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Abstract. We study interfacial behavior of a lamellar (stripe) phase coexisting with a disordered phase.
Systematic analytical expansions are obtained for the interfacial profile in the vicinity of a tricritical point.
They are characterized by a wide interfacial region involving a large number of lamellae. Our analytical
results apply to systems with one dimensional symmetry in true thermodynamical equilibrium and are of
relevance to metastable interfaces between lamellar and disordered phases in two and three dimensions. In
addition, good agreement is found with numerical minimization schemes of the full free energy functional
having the same one dimensional symmetry. The interfacial energy for the lamellar to disordered transition
is obtained in accord with mean field scaling laws of tricritical points.

PACS. 68.10.Cr Surface energy (surface tension, interface tension, angle of contact, etc.) – 64.60.Kw
Multicritical points – 61.25.Hq Macromolecular and polymer solutions; polymer melts; swelling

1 Introduction

Some equilibrium phases of matter exhibit spatial modu-
lations in one or more of their local properties (local or-
der parameter) and hence are called modulated phases [1].
Modulated phases can be found in a variety of physical and
chemical systems such as diblock copolymers, magnetic
garnet films, ferrofluids, adsorbates on surfaces of metals,
superconductors (Type I) and semiconductors. Although
these systems all have spatial modulations in their order
parameter, the microscopic origin of these modulations is
very different.

Usually modulated phases manifest either a one di-
mensional packing of sheets (the so-called lamellar or
stripe phase), two-dimensional packing of cylinders with
an hexagonal symmetry or a cubic packing of spheres or
other, more complex, bi-continuous super-structures with
cubic symmetry. The origin of the preferred length scale
of the modulations can be explained in many cases by
a competition between two type of interactions: a short-
range interaction which tends to make the system more
homogeneous together with a long-range one, or a non-
local one, which prefers proliferation of domain walls. For
example, in the magnetic films, the dipole-dipole interac-
tion has the latter effect.
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These two opposing interactions are responsible in the
above systems for the appearance of spatially modulated
phases having an optimal non-zero wave-vector. Depend-
ing on the range of the thermodynamical variables, in-
stead of having the usual segregation of the system into
two homogeneous phases (such as coexisting liquid and gas
phases, or two coexisting polymer phases), the system self-
organizes into alternating domains. Those domains are
associated with spatially modulated order parameter (po-
larization, magnetization, relative concentration), and can
be regarded as unit cells of super-structures of lamellar,
hexagonal or cubic symmetry. Depending on the system in
mind, the domain length scale can be as small as one hun-
dred angstroms or as large as centimeters [1]. In contrast
to periodic crystalline structures, the periodicity in mod-
ulated phases can be tuned by varying external fields such
as pressure, temperature and electric or magnetic fields.

In this paper we would like to present analytical re-
sults related to interfaces in modulated phases. When the
modulations are relatively weak an analytical expansion
of the interfacial profile can be obtained systematically.
In particular, we calculate the profile of the lamellar-to-
disordered interface for a model free energy where spatial
modulations are restricted along one dimension. Physi-
cal systems can create more complicated modulations in
two- and three dimensions. In many cases, the lamellar-
to-disordered interface addressed here can be shown to
be only metastable [2,3] and not in true thermodynami-
cal equilibrium. Nevertheless, their systematic study can
be useful to understand nucleation and growth in, e.g.,
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polymeric systems with slow dynamics. In addition, the
rather simplified lamellar-disordered interface can be gen-
eralized to other situations.

Our analytical results are valid in the vicinity of a
tricritical point which occurs for asymmetric profiles in
our strictly one-dimensional model. Close to the tricriti-
cal point it is possible to decouple the two characteristic
length scales which appears in the model: the period as-
sociated with the modulated phase and the width of the
interface. Thus, it is possible to compute analytically the
leading terms of the interfacial energies.

The obtained results presented here are in good agree-
ment with recent work by Netz et al. [2] where nu-
merical minimization of a similar free energy functional
yielded detailed structure of interfaces between various
two-dimensional modulated phases.

2 The model and its phase diagram

A phenomenological free energy F similar to the one in-
troduced in reference [2] is used hereafter in order to allow
us to study one-dimensional profiles between lamellar and
disordered phases.

