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Abstract

We consider partially gapped one dimensional conductors connected to normal
leads, as realized in fractional helical wires. At certain electron densities, some
distinct charge mode develops a gap due to electron interactions, leading to a
fractional conductance. For this state we study the current noise caused by
tunneling events inside the wire. We find that the noise’s Fano-factor is different
from the tunneling charge. This fact arises from charge scattering at the wire-leads
interfaces. The resulting noise is, however, universal - it depends only on the
identification of the gapped mode, and is insensitive to additional interactions in
the wire. We further show that the tunneling charge can be deduced from the

finite frequency noise, and yet is interaction dependent due to screening effects.



Chapter 1

A Review

1.1 Introduction

A direct access to the electron charge e is given by the fluctuations in the current.
This has been demonstrated by Nyquist who studied independent emission events
of electrons from a cathode. When tunneling occurs by either one-electron or
multi-electron processes, one obtains an average charge, which may retain it’s
universality, as in the Kondo regime. Thus, generally, the noise S ~ (I?) is
proportional to the tunneling current S ~ 2¢*I;,, where ¢* is named the Fano-
factor. The measurement of this noise, named shot-noise, is widely used in more
exotic systems, and has been applied to demonstrate superconductor Cooper-pair
charges as well as the fractional quantum Hall charges.

The rich phenomenology of the two dimensional quantum Hall states includes
edge states, a fully gapped bulk, non-abelian statistics, and are characterized by
fractional conductance. Nevertheless, the most remarkable property of fractional
quantum Hall states is their fractional quasiparticles. Their fractional charge
has been demonstrated via shot noise experiments using quantum point contacts.
These quantum Hall states can be understood by a model of tunnel coupled

wires [1]. Using this construction one may design new one dimensional systems



with the phenomenology of two dimensional quantum Hall states. It was proposed,
that clean wires with spin-orbit coupling and Zeeman magnetic field are such
candidates, as interestingly, the edge states in such a realization are helical, with
counter propagating modes carrying opposite spins.

As eventually became clear, when connected to Fermi-liquid leads, clean
strongly interacting Luttinger-liquid wires display quantized conductance at e/h
at sufficiently low temperatures T'. The conductance remains quantized in the
presence of interactions [2] much like the in the two dimensional fractional quantum
Hall effect, and the shot noise vanishes.

More recently there has been a strong interest in the study of quantum wires
with Rashba spin-orbit coupling. Upon applying a Zeeman field one obtains
a non-monotonic behavior where the conductance drops by 1e?/h as observed
in an experiments [3], signaling a partial gap in the spectrum. Even then, the
conductance remains independent of electron-electron interactions in the wire as
long as the leads are noninteracting. Interestingly, in this regime electrons with
opposite spins travel to opposite directions, giving a helical behavior resembling
the situation at the edge of a two dimensional topological insulator. Much of the
interest in these systems has been due to the realization that, in both 2D and 1D
systems, they may host Majorana fermions when coupled to a superconductor.

More exotic helical states were predicted to emerge given sufficiently strong
interactions [4]. Depending on the gate voltage, controlling the density in the wire,
a family of fractional helical states may be stabilized, characterized by a fractional
conductance and a partial gap Fg,,. These states are closely related to the family
of fractional quantum Hall states, although it now may be directly stabilized in
1D as long as the system is clean. Thus, although the leads are noninteracting,
a new state forms where the current is conducted by particles with fractional
charges that may be manifested in the shot-noise.

