Lecture 10 - Linearly Constrained Problems: Separation \rightarrow Alternative Theorems \rightarrow Optimality Conditions

► A hyperplane

$$H = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} = b \} \ (\mathbf{a} \in \mathbb{R}^n \setminus \{\mathbf{0}\}, b \in \mathbb{R})$$

is said to strictly separate a point $\mathbf{y} \notin S$ from S if

$$\mathbf{a}^T\mathbf{y} > b$$

and

$$\mathbf{a}^T \mathbf{x} \leq b$$
 for all $\mathbf{y} \in S$.

Theorem (separation of a point from a closed and convex set) Let $C \subseteq \mathbb{R}^n$ be a nonempty closed and convex set, and let $\mathbf{y} \notin C$. Then there exists $\mathbf{p} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ and $\alpha \in \mathbb{R}$ such that

$$\mathbf{p}^T \mathbf{y} > \alpha$$
 and $\mathbf{p}^T \mathbf{x} \leq \alpha$ for all $\mathbf{x} \in C$.

Proof of the Separation Theorem

▶ By the second orthogonal projection theorem, the vector $\bar{\mathbf{x}} = P_C(\mathbf{y}) \in C$ satisfies

$$(\mathbf{y} - \bar{\mathbf{x}})^T (\mathbf{x} - \bar{\mathbf{x}}) \leq 0 \text{ for all } \mathbf{x} \in C,$$

which is the same as

$$(\mathbf{y} - \bar{\mathbf{x}})^T \mathbf{x} \le (\mathbf{y} - \bar{\mathbf{x}})^T \bar{\mathbf{x}}$$
 for all $\mathbf{x} \in C$.

▶ Denote $\mathbf{p} = \mathbf{y} - \bar{\mathbf{x}} \neq \mathbf{0}$ and $\alpha = (\mathbf{y} - \bar{\mathbf{x}})^T \bar{\mathbf{x}}$. Then

$$\mathbf{p}^T \mathbf{x} \leq \alpha$$
 for all $\mathbf{x} \in C$

▶ On the other hand,

$$\mathbf{p}^T \mathbf{y} = (\mathbf{y} - \bar{\mathbf{x}})^T \mathbf{y} = (\mathbf{y} - \bar{\mathbf{x}})^T (\mathbf{y} - \bar{\mathbf{x}}) + (\mathbf{y} - \bar{\mathbf{x}})^T \bar{\mathbf{x}} = \|\mathbf{y} - \bar{\mathbf{x}}\|^2 + \alpha > \alpha.$$

Farkas Lemma - an Alternative Theorem

Farkas Lemma. Let $\mathbf{c} \in \mathbb{R}^n$ and $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then exactly one of the following systems has a solution

- I. $Ax \le 0, c^T x > 0$.
- II. $A^T y = c, y \ge 0$.

Another equivalent formulation is the following.

Farkas Lemma - second Formulation Let $\mathbf{c} \in \mathbb{R}^n$ and $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then the following two claims are equivalent:

- (A) The implication $\mathbf{A}\mathbf{x} \leq \mathbf{0} \Rightarrow \mathbf{c}^T\mathbf{x} \leq 0$ holds true.
- (B) There exists $\mathbf{y} \in \mathbb{R}^m_+$ such that $\mathbf{A}^T \mathbf{y} = \mathbf{c}$.

What does it mean?

Example.
$$\mathbf{A} = \begin{pmatrix} 1 & 5 \\ -1 & 2 \end{pmatrix}, \mathbf{c} = \begin{pmatrix} -1 \\ 9 \end{pmatrix},$$