F = 2(∇2φ)2 − 2(∇φ)2 +
t

2
φ2 +

1

4
φ4. (1)

This mean-field free energy is a modified Ginzburg-
Landau (GL) expansion in the order parameter φ(x),
which varies between φ = 1 for A-rich domains to φ = 0
for B-rich domains. The last two terms in F are the
usual terms appearing in the Landau expansion with
t = (T − Tc)/Tc being the reduced temperature and the
coefficient of the fourth order term is chosen to be 1/4
without loss of generality. For an order parameter without
spatial modulations they define our disorder free energy,
F
D

(within the Landau expansion):

F
D

=
t

2
φ2 +

1

4
φ4. (2)

The main deviation from the regular GL expansion can
be seen in the first two terms of (1). The coefficient of the
gradient square term is negative (favoring modulations),
whereas the coefficient of the Laplacian square term is
positive (preventing strong modulations) and playing the
role of a homogenizing interaction. An illustrative exam-
ple can be a diblock copolymer melt where each polymer
is composed of two blocks, A and B, which would like to
phase separate. However, since the A and B chains are
chemically linked forming one polymer chain, the system
can only undergo a micro-phase separation resulting in a
spatial modulation in the local A/B relative concentra-
tion.

In order to construct the phase diagram, we compare
the mean-field free energy F

D
associated with the dis-

ordered phase (φ = const) with the free energy FL of
a phase described by a modulating φ(r). Our approach
involves several simplifying assumptions: in the vicinity
of a critical point (weak segregation limit), an analytical

expansion of the free energy in powers of the small or-
der parameter (Landau expansion) can be justified. Since
a mean-field approximation is employed, critical fluctu-
ations corrections are omitted [4,5]. Furthermore, only
the most dominant modulation mode (the so-called single-
mode approximation) is considered because the amplitude
of the fluctuations of other q-modes grows more slowly in
this region as was shown by Brazovskii [4–6]. Finally, only
one-dimensional modulations of φ(r) = φ(x) along an ar-
bitrary chosen x direction will be explored. This reduces
the problem into an effective one-dimensional problem.
It applies to interfaces where the lamellae are themselves
parallel to the lamellar-disorder interface. We further dis-
cuss the validity and limitations of our assumptions in the
last section.

φ = φo + 2φq cos(qx) (3)

where φo is the mean spatial order parameter (the average
A/B relative concentration) and φq is the amplitude of the
q-mode modulation.

The most dominant mode is obtained by minimiz-
ing the free energy with respect to the q-vector. Within
the single mode approximation this leads to q∗ = 1/

√
2

with our choice of simple coefficients in (1). This is the
wave-vector characterizing the periodicity of the super-
structure, 2π/q∗. Inserting φ(x) of the dominant mode
from (3) into (1) we obtain the lamellar free energy

F
L

=
t

2
φ2
o +

1

4
φ4
o + (t− 1 + 3φ2

o)φ
2
q +

3

2
φ4
q. (4)

The disorder free energy FD (2) is simply given by setting
φ2
q = 0 in the above expression for F

L
.

Since this expression is symmetric with respect to
φo → −φo only the φo ≥ 0 region can be considered with-
out loss of generality. We then apply the variational princi-
ple with respect to φq. This enables us to integrate over φq
— one of the two order parameters. Since the amplitude
of the modulation minimizing FL is:

φ2
q =

1− t

3
− φ2

o (5)

the necessary condition for the existence of this modulated
phase is φ2

q ≥ 0, hence

1− t

3
− φ2

o ≥ 0. (6)

Substituting φ2
q from (5) into (4) gives the free energy for

the lamellar phase

F
L

= −
(t− 1)2

6
+
(

1−
t

2

)
φ2
o −

5

4
φ4
o. (7)

In the region bounded by inequality (6) and close to the
critical point, the free energy is a convex function of φo.
Therefore, the second-order phase transition line separat-
ing the order and the disordered phases is given by:

φ2
o =

1− t

3
(8)
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Fig. 1. The calculated phase diagram from the modulated
phase free energy FL as function of the reduced temperature-
average order parameter (t, φo). The phase diagram is symmet-
ric with respect to φo → −φo. The two symmetric tricritical
points are denoted by tcp. Below the tcp temperature, there
are two regions of coexistence of the lamellar phase and disor-
dered phase (D1 + L) and (D2 + L). At even lower tempera-
tures, the lamellar phase disappears. We then recover the usual
coexistence region between two different disordered phases:
D1 +D2 [8].

