## Lecture 10 - Linearly Constrained Problems: Separation $\rightarrow$

 Alternative Theorems $\rightarrow$ Optimality Conditions- A hyperplane

$$
H=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{a}^{T} \mathbf{x}=b\right\} \quad\left(\mathbf{a} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}, b \in \mathbb{R}\right)
$$

is said to strictly separate a point $\mathbf{y} \notin S$ from $S$ if

$$
\mathbf{a}^{T} \mathbf{y}>b
$$

and

$$
\mathbf{a}^{T} \mathbf{x} \leq b \text { for all } \mathbf{y} \in S
$$

Theorem (separation of a point from a closed and convex set) Let $C \subseteq \mathbb{R}^{n}$ be a nonempty closed and convex set, and let $\mathbf{y} \notin C$. Then there exists $\mathbf{p} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$ and $\alpha \in \mathbb{R}$ such that

$$
\mathbf{p}^{T} \mathbf{y}>\alpha \text { and } \mathbf{p}^{T} \mathbf{x} \leq \alpha \text { for all } \mathbf{x} \in C
$$

## Proof of the Separation Theorem

- By the second orthogonal projection theorem, the vector $\overline{\mathbf{x}}=P_{C}(\mathbf{y}) \in C$ satisfies

$$
(\mathbf{y}-\overline{\mathbf{x}})^{T}(\mathbf{x}-\overline{\mathbf{x}}) \leq 0 \text { for all } \mathbf{x} \in C,
$$

which is the same as

$$
(\mathbf{y}-\overline{\mathbf{x}})^{T} \mathbf{x} \leq(\mathbf{y}-\overline{\mathbf{x}})^{T} \overline{\mathbf{x}} \text { for all } \mathbf{x} \in C
$$

- Denote $\mathbf{p}=\mathbf{y}-\overline{\mathbf{x}} \neq \mathbf{0}$ and $\alpha=(\mathbf{y}-\overline{\mathbf{x}})^{T} \overline{\mathbf{x}}$. Then

$$
\mathbf{p}^{T} \mathbf{x} \leq \alpha \text { for all } \mathbf{x} \in C
$$

- On the other hand,

$$
\mathbf{p}^{T} \mathbf{y}=(\mathbf{y}-\overline{\mathbf{x}})^{T} \mathbf{y}=(\mathbf{y}-\overline{\mathbf{x}})^{T}(\mathbf{y}-\overline{\mathbf{x}})+(\mathbf{y}-\overline{\mathbf{x}})^{T} \overline{\mathbf{x}}=\|\mathbf{y}-\overline{\mathbf{x}}\|^{2}+\alpha>\alpha .
$$

## Farkas Lemma - an Alternative Theorem

Farkas Lemma. Let $\mathbf{c} \in \mathbb{R}^{n}$ and $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then exactly one of the following systems has a solution
I. $\mathbf{A x} \leq \mathbf{0}, \mathbf{c}^{T} \mathbf{x}>0$.
II. $\mathbf{A}^{T} \mathbf{y}=\mathbf{c}, \mathbf{y} \geq 0$.

Another equivalent formulation is the following.
Farkas Lemma - second Formulation Let $\mathbf{c} \in \mathbb{R}^{n}$ and $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then the following two claims are equivalent:
(A) The implication $\mathbf{A} \mathbf{x} \leq \mathbf{0} \Rightarrow \mathbf{c}^{\top} \mathbf{x} \leq 0$ holds true.
(B) There exists $\mathbf{y} \in \mathbb{R}_{+}^{m}$ such that $\mathbf{A}^{T} \mathbf{y}=\mathbf{c}$.

What does it mean?
Example. $\mathbf{A}=\left(\begin{array}{cc}1 & 5 \\ -1 & 2\end{array}\right), \mathbf{c}=\binom{-1}{9}$,

## Proof of Farkas Lemma

- Suppose that system (B) is feasible: $\exists \mathbf{y} \in \mathbb{R}_{+}^{m}$ such that $\mathbf{A}^{T} \mathbf{y}=\mathbf{c}$.
- To see that the implication (A) holds, suppose that $\mathbf{A} \mathbf{x} \leq 0$ for some $\mathbf{x} \in \mathbb{R}^{n}$.
- Multiplying this inequality from the left by $\mathbf{y}^{\top}$ :

$$
\mathbf{y}^{\top} \mathbf{A} \mathbf{x} \leq 0 .
$$

- Hence,

$$
\mathbf{c}^{\top} \mathbf{x} \leq 0
$$

- Suppose that the implication (A) is satisfied, and let us show that the system (B) is feasible. Suppose in contradiction that system (B) is infeasible.
- Consider the following closed and convex (why?) set

$$
S=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{x}=\mathbf{A}^{T} \mathbf{y} \text { for some } \mathbf{y} \in \mathbb{R}_{+}^{m}\right\}
$$

- c $\notin S$.