Proof of Farkas Lemma

- ▶ Suppose that system (B) is feasible: $\exists \mathbf{y} \in \mathbb{R}_+^m$ such that $\mathbf{A}^T \mathbf{y} = \mathbf{c}$.
- ▶ To see that the implication (A) holds, suppose that $\mathbf{A}\mathbf{x} \leq 0$ for some $\mathbf{x} \in \mathbb{R}^n$.
- ► Multiplying this inequality from the left by **y**^T:

$$\mathbf{y}^T \mathbf{A} \mathbf{x} \leq 0.$$

► Hence,

$$\mathbf{c}^T \mathbf{x} \leq 0$$
,

- ▶ Suppose that the implication (A) is satisfied, and let us show that the system (B) is feasible. Suppose in contradiction that system (B) is infeasible.
- Consider the following closed and convex (why?) set

$$S = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{x} = \mathbf{A}^T \mathbf{y} \text{ for some } \mathbf{y} \in \mathbb{R}_+^m \}$$

c ∉ *S*.

Proof Contd.

▶ By the separation theorem $\exists \mathbf{p} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ and $\alpha \in \mathbb{R}$ such that $\mathbf{p}^T \mathbf{c} > \alpha$ and

$$\mathbf{p}^{\mathsf{T}}\mathbf{x} \le \alpha \text{ for all } \mathbf{x} \in \mathcal{S}. \tag{1}$$

- ▶ $\mathbf{0} \in S \Rightarrow \alpha \geq 0 \Rightarrow \mathbf{p}^T \mathbf{c} > 0$.
- ▶ (1) is equivalent to

$$\mathbf{p}^T \mathbf{A}^T \mathbf{y} \leq \alpha$$
 for all $\mathbf{y} \geq \mathbf{0}$

or to

$$(\mathbf{Ap})^T \mathbf{y} \le \alpha \text{ for all } \mathbf{y} \ge \mathbf{0},$$
 (2)

- ► Therefore, Ap < 0.
- Contradiction to the assertion that implication (A) holds.

Gordan's Alternative Theorem

Theorem. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then exactly one of the following two systems has a solution.

- (A) Ax < 0.
- (B) $p \neq 0, A^T p = 0, p \geq 0.$

Proof.

- ▶ Suppose that system (A) has a solution.
- Assume in contradiction that (B) is feasible: $\exists \mathbf{p} \neq \mathbf{0}$ satisfying $\mathbf{A}^T \mathbf{p} = \mathbf{0}, \mathbf{p} \geq \mathbf{0}$.
- ▶ Multiplying the equality $\mathbf{A}^T \mathbf{p} = \mathbf{0}$ from the left by \mathbf{x}^T yields $(\mathbf{A}\mathbf{x})^T \mathbf{p} = 0$, which is an impossible equality.
- ▶ Suppose that system (A) does not have a solution.
- ▶ System (A) is equivalent to (s is a scalar) to $\mathbf{A}\mathbf{x} + s\mathbf{e} \leq \mathbf{0}, s > 0$.
- $\qquad \qquad \textbf{ or to } \tilde{\mathbf{A}} \begin{pmatrix} \mathbf{x} \\ s \end{pmatrix} \leq \mathbf{0}, \mathbf{c}^T \begin{pmatrix} \mathbf{x} \\ s \end{pmatrix} > 0, \text{ where } \tilde{\mathbf{A}} = \begin{pmatrix} \mathbf{A} & \mathbf{e} \end{pmatrix} \text{ and } \mathbf{c} = \mathbf{e}_{n+1}.$
- ► The infeasibility of (A) is thus equivalent to the infeasibility of the system

$$\tilde{\mathbf{A}}\mathbf{w} \leq \mathbf{0}, \mathbf{c}^T \mathbf{w} > 0, \mathbf{w} \in \mathbb{R}^{n+1}.$$

Proof of Gordan Contd.

▶ By Farkas' lemma, $\exists \mathbf{z} \in \mathbb{R}_+^m$ such that

$$\begin{pmatrix} \mathbf{A}^T \\ \mathbf{e}^T \end{pmatrix} \mathbf{z} = \mathbf{c}$$

- $\blacktriangleright \Leftrightarrow \exists \mathbf{z} \in \mathbb{R}_+^m : \mathbf{A}^T \mathbf{z} = \mathbf{0}, \mathbf{e}^T \mathbf{z} = 1.$
- $\blacktriangleright \; \Leftrightarrow \exists 0 \neq z \in \mathbb{R}_+^m : A^T z = 0.$
- ightharpoonup \Rightarrow System (B) is feasible.