showing an upward shift of the critical temperature tc = 1
from its usual value for the GL model, tc = 0. A tricriti-
cal point appears at a temperature ttcp = 3/4, for which
δ2FL/δφ

2
o = 0. Below this temperature, the free energy is

concave; the system therefore prefers to phase separate.
Equation (5) gives the value of the order parameter (con-
centration) at the tricritical point, φ2

T
= φ2(ttcp) = 1/12.

In Figures 1 and 2 the phase diagram is plotted as
function of the reduced temperature – average concentra-
tion (t, φo), and as function of the chemical potential –
reduced temperature (µ, t), respectively. The phase di-
agram is calculated numerically within the single mode
approximation by comparing the lamellar free energy F

L

with the disorder one, F
D

. We note that the phase dia-
gram in the vicinity of the tricritical point resembles that
of the BEG (Blume-Emery-Griffiths) spin one model [7].
The BEG model also has two order parameters and ex-
hibits a similar behavior: a first order phase transition
line meets a second-order one at a tricritical point.

In the vicinity of the tricritical point (but inside the
two phase region) we are still in the weak segregation limit.
Hence, a systematic expansion can be performed as func-
tion of a new reduced temperature ε, measuring the dis-
tance from the tricritical point: ε = ttcp − t > 0. We then
get:

F
L

=
t

2
φ2

0 +
1

4
φ4

0 −
3

2

(
φ2
T

+
ε

3
− φ2

0

)2
. (9)

This equation can be expanded in terms of ηD and ηL ,
such that φ(ε) = φ

T
+ η

D
(ε) for the disordered (isotropic)

phase and φ(ε) = φ
T

+η
L

(ε) for the lamellar phase. In the
two-phase coexistence region, the boundaries are given by
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Fig. 2. Same as in Figure 1 but as function of the chemical
potential-reduced temperature (µ, t). The continuous line is a
second-order transition line. The dashed line is a first-order
one. They meet at two tricritical points (tcp). The two tran-
sition lines separate the lamellar phase region from the disor-
dered region. The phase diagram is symmetric with respect to
µ → −µ. The µ = 0 first order transition line meets the two
other first order lines at a triple point where all three phases:
L, D1 and D2 coexist.

the common tangent method:

µ
D

= µ
L

= µ (10)

together with

G
L
≡ F

L
− µφ

L
= G

D
≡ F

D
− µφ

D
(11)

where F
L

and F
D

are expressed in term of η
D

and η
L

,
respectively:

F
L

=
t

2
φ2
T

+
1

4
φ4
T
−
ε2

6
+
(5

6
+ ε
)
φ
T
η
L

+
ε

2
η2
L
− 5φ

T
η3
L
−

5

4
η4
L
, (12)

F
D

=
t

2
φ2
T

+
1

4
φ4
T

+
(5

6
− ε
)
φ
T
η
D

+ (1− ε)
η2
D

2
+ φ

T
η3
D

+
1

4
η4
D
· (13)

Relation (10) enables us to write η
D

as an expansion in
η
L

up to third order in ε:

η
D

= 2φ
T
ε+ φ

T
ε2 + εη

L
− 15φ

T
η2
L
−

2

3
φ
T
ε3 − 5η3

L
(14)

and relation (11) leads to ηL up to third order in ε:

η
L

= φ
T

(
−

2

5
ε+

1

25
ε2 +

13

250
ε3
)
. (15)
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Therefore:

ηD = φT

(
2ε+

2

5
ε2 −

14

25
ε3
)
. (16)

In terms of newly defined order parameters: φ± ≡ (φD ±
φ
L

)/2, we get

φ+ =
1

2
(φ

D
+ φ

L
) = φ

T
+

1

2
(η
D

+ η
L

)

= φ
T

(
1 +

4

5
ε+

11

50
ε2 −

127

250
ε3
)
,

φ− =
1

2
(φ

D
− φ

L
) =

1

2
(η
D
− η

L
)

= φT

(6

5
ε+

9

50
ε2 −

153

250
ε3
)
,

φ2
q =

1− t

3
− φ2

L
=

2

5
ε−

ε2

50
−

3

500
ε3. (17)

Note that at the tricritical point, the slopes of the two
phase transition lines given by equations (8, 16) are equal
as has been noticed by the original mean-field work of
reference [7].

