequality Constraints
Theorem [KKT conditions for linearly constrained problems]
Consider the minimization problem

(Q)
min f (x),
s.t. aT

i x ≤ bi , i = 1, 2, . . . ,m,
cT
j x = dj , j = 1, 2, . . . , p.

where f cont. dif., ai , cj ∈ Rn, bi , dj ∈ R.

(i) (necessity of the KKT conditions) If x∗ is a local minimum of (Q), then
there exist λ1, λ2, . . . , λm ≥ 0 and µ1, µ2, . . . , µp ∈ R such that

∇f (x∗) +
m∑
i=1

λiai +

p∑
j=1

µjcj = 0, (7)

λi (aT
i x∗ − bi ) = 0, i = 1, 2, . . . ,m. (8)

(ii) (sufficiency in the convex case) If f is convex over Rn and x∗ is a feasible
solution of (Q) for which there exist λ1, . . . , λm ≥ 0 and µ1, . . . , µp ∈ R
such that (7) and (8) are satisfied, then x∗ is an optimal solution of (Q).
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Representation Via the Lagrangian
Given the a problem

(NLP)
min f (x)
s.t. gi (x) ≤ 0, i = 1, 2, . . . ,m,

hj(x) = 0, j = 1, 2, . . . , p.

The associated Lagrangian function os

L(x,λ,µ) = f (x) +
m∑
i=1

λigi (x) +

p∑
j=1

µjhj(x).

The KKT conditions can be written as

∇xL(x∗,λ,µ) = ∇f (x∗) +
m∑
i=1

λi∇gi (x∗) +

p∑
j=1

µj∇hj(x∗) = 0

λigi (x∗) = 0, i = 1, 2, . . . ,m.
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Examples
I

min 1
2 (x21 + x22 + x23 )

s.t. x1 + x2 + x3 = 3.

I

min x21 + 2x22 + 4x1x2
s.t. x1 + x2 = 1,

x1, x2 ≥ 0.

In class
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Projection onto Affine Spaces
Lemma. Let C be the affine space

C = {x ∈ Rn : Ax = b},

where A ∈ Rm×n and b ∈ Rm. Then

PC (y) = y − AT (AAT )−1(Ay − b).

Proof. In class
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Orthogonal Projection onto Hyperplanes
Consider the hyperplane

H = {x ∈ Rn : aTx = b} (0 6= a ∈ Rn, b ∈ R).

Then by the previous slide:

PH(y) = y − a(aTa)−1(aTy − b) = y − aTy − b

‖a‖2
a.

Lemma (distance of a point from a hyperplane) Let H = {x ∈ Rn :
aTx = b}, where 0 6= a ∈ Rn and b ∈ R. Then

d(y,H) =
|aTy − b|
‖a‖

.

Proof.

d(y,H) = ‖y − PH(y)‖ =

∥∥∥∥y −
(

y − aTy − b

‖a‖2
a

)∥∥∥∥ =
|aTy − b|
‖a‖

.
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Orthogonal Projection onto Half-Spaces
Let H− = {x ∈ Rn : aTx ≤ b},
where 0 6= a ∈ Rn and b ∈ R.
Then

PH−(x) = x− [aTx− b]+
‖a‖2

a

Proof. In class
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Orthogonal Regression

I a1, . . . , am ∈ Rn.

I For a given 0 6= x ∈ Rn and
y ∈ R, we define the
hyperplane:

Hx,y :=
{

a ∈ Rn : xTa = y
}
.
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a
1

I In the orthogonal regression problem we seek to find a nonzero vector x ∈ Rn

and y ∈ R such that the sum of squared Euclidean distances between the
points a1, . . . , am to Hx,y is minimal:

min
x,y

{
m∑
i=1

d(ai ,Hx,y )2 : 0 6= x ∈ Rn, y ∈ R

}
.
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Orthogonal Regression
I d(ai ,Hx,y )2 =

(aT
i x−y)2
‖x‖2 , i = 1, . . . ,m.

I The Orthogonal Regression problem is the same as

min

{
m∑
i=1

(aT
i x− y)2

‖x‖2
: 0 6= x ∈ Rn, y ∈ R

}
.

I Fixing x and minimizing first with respect to y we obtain that the optimal y
is given by y = 1

m

∑m
i=1 aT

i x = 1
meTAx.

I Using the above expression for y we obtain that
m∑
i=1

(
aT
i x− y

)2
=

m∑
i=1

(
aT
i x− 1

m
eTAx

)2

=
m∑
i=1

(aT
i x)2 − 2

m

m∑
i=1

(eTAx)(aT
i x) +

1

m
(eTAx)2

=
m∑
i=1

(aT
i x)2 − 1

m
(eTAx)2 = ‖Ax‖2 − 1

m
(eTAx)2

= xTAT

(
Im −

1

m
eeT

)
Ax.
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Orthogonal Regression

I Therefore, a reformulation of the problem is

min
x

{
xT [AT (Im − 1

meeT )A]x

‖x‖2
: x 6= 0

}
.

Proposition. An optimal solution of the orthogonal regression problem (x, y)
where x is an eigenvector of AT (Im− 1

meeT )A associated with the minimum
eigenvalue and y = 1

m

∑m
i=1 aT

i x. The optimal function value of the problem
is λmin

[
AT (Im − 1

meeT )A
]
.
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