## Proof Contd.

- By the separation theorem $\exists \mathbf{p} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}$ and $\alpha \in \mathbb{R}$ such that $\mathbf{p}^{T} \mathbf{c}>\alpha$ and

$$
\begin{equation*}
\mathbf{p}^{T} \mathbf{x} \leq \alpha \text { for all } \mathbf{x} \in S \tag{1}
\end{equation*}
$$

- $\mathbf{0} \in S \Rightarrow \alpha \geq 0 \Rightarrow \mathbf{p}^{T} \mathbf{c}>0$.
- (1) is equivalent to

$$
\mathbf{p}^{T} \mathbf{A}^{T} \mathbf{y} \leq \alpha \text { for all } \mathbf{y} \geq \mathbf{0}
$$

or to

$$
\begin{equation*}
(\mathbf{A p})^{T} \mathbf{y} \leq \alpha \text { for all } \mathbf{y} \geq \mathbf{0}, \tag{2}
\end{equation*}
$$

- Therefore, $\mathbf{A p} \leq \mathbf{0}$.
- Contradiction to the assertion that implication (A) holds.


## Gordan's Alternative Theorem

Theorem. Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. Then exactly one of the following two systems has a solution.
(A) $\mathbf{A x}<\mathbf{0}$.
(B) $\mathbf{p} \neq 0, \mathbf{A}^{\top} \mathbf{p}=\mathbf{0}, \mathbf{p} \geq \mathbf{0}$.

## Proof.

- Suppose that system (A) has a solution.
- Assume in contradiction that ( B ) is feasible: $\exists \mathbf{p} \neq \mathbf{0}$ satisfying $\mathbf{A}^{\top} \mathbf{p}=\mathbf{0}, \mathbf{p} \geq \mathbf{0}$.
- Multiplying the equality $\mathbf{A}^{T} \mathbf{p}=\mathbf{0}$ from the left by $\mathbf{x}^{T}$ yields $(\mathbf{A} \mathbf{x})^{T} \mathbf{p}=0$, which is an impossible equality.
- Suppose that system (A) does not have a solution.
- System (A) is equivalent to ( $s$ is a scalar) to $\mathbf{A x}+\boldsymbol{s e} \leq \mathbf{0}, s>0$.
- or to $\tilde{\mathbf{A}}\binom{\mathbf{x}}{s} \leq \mathbf{0}, \mathbf{c}^{T}\binom{\mathbf{x}}{s}>0$, where $\tilde{\mathbf{A}}=\left(\begin{array}{ll}\mathbf{A} & \mathbf{e}\end{array}\right)$ and $\mathbf{c}=\mathbf{e}_{n+1}$.
- The infeasibility of $(\mathrm{A})$ is thus equivalent to the infeasibility of the system

$$
\tilde{\mathbf{A}} \mathbf{w} \leq \mathbf{0}, \mathbf{c}^{T} \mathbf{w}>0, \mathbf{w} \in \mathbb{R}^{n+1} .
$$

## Proof of Gordan Contd.

- By Farkas' lemma, $\exists \mathbf{z} \in \mathbb{R}_{+}^{m}$ such that

$$
\binom{\mathbf{A}^{T}}{\mathbf{e}^{T}} \mathbf{z}=\mathbf{c}
$$

- $\Leftrightarrow \exists \mathbf{z} \in \mathbb{R}_{+}^{m}: \mathbf{A}^{T} \mathbf{z}=\mathbf{0}, \mathbf{e}^{\top} \mathbf{z}=1$.
- $\Leftrightarrow \exists \mathbf{0} \neq \mathbf{z} \in \mathbb{R}_{+}^{m}: \mathbf{A}^{T} \mathbf{z}=\mathbf{0}$.
$\Rightarrow \Rightarrow \operatorname{System}(B)$ is feasible.