3 The lamellar-disorder interfacial profile

In a simple condensation transition, the interface width
between the two homogeneous phases, ξ ∼ t−1/2, has the
same scaling behavior as the typical concentration fluctu-
ations of the homogeneous phase. In a modulated phase,
a second characteristic length scale exists and has to be
considered together with this correlation length. This is
the wave-length of the super structure, q∗. In order to
compute analytically the profile of the order parameter
for the disorder-lamellar interface close to the tricritical
point, where the two length scales are expected to be un-
correlated, we propose the following ansatz:

φ(x) = φ+ + δφ(x)

where δφ(x) = φ−f(x) + φqg(x) cos(q∗x). (18)

Far from the interface, in the disordered region, f(x) = 1
and g(x) = 0, whereas in the lamellar phase region,
f(x) = −1 and g(x) = 2. These are the boundary con-
ditions for the differential equations of the interfacial pro-
file. The slowly spatially varying functions f(x) and g(x)
play the role of the two order parameters. The difference
in the scaling of φ− and φq with ε close to the tricritical
point, enables us to decouple the behavior of these two
functions.

Expanding the chemical potential up to the third order
in φ−, we find:

µ− tφ+ − φ
3
+ = αφ− + 3φ+φ

2
− + φ3

− (19)

where α is define as:

α ≡
∂2F

D

∂φ2
D

= t+ 3φ2
+ = 1−

3

5
ε+

27

100
ε2 −

ε3

6
· (20)

Incorporating ansatz (18) into G
L

= F
L
− µφ

L
, we get:

F
L
− µφ

L
= G(φ+) +

α

2
(δφ)2 + φ+(δφ)3 +

1

4
(δφ)4

− (αφ− + 3φ+φ
2
− + φ3

−)δφ+ 2
{
f ′′φ−

+ φq[(g
′′ − (q∗)2g) cos(q∗x)− 2q∗g′ sin(q∗x)]2

− 2(f ′φ− + φq(g
′ cos(q∗x)− qg sin(q∗x))

}2

.

(21)

Close to the tricritical point, the two different length
scales behave differently. The profile is characterized by
the width of the interface, ξ, which should diverge at
t = ttcp. However, in the same limit, the modulation wave-
length, 2π/q∗, remains unchanged, as can be checked from
the numerical calculations (see Fig. 5). Therefore, taking
the average of F

L
− µφ

L
over one period, yields:

〈F
L
− µφ

L
〉 = G(φ+) + 2φ2

−

[
(f ′′)2 − (f ′)2

]
+ φ2

q

[
(g′′ −

1

2
g)2 + g′

2
−

1

2
g2
]

+
α

2
φ2
−f

2 +
α

4
φ2
qg

2 + φ+φ
3
−f

3

+
3

2
φ2
qφ−φ+fg

2 +
1

4
φ4
−f

4 +
3

4
φ2
qg

2f2φ2
−

+
3

32
φ4
qg

4 − (αφ− + 3φ+φ
2
−)φ−f. (22)

The variational principle with respect to f(x) leads to the
relation:

αf + 3φ+φ−f
2 +

3

2

φ2
q

φ−
φ+g

2 +
3

2
φ2
qfg

2

+ φ2
−f

3 = α+ 3φ+φ−. (23)

Using expressions (17) for φ+, φ− and φq, we get up to
the first order in ε:

f(x) = 1−
1

2
g2 +

9

10
g2
(g2

4
− 1
)
ε. (24)

This relation enables us to find, when applying the varia-
tional principle with respect to g(x), the following differ-
ential equation:

4g′′ =
α− 1

2
g + 3fgφ−φ+ +

3

2
φ2
−f

2g +
3

8
φ2
qg

3 (25)

which can be rewritten at the lowest order in ε as:

20

3
g′′(x) =

(
g − g3 +

3

16
g5
)
ε2. (26)