KKT Conditions for Linearly Constrained Problems

Theorem (KKT conditions for linearly constrained problems - necessary optimality conditions)

Consider the minimization problem

(P)
$$\min_{\mathbf{x}, \mathbf{t}} f(\mathbf{x}),$$

s.t. $\mathbf{a}_i^T \mathbf{x} \leq b_i, i = 1, 2, \dots, m$

where f is continuously differentiable over \mathbb{R}^n , $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m \in \mathbb{R}^n$, $b_1, b_2, \ldots, b_m \in \mathbb{R}$ and let \mathbf{x}^* be a local minimum point of (P). Then there exist $\lambda_1, \lambda_2, \ldots, \lambda_m \geq 0$ such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \mathbf{a}_i = \mathbf{0}.$$
 (3)

and

$$\lambda_i(\mathbf{a}_i^T \mathbf{x}^* - b_i) = 0, \quad i = 1, 2, \dots, m.$$
 (4)

Proof of KKT Theorem

- $ightharpoonup x^*$ is a local minimum $\Rightarrow x^*$ is a stationary point.
- ▶ $\nabla f(\mathbf{x}^*)^T(\mathbf{x} \mathbf{x}^*) \ge 0$ for every $\mathbf{x} \in \mathbb{R}^n$ satisfying $\mathbf{a}_i^T \mathbf{x} \le b_i$ for any i = 1, 2, ..., m.
- ▶ Denote the set of active constraints by

$$I(\mathbf{x}^*) = \{i : \mathbf{a}_i^T \mathbf{x}^* = b_i\}.$$

▶ Making the change of variables $y = x - x^*$, we have

$$\nabla f(\mathbf{x}^*)^T \mathbf{y} \geq 0$$
 for any $\mathbf{y} \in \mathbb{R}^m$ satisfying $\mathbf{a}_i^T (\mathbf{y} + \mathbf{x}^*) \leq b_i, i = 1, 2, \dots, m$.

• or $\nabla f(\mathbf{x}^*)^T \mathbf{y} \geq 0$ for any \mathbf{y} satisfying

$$\mathbf{a}_{i}^{T}\mathbf{y} \leq 0$$
 $i \in I(\mathbf{x}^{*}),$ $\mathbf{a}_{i}^{T}\mathbf{y} \leq b_{i} - \mathbf{a}_{i}^{T}\mathbf{x}^{*}$ $i \notin I(\mathbf{x}^{*}).$

▶ The second set of inequalities can be removed, that is, we will prove that

$$\mathbf{a}_i^T \mathbf{y} \leq 0$$
 for all $i \in I(\mathbf{x}^*) \Rightarrow \nabla f(\mathbf{x}^*)^T \mathbf{y} \geq 0$.

Proof Contd.

- ▶ Suppose then that **y** satisfies $\mathbf{a}_i^T \mathbf{y} \leq 0$ for all $i \in I(\mathbf{x}^*)$
- ► Since $b_i \mathbf{a}_i^T \mathbf{x}^* > 0$ for all $i \notin I(\mathbf{x}^*)$, it follows that there exists a small enough $\alpha > 0$ for which $\mathbf{a}_i^T (\alpha \mathbf{y}) \le b_i \mathbf{a}_i^T \mathbf{x}^*$.
- ▶ Thus, since in addition $\mathbf{a}_i^T(\alpha \mathbf{y}) \leq 0$ for any $i \in I(\mathbf{x}^*)$, it follows by the stationarity condition that $\nabla f(\mathbf{x}^*)^T \mathbf{y} \geq 0$.
- ▶ We have shown $\mathbf{a}_i^T \mathbf{y} \leq 0$ for all $i \in I(\mathbf{x}^*) \Rightarrow \nabla f(\mathbf{x}^*)^T \mathbf{y} \geq 0$.
- ▶ By Farkas' lemma $\exists \lambda_i \geq 0, i \in I(\mathbf{x}^*)$ such that

$$-\nabla f(\mathbf{x}^*) = \sum_{i \in I(\mathbf{x}^*)} \lambda_i \mathbf{a}_i.$$