## KKT Conditions for Linearly Constrained Problems

Theorem (KKT conditions for linearly constrained problems - necessary optimality conditions)
Consider the minimization problem

$$
\text { (P) } \quad \begin{array}{ll}
\min & f(\mathbf{x}), \\
\text { s.t. } & \mathbf{a}_{i}^{T} \mathbf{x} \leq b_{i}, i=1,2, \ldots, m
\end{array}
$$

where $f$ is continuously differentiable over $\mathbb{R}^{n}, \mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{m} \in$ $\mathbb{R}^{n}, b_{1}, b_{2}, \ldots, b_{m} \in \mathbb{R}$ and let $\mathbf{x}^{*}$ be a local minimum point of $(\mathrm{P})$. Then there exist $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \geq 0$ such that

$$
\begin{equation*}
\nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \mathbf{a}_{i}=\mathbf{0} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{i}\left(\mathbf{a}_{i}^{T} \mathbf{x}^{*}-b_{i}\right)=0, \quad i=1,2, \ldots, m . \tag{4}
\end{equation*}
$$

## Proof of KKT Theorem

- $\mathrm{x}^{*}$ is a local minimum $\Rightarrow \mathrm{x}^{*}$ is a stationary point.
- $\nabla f\left(\mathbf{x}^{*}\right)^{T}\left(\mathbf{x}-\mathbf{x}^{*}\right) \geq 0$ for every $\mathbf{x} \in \mathbb{R}^{n}$ satisfying $\mathbf{a}_{i}^{T} \mathbf{x} \leq b_{i}$ for any $i=1,2, \ldots, m$.
- Denote the set of active constraints by

$$
I\left(\mathbf{x}^{*}\right)=\left\{i: \mathbf{a}_{i}^{T} \mathbf{x}^{*}=b_{i}\right\}
$$

- Making the change of variables $\mathbf{y}=\mathbf{x}-\mathbf{x}^{*}$, we have

$$
\nabla f\left(\mathbf{x}^{*}\right)^{T} \mathbf{y} \geq 0 \text { for any } \mathbf{y} \in \mathbb{R}^{m} \text { satisfying } \mathbf{a}_{i}^{T}\left(\mathbf{y}+\mathbf{x}^{*}\right) \leq b_{i}, i=1,2, \ldots, m
$$

- or $\nabla f\left(\mathbf{x}^{*}\right)^{T} \mathbf{y} \geq 0$ for any $\mathbf{y}$ satisfying

$$
\begin{array}{ll}
\mathbf{a}_{i}^{T} \mathbf{y} \leq 0 & i \in I\left(\mathbf{x}^{*}\right), \\
\mathbf{a}_{i}^{T} \mathbf{y} \leq b_{i}-\mathbf{a}_{i}^{T} \mathbf{x}^{*} & i \notin I\left(\mathbf{x}^{*}\right) .
\end{array}
$$

- The second set of inequalities can be removed, that is, we will prove that

$$
\mathbf{a}_{i}^{T} \mathbf{y} \leq 0 \text { for all } i \in I\left(\mathbf{x}^{*}\right) \Rightarrow \nabla f\left(\mathbf{x}^{*}\right)^{T} \mathbf{y} \geq 0
$$

## Proof Contd.

- Suppose then that $\mathbf{y}$ satisfies $\mathbf{a}_{i}^{T} \mathbf{y} \leq 0$ for all $i \in I\left(\mathbf{x}^{*}\right)$
- Since $b_{i}-\mathbf{a}_{i}^{T} \mathbf{x}^{*}>0$ for all $i \notin I\left(\mathbf{x}^{*}\right)$, it follows that there exists a small enough $\alpha>0$ for which $\mathbf{a}_{i}^{T}(\alpha \mathbf{y}) \leq b_{i}-\mathbf{a}_{i}^{\top} \mathbf{x}^{*}$.
- Thus, since in addition $\mathbf{a}_{i}^{T}(\alpha \mathbf{y}) \leq 0$ for any $i \in I\left(\mathbf{x}^{*}\right)$, it follows by the stationarity condition that $\nabla f\left(\mathbf{x}^{*}\right)^{T} \mathbf{y} \geq 0$.
- We have shown $\mathbf{a}_{i}^{T} \mathbf{y} \leq 0$ for all $i \in I\left(\mathbf{x}^{*}\right) \Rightarrow \nabla f\left(\mathbf{x}^{*}\right)^{T} \mathbf{y} \geq 0$.
- By Farkas' lemma $\exists \lambda_{i} \geq 0, i \in I\left(\mathbf{x}^{*}\right)$ such that

$$
-\nabla f\left(\mathbf{x}^{*}\right)=\sum_{i \in I\left(\mathbf{x}^{*}\right)} \lambda_{i} \mathbf{a}_{i} .
$$