Taking into account the boundary conditions for g(x), the
analytical solution of this differential equation is found to
be:

g(U) =
2e−U

√
1 + e−2U

=
2

√
1 + e2U

(27)
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Fig. 3. (a) Analytical profiles of the two functions f(x) and
g(x) for ε = ttcp−t = 0.35. The plot scans the entire interfacial
region between a bulk lamellar phase (left side where g → 2,
f → −1) and the disordered phase (right side where g →
0, f → 1). (b) Analytical interfacial profile φ(x) using the
same functions f(x) and g(x) of (a). The value of the average
concentration in the two coexisting phases is: φ0 = 0.25 for the
lamellar phase and φ0 = 0.50 for the disordered one.

where U(x) = 1
2

√
3
5 (x− x0) ε, and x0 can be set to zero

without lost of generality. Using equation (24) we can now
obtain for f

f(U) = tanh(U)−
9

10
cosh−2(U) ε. (28)

The two functions f(x) and g(x) determine the interfacial
profile φ(x) close to the tricritical point and are plotted
in Figures 3 and 4. The width of the interface scales as
ξ ∼ ε−1. Namely, the correlation length exponent ν = 1 is
recovered, in agreement with the scaling laws associated
with the tricritical point [9]. We note that the main reason
it is possible to decouple the differential equations for f

-0.5

0

0.5

1

Fig. 4. Numerical interfacial profile for ε = 0.35 and µ =
0.322. In order to demonstrate that the most dominant bulk
mode remains unchanged even in the interfacial region, the
bulk lamellar phase is plotted as a dotted line. The horizontal
line just below φ0 = 0.5 denotes the average concentration of
the bulk disordered phase.

and g (to lowest order in ε) is due to the different scaling
of φq and φ− with respect to ε close to the tricritical point
(see Eq. (17)).

4 The disorder-lamellar interfacial tension

The interfacial tension γ, is defined as the excess of free
energy due to the interface. It can be written as:

γ =

∫
Γ (x)dx =

∫ [
G−

G
D

+G
L

2

]
dx

=

∫ [
F −

F
D

+ F
L

2
− µ δφ(x)

]
dx. (29)

Since up to second order in ε, the even part of Γ (x)
vanishes, we have to keep terms in Γ up to third order
in ε:

Γ = 2φ2
q(g
′)2 +

α− 1

4
φ2
q(g

2 − 2) + 3φ2
qφ−φ+

(fg2

2
+ 1
)

+
3

2
φ2
qφ

2
−

(f2g2

2
− 1
)

+
3

4
φ4
q

(g4

8
− 1
)

− φ2
−(α+ 3φ+φ−)f +

α

2
φ2
−(f2 − 1) + φ3

−φ+f
3.

(30)

This expression can be written as function of f(x) only:

Γ = (1− f2)
( 3

50
−
α

2
φ2
− + 3φ2

qφ−φ+

−
3

2
φ2
qφ

2
− −

3

8
φ4
q

)
+ odd terms (31)
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Fig. 5. Numerical interfacial profile for ε = 0.03 and µ =
0.249. The horizontal line just above φ0 = 0.3 denotes the av-
erage concentration of the bulk disordered phase. The width of
the interface is much larger than 2π/q∗, and over 100 lamellae
are located in this interfacial region.

and to third order in ε

Γ =
( 27

250
cosh−2(U) + odd terms

)
ε3 +O(ε4) (32)

where the odd terms in the above equations are odd with
respect to x → −x and will vanish upon integration over
x, yielding

γ =
18

25

√
3

5
ε2. (33)

This result corresponds to the expected tricritical expo-
nent µ = 2, in agreement with the hyperscaling relation
µ = (d − 1)ν, as the upper critical dimension for the tri-
critical point is d = 3 [9].

We note that in order to have the full expression of
f(x) up to first order in ε, one needs to expand g(x) up
to first order in ε. Indeed, if g(x) = go(x) + g1(x)ε, then
f(x) can be written as:

f(x) = 1−
1

2
g2 +

9

10
g2
(g2

4
− 1
)
ε− go(x)g1(x)

= fo(x) + f1(x)ε. (34)

Nevertheless, only the leading order terms of g(x) and
f(x) are required to compute the interfacial tension.