▶ Defining $\lambda_i = 0$ for all $i \notin I(\mathbf{x}^*)$ we get that $\lambda_i(\mathbf{a}_i^T\mathbf{x}^* - b_i) = 0$ for all $i \in \{1, 2, ..., m\}$ and

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \mathbf{a}_i = \mathbf{0}.$$

The Convex Case

Theorem [KKT conditions for convex linearly constrained problems - necessary and sufficient optimality conditions]

Consider the minimization problem

(P)
$$\min_{\mathbf{s.t.}} f(\mathbf{x}),$$

 $\mathbf{a}_i^T \mathbf{x} \leq b_i, i = 1, 2, \dots, m$

where f is a convex continuously differentiable function over \mathbb{R}^n , $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_m \in \mathbb{R}^n, b_1, b_2, \ldots, b_m \in \mathbb{R}$ and let \mathbf{x}^* be a feasible solution of (P). Then \mathbf{x}^* is an optimal solution if and only if there exist $\lambda_1, \lambda_2, \ldots, \lambda_m > 0$ such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \mathbf{a}_i = \mathbf{0}.$$
 (5)

and

$$\lambda_i(\mathbf{a}_i^T\mathbf{x}^* - b_i) = 0, \quad i = 1, 2, \dots, m.$$
 (6)

Proof of KKT in Convex Case

- Necessity was proven.
- ► Suppose that **x*** is a feasible solution of (P) satisfying (5) and (6). Let **x** be a feasible solution of (P).
- Define the function

$$h(\mathbf{x}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i (\mathbf{a}_i^\mathsf{T} \mathbf{x} - b_i).$$

▶ $\nabla h(\mathbf{x}^*) = \mathbf{0} \Rightarrow \mathbf{x}^*$ is a minimizer of h over \mathbb{R}^n .

Þ

$$f(\mathbf{x}^*) = f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i (\mathbf{a}_i^\mathsf{T} \mathbf{x}^* - b_i) \le f(\mathbf{x}) + \sum_{i=1}^m \lambda_i (\mathbf{a}_i^\mathsf{T} \mathbf{x} - b_i) \le f(\mathbf{x}),$$

Problems with Equality and Inequality Constraints

Theorem [KKT conditions for linearly constrained problems]

Consider the minimization problem

(Q)
$$\begin{array}{ll} \min & f(\mathbf{x}), \\ \text{s.t.} & \mathbf{a}_i^T \mathbf{x} \leq b_i, i = 1, 2, \dots, m, \\ \mathbf{c}_j^T \mathbf{x} = d_j, & j = 1, 2, \dots, p. \end{array}$$

where f cont. dif., $\mathbf{a}_i, \mathbf{c}_i \in \mathbb{R}^n, b_i, d_i \in \mathbb{R}$.

(i) (necessity of the KKT conditions) If \mathbf{x}^* is a local minimum of (Q), then there exist $\lambda_1, \lambda_2, \dots, \lambda_m \geq 0$ and $\mu_1, \mu_2, \dots, \mu_p \in \mathbb{R}$ such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \mathbf{a}_i + \sum_{j=1}^p \mu_j \mathbf{c}_j = \mathbf{0},$$
 (7)

$$\lambda_i(\mathbf{a}_i^T \mathbf{x}^* - b_i) = 0, \quad i = 1, 2, \dots, m.$$
 (8)

(ii) (sufficiency in the convex case) If f is convex over \mathbb{R}^n and \mathbf{x}^* is a feasible solution of (Q) for which there exist $\lambda_1, \ldots, \lambda_m \geq 0$ and $\mu_1, \ldots, \mu_p \in \mathbb{R}$ such that (7) and (8) are satisfied, then \mathbf{x}^* is an optimal solution of (Q).