- Defining $\lambda_{i}=0$ for all $i \notin I\left(\mathbf{x}^{*}\right)$ we get that $\lambda_{i}\left(\mathbf{a}_{i}^{T} \mathbf{x}^{*}-b_{i}\right)=0$ for all $i \in\{1,2, \ldots, m\}$ and

$$
\nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \mathbf{a}_{i}=\mathbf{0}
$$

## The Convex Case

Theorem [KKT conditions for convex linearly constrained problems necessary and sufficient optimality conditions]
Consider the minimization problem

$$
\text { (P) } \begin{array}{lll}
\min & f(\mathbf{x}) \\
\text { s.t. } & \mathbf{a}_{i}^{T} \mathbf{x} \leq b_{i}, i=1,2, \ldots, m
\end{array}
$$

where $f$ is a convex continuously differentiable function over $\mathbb{R}^{n}$, $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}, b_{1}, b_{2}, \ldots, b_{m} \in \mathbb{R}$ and let $\mathbf{x}^{*}$ be a feasible solution of $(P)$. Then $\mathbf{x}^{*}$ is an optimal solution if and only if there exist $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \geq 0$ such that

$$
\begin{equation*}
\nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \mathbf{a}_{i}=\mathbf{0} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{i}\left(\mathbf{a}_{i}^{T} \mathbf{x}^{*}-b_{i}\right)=0, \quad i=1,2, \ldots, m \tag{6}
\end{equation*}
$$

## Proof of KKT in Convex Case

- Necessity was proven.
- Suppose that $\mathbf{x}^{*}$ is a feasible solution of $(P)$ satisfying (5) and (6). Let $\mathbf{x}$ be a feasible solution of (P).
- Define the function

$$
h(\mathbf{x})=f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i}\left(\mathbf{a}_{i}^{T} \mathbf{x}-b_{i}\right)
$$

- $\nabla h\left(\mathbf{x}^{*}\right)=\mathbf{0} \Rightarrow \mathbf{x}^{*}$ is a minimizer of $h$ over $\mathbb{R}^{n}$.

$$
f\left(\mathbf{x}^{*}\right)=f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i}\left(\mathbf{a}_{i}^{T} \mathbf{x}^{*}-b_{i}\right) \leq f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i}\left(\mathbf{a}_{i}^{T} \mathbf{x}-b_{i}\right) \leq f(\mathbf{x}),
$$

## Problems with Equality and Inequality Constraints

Theorem [KKT conditions for linearly constrained problems]
Consider the minimization problem

$$
\begin{array}{lll} 
& \min & f(\mathbf{x}) \\
\text { (Q) } \quad \text { s.t. } & \mathbf{a}_{i}^{T} \mathbf{x} \leq b_{i}, i=1,2, \ldots, m, \\
& \mathbf{c}_{j}^{T} \mathbf{x}=d_{j}, \quad j=1,2, \ldots, p
\end{array}
$$

where $f$ cont. dif., $\mathbf{a}_{i}, \mathbf{c}_{j} \in \mathbb{R}^{n}, b_{i}, d_{j} \in \mathbb{R}$.
(i) (necessity of the KKT conditions) If $\mathbf{x}^{*}$ is a local minimum of $(Q)$, then there exist $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \geq 0$ and $\mu_{1}, \mu_{2}, \ldots, \mu_{p} \in \mathbb{R}$ such that

$$
\begin{align*}
\nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \mathbf{a}_{i}+\sum_{j=1}^{p} \mu_{j} \mathbf{c}_{j} & =\mathbf{0}  \tag{7}\\
\lambda_{i}\left(\mathbf{a}_{i}^{T} \mathbf{x}^{*}-b_{i}\right) & =0, \quad i=1,2, \ldots, m \tag{8}
\end{align*}
$$

(ii) (sufficiency in the convex case) If $f$ is convex over $\mathbb{R}^{n}$ and $\mathbf{x}^{*}$ is a feasible solution of ( Q ) for which there exist $\lambda_{1}, \ldots, \lambda_{m} \geq 0$ and $\mu_{1}, \ldots, \mu_{p} \in \mathbb{R}$ such that (7) and (8) are satisfied, then $\mathbf{x}^{*}$ is an optimal solution of (Q).