Shot noise appears in the current fluctuations and provides valuable information



2) Normal Fractional Normal

1 out 1in
Zm — K — — D — _A]t
x — A \—e — L J_
jou g — — 1 X — F - 3in

4+in oy - - 4 out
b) V & ©) [ ballistic
\ gapped -

tunnelling

F=TITEN O N4 O dum bai}gSCattermg

2 3 4
spin up spin down

Figure 1.1: a) The chiral currents, incoming into the fractional wire from the

normal leads, and outgoing from the wire to the leads. b) The high-momentum

interaction process of the chiral currents illustrated on the electrons’ dispersion

curve. ¢) The tunneling and backscattering of the fractional wire’s gapped and
ballistic modes, respectively.

on electron-electron correlation effects in mesoscopic systems [5]. In particular its
interpretation as a measurement of the unit electric charge that tunnels through
a barrier is of great importance. It allowed the celebrated direct measurement
of the fractional charge of Laughlin quasiparticles (QP) in fractional quantum
Hall (FQH) systems [6]. It even remains so far the main experimental handle on
predicted non-abelian FQH states e.g. in the v = 2 Moore-Read state [7].
An ideal situation for such a direct interpretation of shot-noise S occurs when
a current [y, consists of rare tunneling events of quasiparticles between two
channels in a strongly correlated electron system. In such general circumstances
s

the Fano-factor, given by the ratio ¢* = 57—

Itun7

matches the total charge transferred
per tunneling event between the leads. Usually this charge corresponds to the
local elementary excitation charge defined inside the strongly correlated system
(i.e. the QP charge).

However, here we show that the shot-noise of a strongly correlated helical
wire with fractional conductance, is disparate. Helical wires consist of counter
propagating 1D modes of opposite spin. They were realized in semiconductors

either with spin orbit coupling under a magnetic field [3], or possibly due to
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internal magnetic ordering [8]. Sufficiently strong electron electron interactions in
such a system are predicted to stabilize fractional helical states with fractional
conductance [4]. Note that the fractional helical wire considered here is a special
case of a general class of partially gapped 1D conductors in which the tunneling
current flows parallel to a ballistic channel; see Fig. 1.1(c). We find, that in
such systems Coulomb interaction inside the wire and the existence of the second
ballistic channel affect the Fano-factor ¢* in two nontrivial manners. (i) The
tunneling charge may drag additional non-quantized charges from the ballistic
channel, yielding an interaction dependent local tunneling charge qiu,. (i) A
partial reflection of the tunneling charge results from a gradual screening of the
Coulomb interaction at the source and drain leads.

Consider a two dimensional quantum Hall sample, imagine transporting a bulk
quasiparticle towards the edge of the sample. The quasiparticle interacts with
the edge states via unscreened Coulomb bulk-edge interactions. This interaction
will generate a screening charge and hence, the total charge of the quasiparticle is
thus reduced. we show, by an exact calculation, that the tunnelling charge gtun
is indeed similarly non-quantized.

It is often the case that tunneling occurs in parallel to ballistic transport. The
quantum wire has a number of 1D modes, where part of these modes remain
ballistic whereas other modes are almost fully backscattered. This general situation
occurs in much more general setups such as edge states of quantum Hall samples in
the presence of point contact which partially depletes the electrons in a restricted
region. Due to these ballistic modes, the essential mechanism for the determination
of the total deposeted charge is the reflection of charge at the contacts. Suppose
that the a charge ¢, have tunneled. It propagates inside the interacting wire as
a collective mode. Upon scattering with the contact, depending on the strength
of the interaction, a part of the charge is reflected and a part is transmitted. In

the absence of the ballistic channels, the reflected charge from one contact can



not propagate to the opposite contact and hence, eventually after many round
tripes, will be fully transmitted into the leads. Thus the shot noise charge will
match ¢,,. However, the ballistic channels permit for some charge to be reflected
into the opposite contact and eventually escape.

In this work we provide a positive answer to the question of whether there is a
universal information contained in the low-frequency components of the shot-noise
of the aforementioned partially gapped 1D conductor. We further show that
the non-universal, interaction dependent local properties of the system can be
extracted from the shot-noise at finite frequency.