Representation Via the Lagrangian

Given the a problem

(NLP)
$$min f(\mathbf{x})$$

s.t. $g_i(\mathbf{x}) \leq 0, i = 1, 2, ..., m,$
 $h_j(\mathbf{x}) = 0, j = 1, 2, ..., p.$

The associated Lagrangian function os

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i g_i(\mathbf{x}) + \sum_{j=1}^{p} \mu_j h_j(\mathbf{x}).$$

The KKT conditions can be written as

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}, \boldsymbol{\mu}) = \nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j \nabla h_j(\mathbf{x}^*) = \mathbf{0}$$
$$\lambda_i g_i(\mathbf{x}^*) = 0, \quad i = 1, 2, \dots, m.$$

Examples

min
$$\frac{1}{2}(x_1^2 + x_2^2 + x_3^2)$$

s.t. $x_1 + x_2 + x_3 = 3$.

ightharpoons

$$\begin{aligned} & \text{min} & & x_1^2 + 2x_2^2 + 4x_1x_2 \\ & \text{s.t.} & & x_1 + x_2 = 1, \\ & & & x_1, x_2 \geq 0. \end{aligned}$$

In class

Projection onto Affine Spaces

Lemma. Let C be the affine space

$$C = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} = \mathbf{b} \},$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. Then

$$P_C(\mathbf{y}) = \mathbf{y} - \mathbf{A}^T (\mathbf{A} \mathbf{A}^T)^{-1} (\mathbf{A} \mathbf{y} - \mathbf{b}).$$

Proof. In class

Orthogonal Projection onto Hyperplanes

Consider the hyperplane

$$H = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} = b \} \quad (\mathbf{0} \neq \mathbf{a} \in \mathbb{R}^n, b \in \mathbb{R}).$$

Then by the previous slide:

$$P_H(\mathbf{y}) = \mathbf{y} - \mathbf{a}(\mathbf{a}^T\mathbf{a})^{-1}(\mathbf{a}^T\mathbf{y} - b) = \mathbf{y} - \frac{\mathbf{a}^T\mathbf{y} - b}{\|\mathbf{a}\|^2}\mathbf{a}.$$

Lemma (distance of a point from a hyperplane) Let $H = \{x \in \mathbb{R}^n : a^T x = b\}$, where $0 \neq a \in \mathbb{R}^n$ and $b \in \mathbb{R}$. Then

$$d(\mathbf{y}, H) = \frac{|\mathbf{a}^T \mathbf{y} - b|}{\|\mathbf{a}\|}.$$

Proof.

$$d(\mathbf{y}, H) = \|\mathbf{y} - P_H(\mathbf{y})\| = \left\|\mathbf{y} - \left(\mathbf{y} - \frac{\mathbf{a}^T \mathbf{y} - b}{\|\mathbf{a}\|^2} \mathbf{a}\right)\right\| = \frac{|\mathbf{a}^T \mathbf{y} - b|}{\|\mathbf{a}\|}.$$

Orthogonal Projection onto Half-Spaces

Let
$$H^- = \{ \mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} \le b \},$$

where $\mathbf{0} \ne \mathbf{a} \in \mathbb{R}^n$ and $b \in \mathbb{R}$.
Then

$$P_{H^-}(\mathbf{x}) = \mathbf{x} - \frac{[\mathbf{a}^T \mathbf{x} - b]_+}{\|\mathbf{a}\|^2} \mathbf{a}$$

Proof. In class

Orthogonal Regression

- $ightharpoonup a_1, \ldots, a_m \in \mathbb{R}^n$.
- ► For a given $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^n$ and $y \in \mathbb{R}$, we define the hyperplane:

$$H_{\mathbf{x},y} := \left\{ \mathbf{a} \in \mathbb{R}^n : \mathbf{x}^T \mathbf{a} = y \right\}.$$