## Representation Via the Lagrangian

Given the a problem

$$
\begin{array}{lll} 
& \min & f(\mathbf{x}) \\
(\mathrm{NLP}) & \text { s.t. } & g_{i}(\mathbf{x}) \leq 0, i=1,2, \ldots, m, \\
& h_{j}(\mathbf{x})=0, j=1,2, \ldots, p
\end{array}
$$

The associated Lagrangian function os

$$
L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=f(\mathbf{x})+\sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x})+\sum_{j=1}^{p} \mu_{j} h_{j}(\mathbf{x}) .
$$

The KKT conditions can be written as

$$
\begin{aligned}
\nabla_{\mathbf{x}} L\left(\mathbf{x}^{*}, \boldsymbol{\lambda}, \boldsymbol{\mu}\right) & =\nabla f\left(\mathbf{x}^{*}\right)+\sum_{i=1}^{m} \lambda_{i} \nabla g_{i}\left(\mathbf{x}^{*}\right)+\sum_{j=1}^{p} \mu_{j} \nabla h_{j}\left(\mathbf{x}^{*}\right)=\mathbf{0} \\
\lambda_{i} g_{i}\left(\mathbf{x}^{*}\right) & =0, \quad i=1,2, \ldots, m .
\end{aligned}
$$

## Examples

$$
\begin{array}{ll}
\min & \frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right) \\
\text { s.t. } & x_{1}+x_{2}+x_{3}=3 . \\
& \\
\min & x_{1}^{2}+2 x_{2}^{2}+4 x_{1} x_{2} \\
\text { s.t. } & x_{1}+x_{2}=1 \\
& x_{1}, x_{2} \geq 0 .
\end{array}
$$

In class

## Projection onto Affine Spaces

Lemma. Let $C$ be the affine space

$$
C=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{A} \mathbf{x}=\mathbf{b}\right\},
$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^{m}$. Then

$$
P_{C}(\mathbf{y})=\mathbf{y}-\mathbf{A}^{T}\left(\mathbf{A} \mathbf{A}^{T}\right)^{-1}(\mathbf{A} \mathbf{y}-\mathbf{b}) .
$$

Proof. In class

## Orthogonal Projection onto Hyperplanes

Consider the hyperplane

$$
H=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{a}^{T} \mathbf{x}=b\right\} \quad\left(\mathbf{0} \neq \mathbf{a} \in \mathbb{R}^{n}, b \in \mathbb{R}\right)
$$

Then by the previous slide:

$$
P_{H}(\mathbf{y})=\mathbf{y}-\mathbf{a}\left(\mathbf{a}^{\top} \mathbf{a}\right)^{-1}\left(\mathbf{a}^{\top} \mathbf{y}-b\right)=\mathbf{y}-\frac{\mathbf{a}^{\top} \mathbf{y}-b}{\|\mathbf{a}\|^{2}} \mathbf{a} .
$$

Lemma (distance of a point from a hyperplane) Let $H=\left\{\mathbf{x} \in \mathbb{R}^{n}\right.$ : $\left.\mathbf{a}^{T} \mathbf{x}=b\right\}$, where $\mathbf{0} \neq \mathbf{a} \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$. Then

$$
d(\mathbf{y}, H)=\frac{\left|\mathbf{a}^{T} \mathbf{y}-b\right|}{\|\mathbf{a}\|} .
$$

## Proof.

$$
d(\mathbf{y}, H)=\left\|\mathbf{y}-P_{H}(\mathbf{y})\right\|=\left\|\mathbf{y}-\left(\mathbf{y}-\frac{\mathbf{a}^{T} \mathbf{y}-b}{\|\mathbf{a}\|^{2}} \mathbf{a}\right)\right\|=\frac{\left|\mathbf{a}^{T} \mathbf{y}-b\right|}{\|\mathbf{a}\|} .
$$

## Orthogonal Projection onto Half-Spaces

Let $H^{-}=\left\{\mathbf{x} \in \mathbb{R}^{n}: \mathbf{a}^{T} \mathbf{x} \leq b\right\}$, where $\mathbf{0} \neq \mathbf{a} \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$.
Then

$$
P_{H^{-}}(\mathbf{x})=\mathbf{x}-\frac{\left[\mathbf{a}^{T} \mathbf{x}-b\right]_{+}}{\|\mathbf{a}\|^{2}} \mathbf{a}
$$



Proof. In class

## Orthogonal Regression

- $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m} \in \mathbb{R}^{n}$.
- For a given $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^{n}$ and $y \in \mathbb{R}$, we define the hyperplane:

$$
H_{\mathbf{x}, y}:=\left\{\mathbf{a} \in \mathbb{R}^{n}: \mathbf{x}^{T} \mathbf{a}=y\right\}
$$