We study a model equivalent to a two-wire version of the Kane-Mukhopadhyay-
Lubensky anisotropic tunnel coupled wires formulation of the FQH effect [1], which
reproduces the Laughlin fractional QPs and gapless fractional edge states. The
fractional wire is connected to noninteracting normal leads; see Fig. 1.1(a). It was
found [4, 9] that at filling factor v = % with integer n, when a large energy

2n+

gap forbids QP tunneling, the wire’s conductance is G, = %% (e.g. G% = %%)
This differs from the 2D FQH conductance of V%.

We first show that in the absence of tunneling, when the source-drain voltage
is smaller than the gap, this fractional conductance contains no shot-noise despite
not being a multiple of ¢?/h. This contrasts the partition noise S oc 7(1 — T [5]
induced by noninteracting electrons tunneling through a barrier with a transmission
probability 7. It may be considered as a generalized equilibrium state where
opposite fractional chiralities are equilibrated with one reservoir only, either source
or drain. However, in general, the conductance has power law corrections due
to finite voltage or temperature. The situation corresponds to a renormalization
group flow of the perturbations from weak coupling to strong coupling.

Next, upon increasing voltage the differential conductance deviates from the

fractional value. As the voltage exceeds the energy gap the conductance eventually

acquires its maximal value of 2¢%/h. At low voltages, the leading deviations of the



current from its exactly fractional value occur due to fractional charges. Therefore,
when considering the effect of tunneling events, we find this system to exhibit
a remarkable universal shot-noise. The Fano-factor ¢*, though different than

the tunneling charge, is universal and interaction independent. For clean wires,

we find it to be ¢* = ﬁl’lge (e.g. ¢ = %e for v = %) Furthermore, effects of
disorder in the wire likewise produce a universal Fano-factor. This universality,
in our fractional partially gapped system, is rooted in the charge conservation of
the chiral modes in presence of Coloumb interaction. This is analogous to the
conductance quantization of quantum wires connected to noninteracting leads [2].

The non-universal interaction dependent local tunneling charge gu,, can be
extracted from the shot-noise at finite frequencies w ~ £, where L is the length of
the wire and vp is the Fermi velocity. A similar suggestion to use finite frequency

noise was made [10] to measure the charge fractionalization [11] in Luttinger

liquids.

1.2 The Model

We study an interacting quantum wire of length L, adiabatically connected to non-
interacting normal leads, containing both a Rashba spin-orbit (SO) coupling and a
Zeeman field. The model was introduced in Ref. [4] and we herein recapitulate its
crucial ingredients. The SO coupling horizontally shifts the electrons’ dispersion
relations by +kso according to their spin, thus creating four Fermi points. These
correspond to the left and right moving electrons with either spin up or spin down,
@/}%,@Dﬁ,i/}f,@/}f, denoted v, 19, 13, 14; see Fig. 1.1(b).

Near the Fermi surface one can consider both low-momentum and high-
momentum physical processes involving scatterings amidst the Fermi points.
The former are the density-density processes, handled within the Luttinger-liquid

(LL) formalism [12] as a free bosonic Hamiltonian Hy; see Eq. (1.7). The latter



involve 2kr interactions originating from multi-electron processes described by

Hint- The total Hamiltonian is accordingly.

H = Ho + Hin. (1.1)

In clean wires with SO coupling, high-momentum scattering between spin up
and spin down can be generated by the magnetic field and by low momentum
interactions, and open partial gaps near certain electronic densities [4]. As pointed
out by Kane et al. [1], the multiparticle processes shown in Fig. 1.1(b), described

by the Hamiltonian

Hint, ~ (V1102)"b3ta (¥hbs)™ + hic., (1.2)

may open a partial gap at filling factors v = ,fS—FO = 2n1+1.
Treatment of this interaction is done within the bosonization formalism [12].
This is done by introducing four bosonic fields ¢;, such that v; ~ €, with their

associated densities and currents

1

pi = ( )27T ©

o (13)
Ji = (—1)l+1§3t%-

Thus, at any point in the wire or the leads, the total current is I =e) . j;. The

interaction may now be expressed in its bosonized form

Hint ~ cos(np; — (n+ 1) + (n+ 1)ps — npy). (1.4)