▶ In the orthogonal regression problem we seek to find a nonzero vector $\mathbf{x} \in \mathbb{R}^n$ and $y \in \mathbb{R}$ such that the sum of squared Euclidean distances between the points $\mathbf{a}_1, \dots, \mathbf{a}_m$ to $H_{\mathbf{x}, \mathbf{v}}$ is minimal:

$$\min_{\mathbf{x},y} \left\{ \sum_{i=1}^m d(\mathbf{a}_i, H_{\mathbf{x},y})^2 : \mathbf{0} \neq \mathbf{x} \in \mathbb{R}^n, y \in \mathbb{R} \right\}.$$

Orthogonal Regression

- ► $d(\mathbf{a}_i, H_{\mathbf{x},y})^2 = \frac{(\mathbf{a}_i^T \mathbf{x} y)^2}{\|\mathbf{x}\|^2}, \quad i = 1, \dots, m.$
- ▶ The Orthogonal Regression problem is the same as

$$\min \left\{ \sum_{i=1}^m \frac{(\mathbf{a}_i^\mathsf{T} \mathbf{x} - y)^2}{\|\mathbf{x}\|^2} : \mathbf{0} \neq \mathbf{x} \in \mathbb{R}^n, y \in \mathbb{R} \right\}.$$

- Fixing **x** and minimizing first with respect to y we obtain that the optimal y is given by $y = \frac{1}{m} \sum_{i=1}^{m} \mathbf{a}_{i}^{T} \mathbf{x} = \frac{1}{m} \mathbf{e}^{T} \mathbf{A} \mathbf{x}$.
- ▶ Using the above expression for y we obtain that

$$\begin{split} \sum_{i=1}^{m} \left(\mathbf{a}_{i}^{T} \mathbf{x} - y\right)^{2} &= \sum_{i=1}^{m} \left(\mathbf{a}_{i}^{T} \mathbf{x} - \frac{1}{m} \mathbf{e}^{T} \mathbf{A} \mathbf{x}\right)^{2} \\ &= \sum_{i=1}^{m} (\mathbf{a}_{i}^{T} \mathbf{x})^{2} - \frac{2}{m} \sum_{i=1}^{m} (\mathbf{e}^{T} \mathbf{A} \mathbf{x}) (\mathbf{a}_{i}^{T} \mathbf{x}) + \frac{1}{m} (\mathbf{e}^{T} \mathbf{A} \mathbf{x})^{2} \\ &= \sum_{i=1}^{m} (\mathbf{a}_{i}^{T} \mathbf{x})^{2} - \frac{1}{m} (\mathbf{e}^{T} \mathbf{A} \mathbf{x})^{2} = \|\mathbf{A}\mathbf{x}\|^{2} - \frac{1}{m} (\mathbf{e}^{T} \mathbf{A} \mathbf{x})^{2} \\ &= \mathbf{x}^{T} \mathbf{A}^{T} \left(\mathbf{I}_{m} - \frac{1}{m} \mathbf{e} \mathbf{e}^{T} \right) \mathbf{A} \mathbf{x}. \end{split}$$

Orthogonal Regression

▶ Therefore, a reformulation of the problem is

$$\min_{\mathbf{x}} \left\{ \frac{\mathbf{x}^T [\mathbf{A}^T (\mathbf{I}_m - \frac{1}{m} \mathbf{e} \mathbf{e}^T) \mathbf{A}] \mathbf{x}}{\|\mathbf{x}\|^2} : \mathbf{x} \neq \mathbf{0} \right\}.$$

Proposition. An optimal solution of the orthogonal regression problem (\mathbf{x},y) where \mathbf{x} is an eigenvector of $\mathbf{A}^T(\mathbf{I}_m-\frac{1}{m}\mathbf{e}\mathbf{e}^T)\mathbf{A}$ associated with the minimum eigenvalue and $y=\frac{1}{m}\sum_{i=1}^m \mathbf{a}_i^T\mathbf{x}$. The optimal function value of the problem is $\lambda_{\min}\left[\mathbf{A}^T(\mathbf{I}_m-\frac{1}{m}\mathbf{e}\mathbf{e}^T)\mathbf{A}\right]$.