- In the orthogonal regression problem we seek to find a nonzero vector $\mathbf{x} \in \mathbb{R}^{n}$ and $y \in \mathbb{R}$ such that the sum of squared Euclidean distances between the points $\mathbf{a}_{1}, \ldots, \mathbf{a}_{m}$ to $H_{x, y}$ is minimal:

$$
\min _{\mathbf{x}, y}\left\{\sum_{i=1}^{m} d\left(\mathbf{a}_{i}, H_{\mathbf{x}, y}\right)^{2}: \mathbf{0} \neq \mathbf{x} \in \mathbb{R}^{n}, y \in \mathbb{R}\right\}
$$

## Orthogonal Regression

- $d\left(\mathbf{a}_{i}, H_{x, y}\right)^{2}=\frac{\left(\mathbf{a}_{i}^{T} \mathbf{x}-y\right)^{2}}{\|\mathbf{x}\|^{2}}, \quad i=1, \ldots, m$.
- The Orthogonal Regression problem is the same as

$$
\min \left\{\sum_{i=1}^{m} \frac{\left(\mathbf{a}_{i}^{T} \mathbf{x}-y\right)^{2}}{\|\mathbf{x}\|^{2}}: \mathbf{0} \neq \mathbf{x} \in \mathbb{R}^{n}, y \in \mathbb{R}\right\}
$$

- Fixing $\mathbf{x}$ and minimizing first with respect to $y$ we obtain that the optimal $y$ is given by $y=\frac{1}{m} \sum_{i=1}^{m} \mathbf{a}_{i}^{T} \mathbf{x}=\frac{1}{m} \mathbf{e}^{T} \mathbf{A} \mathbf{x}$.
- Using the above expression for $y$ we obtain that

$$
\begin{aligned}
\sum_{i=1}^{m}\left(\mathbf{a}_{i}^{T} \mathbf{x}-y\right)^{2} & =\sum_{i=1}^{m}\left(\mathbf{a}_{i}^{T} \mathbf{x}-\frac{1}{m} \mathbf{e}^{T} \mathbf{A} \mathbf{x}\right)^{2} \\
& =\sum_{i=1}^{m}\left(\mathbf{a}_{i}^{T} \mathbf{x}\right)^{2}-\frac{2}{m} \sum_{i=1}^{m}\left(\mathbf{e}^{T} \mathbf{A} \mathbf{x}\right)\left(\mathbf{a}_{i}^{T} \mathbf{x}\right)+\frac{1}{m}\left(\mathbf{e}^{T} \mathbf{A} \mathbf{x}\right)^{2} \\
& =\sum_{i=1}^{m}\left(\mathbf{a}_{i}^{T} \mathbf{x}\right)^{2}-\frac{1}{m}\left(\mathbf{e}^{T} \mathbf{A} \mathbf{x}\right)^{2}=\|\mathbf{A} \mathbf{x}\|^{2}-\frac{1}{m}\left(\mathbf{e}^{T} \mathbf{A} \mathbf{x}\right)^{2} \\
& =\mathbf{x}^{T} \mathbf{A}^{T}\left(\mathbf{I}_{m}-\frac{1}{m} \mathbf{e e}^{T}\right) \mathbf{A} \mathbf{x}
\end{aligned}
$$

## Orthogonal Regression

- Therefore, a reformulation of the problem is

$$
\min _{\mathbf{x}}\left\{\frac{\mathbf{x}^{T}\left[\mathbf { A } ^ { T } \left(\mathbf{I}_{m}-\frac{1}{m} \mathbf{e \mathbf { e } ^ { T } ) \mathbf { A } ] \mathbf { x }}\right.\right.}{\|\mathbf{x}\|^{2}}: \mathbf{x} \neq \mathbf{0}\right\}
$$

Proposition. An optimal solution of the orthogonal regression problem ( $\mathbf{x}, y$ ) where $\mathbf{x}$ is an eigenvector of $\mathbf{A}^{T}\left(\mathbf{I}_{m}-\frac{1}{m} \mathbf{e e}{ }^{T}\right) \mathbf{A}$ associated with the minimum eigenvalue and $y=\frac{1}{m} \sum_{i=1}^{m} \mathbf{a}_{i}^{T} \mathbf{x}$. The optimal function value of the problem is $\lambda_{\text {min }}\left[\mathbf{A}^{T}\left(\mathbf{I}_{m}-\frac{1}{m} \mathbf{e} \mathbf{e}^{T}\right) \mathbf{A}\right]$.