Following Ref. [1], we introduce new chiral bosons,

gbﬁal n + 1 -n 901
= )
gap -n n+1 V2
(1.5)
L
gap — \/; n+1 -n ©¥3
¢bRa1 -n n+1 V4

in terms of which the cosine interaction becomes a simple backscattering operator,
¢gdp_¢éap

COS(T). By defining the canonically conjugate pairs Ogap £ Pgap = gbéa/f and

Opal = Opal = gzﬁﬁa/dR, the interaction term takes the simpler form

Mo — / dx [g(x) cos (ﬂj;)} | (1.6)

where the effective high-momentum interaction strength g(x) adiabatically changes
from 0 at the leads to ¢ inside the wire. When the scaling dimension A of this
interaction is smaller than two, an energy-gap Eg,;, is created in the ¢g,, mode,
while the ballistic mode ¢y, remains gapless; see Fig. 1.1(c).

The low-momentum Hamiltonian Hy must be invariant under the switching
of both chirality L <> R and spin 1$+|. The ¢ = (¢gap, Pva1) fields are odd under
this transformation (¢ — —¢) while the 6 = (0gap, Opal) fields are even (6 — +6).

The most general low-momentum Hamiltonian must therefore take the form

h
Ho= o / dz [8I¢TH{)’5(9:)8I¢ + axeTHg(x)axe] , (1.7)

where HY(z) and HY(x) are symmetric 2 x 2 matrices. These matrices change
adiabatically from the noninteracting leads to a Luttinger liquid inside the wire,

which nevertheless doesn’t affect our universal results.



1.3 Quantized Conductance

We begin our analysis by rederiving the fractional conductance [4] and showing
its universality [9]. At each end of the wire there are two incoming currents (from
the leads) and two outgoing currents (to the leads). We denote the incoming
left-moving currents by j* = jiL|I:+% with i, € {1,3}, and the incoming right-
moving currents by j* = jiR|z:_% with i € {2,4}; see Fig. 1.1(a). The incoming
currents are determined by the chemical potential p, g of the lead they emanate
from, with a voltage difference eV = pup — g,

1

ﬁﬂ& (1.8)
Uindamt = 52 h0-

2

_<jiL>z:+%

Taking the limit of increasingly large Ej,;,, the gapped mode ¢g,, becomes station-
L

ary (Oidgap) = 0. The ungapped modes satisfy [[ 2, dzd, ﬁa/lR, H] = 0, resulting

2

in the conservation of their associated currents,

(00 ) oy = (OBt )amt (1.9)

We now express the four equations (1.8) for the incoming currents in terms of
<8t¢>x:i%, <6’t0>x:i% using Eq. (1.5). We set (c%qﬁgap)x:i% = 0 and solve the
linear equations for the remaining modes in either side of the wire. Substituting
back to the original currents (j;) we find the total electric current (I) flowing

through the wire and the conductance [4]

(I)y e , 207 ¢
1 == == i) rx=x' — ; 11
G =/ vzix7> 1+ 02 21h (1.10)

where ' may be any point outside the wire in either of the leads. We emphasize
that the Hamiltonian Hy does not affect this result, as was shown by Meng et.

al. [9] using other methods.
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1.4 Universal Low Frequency Noise

We calculate the noise of the total current I(t), which at any point 2’ inside the

wire can be expressed, using Eq. (1.5), as

21(0) = Y20 gy + 0uu) = e+ o (111

™

We start the calculation by defining the fluctuations of any operator O as

SO(w>ij = /OO dt@zwt<{501(t),50](0>}>, (]_]_2)

—00

with 60 = O — (O). By taking the Fourier transform of the operator O(t) over
a duration 7, one gets its spectral dependence O(w) where w = w,, = %Tm Its

continuous spectral power is related to the noise by the Wiener-Khintchine theorem