Numerical studies of this one-dimensional interface
without assuming single-mode dominance give results in
good agreement with the analytical calculation presented
above. We have discretized the order parameterφ and cho-
sen the grid spacing to be much smaller than 1/q∗ (typi-
cally 180 grid points per period). The free energy (1) can
then be minimized using the conjugate gradient method.

The free energies for the disordered (isotropic) and
lamellar phases (without using the single mode approxi-
mation) are computed in order to determine the chemical
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0.01
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0.1
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0.2
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Fig. 6. (a) Interfacial tension as function of ε = ttcp−t plotted
on a log-log plot. The straight line is the analytical interfacial
tension γ. The dots represent the numerical results as is dis-
cussed in the text. The linear dependence of both the analytical
and numerical results are in accord with the general scaling be-
havior expected close to the tricritical point. (b) Same results
as in (a) but plotted differently. The square root of the interfa-
cial tension γ is plotted as a function of ε = ttcp− t. The linear
dependence is another confirmation of the tricritical point scal-
ing γ ∼ ε2.

potential for the coexisting phases. Then, we compute the
free energy associated with the interface, in an interval
much bigger than the expected interface length, in order
to neglected boundary effect. The boundary conditions
are taken as reflecting (Dirichlet) boundary conditions.
The same procedure of reference [2] using equation (29)
is employed to calculate the interfacial energies. For small
ε = ttcp − t, the optimum wave vector is still q∗ = 1/

√
2,

within a good precision. The profiles of the interface for
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ε = ttcp − t = 0.35 and ε = 0.03 are shown in Figures 5
and 6, respectively.

The interfacial tension is plotted in Figure 6 as a func-
tion of ttcp− t. The log-log plot in Figure 6a as well as the

γ1/2 plot in Figure 6b manifests clearly that our analytical
result are: (i) in good agreement with the numerical results
obtained from the full minimization of the interfacial free
energy without assuming the single mode dominance; and
(ii) that indeed we obtained the expected scaling behavior
of the tricritical point.

5 Discussion and conclusions

In this paper we have derived analytical expressions for the
interface profiles between a simple modulated phase with
a lamellar symmetry and a disordered one. Our results are
valid close to the tricritical point since we assume that the
modulated phase is characterized by its dominant q-mode
in the bulk. This assumption is found to be compatible
with the scaling laws close to the tricritical point. Our
analytical (but approximated) results are in accord with
numerical minimization of the full free energy functional
having the same one-dimensional symmetry.

Unlike simple interfaces between two coexisting homo-
geneous phases, here the interface depends on two separate
length scales. Close to the tricritical point, the interface
width ξ diverges and hence gets decoupled from the peri-
odicity of the lamellar phase. It is interesting to note that
in this case, the interfacial region can involve quite a num-
ber of lamellae periods as is shown in Figures 4 and 5. For
ε = 0.03 the interfacial region spans over 100 lamellae.

Our results should be compared with the ones obtained
by Fredrickson and Binder [3] since they obtained a simi-
lar envelope equation for the profile (Eq. (27) for g in our
notation). In reference [3] the metastable interface close
to a symmetric critical point is considered. Due to the
symmetry, they have f = 0 (in our notation). The high
order terms (φ5) in their profile equation arises from the
first-loop correction (order φ6) in their mean-field effec-
tive Hamiltonian. In our case, due to the asymmetry, the
coupling of g to f 6= 0 generates the high order terms even
within mean field theory. Needless to say that the scaling
of the correlation length and surface tension is different in
the two models because of the difference between critical
and tricritical behavior.

It will be interesting to try to obtain experimental
data on lamellar to disorder interfaces close to the tri-
critical point. Unfortunately, in many experimental real-
izations the one-dimensional phase diagram studied here
is modified. The lamellar to disorder transition becomes
metastable since it is pre-empted close to the tricritical
point by phases with hexagonal and cubic symmetry [2].
Then, the lamellar-to-disordered interfaces can exist in
thermodynamical equilibrium but only far from the tri-
critical point. Close to the tricritical point the lamellar
to disordered transition describes only a metastable sit-
uation which is of importance, for example, for systems
with slow dynamics like copolymer mixtures [3,10]. We
hope the systematic expansion we present can be applied
to other more complicated situations where it is also possi-
ble to decouple the important length scales in the system.
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