~(1004(w), 60,(~)}) —— So(w)y (113

T—00

At low frequencies w < “F the spectral components of the ungapped modes

vary slowly over time scales much longer than the propagation time through the

wire. In this limit, to leading order in %, one can rewrite Eq. (1.9) as a field

operator equation,

Db @), = 0o @)| - (114)

ot
|t~

A similar conservation argument for the gapped field, which follows from the rela-

A .
tion U‘_z dxax(bgapa H] = 0, yields at(bgap(w)‘x:Jr% = 8t¢gap(w)‘x:f§ = %jgap(w)-

We use this equation with Eqs. (1.14),(1.5) to express I(w) in terms of the Fourier

11



components of the incoming currents and the tunneling current,

1+v
1+ 02

H)esy = {v

[ (@) + 4 ()]
1—v
1402

i )+ B )] + (@) e (115)

1.4.1 Thermal Noise

When the wire is fully gapped (i.e. Eg,p — 00) we may neglect the contribution
of jgap. The leading contribution to the electric current noise S;(w) stems from

the thermal noise of the incoming fields j™, which is given by [5] Sjin(w);; =

Oijos coth(QZ’gT). This and Eq. (1.15) can be utilized in order to derive the noise

of the electric current

hw ) 202
2kgT’ 1+ 2

Sr(w) = 2% —— coth(

o (1.16)

This expression tends to the Johnson-Nyquist zero frequency result of S; =
4kgT(G,. As this holds in the presence of voltages eV > kgT, it ushers the
conclusion that although we have a non-integer conductance, there is no zero

temperature noise.

1.4.2 Shot Noise

We move on to evaluate the noise when the gap is finite and yet larger than the
energy scales in the system Eg,, > {eV,kgT'}. At low temperatures eV > kgT

the dominating contribution to S;(w) comes from tunneling events through the

gap. Hence we define the shot-noise charge, or Fano-factor, as ¢* =
namely by the ratio of the zero-frequency noise to the tunneling current () =
(I — G,V. At a single tunneling event the combination of the gapped mode

2(1’% subject to the cosine potential changes by 27 from one minima to another.

12



From the definition of jg,p,, the charge carried by it during the tunneling event

is heuristically [ dt[jgap] = v. Defining a tunneling rate I' = Ug—lj“”, we may read

the charge transfered between the leads at each such event off from Eq. (1.15)

<Itun> _ 2
r = 1+v2

to be ¢* = e. This charge indeed matches the Fano factor, as we
consecutively show.

As E,,, > eV, the tunneling events become scarce and independent. Therefore,
at low frequencies eV > hw, the spectrum exhibited by jg., is Poissonian [13],
Sgap (W) = 20 (Jgap). Using Eq. (1.15) and the Poissonian form of S;,, we obtain

the shot-noise charge

*

. S[(WZO) 2v

- . 1.1
2low) 112" (1.17)

This is our main result. One may understand the fact that ¢* differs from the
tunneling charge as follows. Upon arriving to a given lead, the tunneling charge
that has tunneled is no longer an eigenstate, and gets partially reflected. The
existence of the ballistic channels permits multiple reflections of this charge
between the opposite leads. Importantly, due to the formation of the gap in the
fractional wire, the original chiral charges are not conserved [ [ dxd,p;, H] # 0,
allowing the multiple reflections to modify the overall transmitted charge to
a different value. Remarkably, this shot-noise charge attains a universal value
unaffected by low-momentum Coulomb interactions. This universality stems from

the connection to the noninteracting leads much like the conductivity [2].

1.4.3 Disorder Effects

We briefly discuss the influence of a small amount of disorder. The leading
perturbation of an impurity was shown to be Hpg ~ COS(l_T;%al\z:st) [4], mani-
festing in backscatterings of the ballistic channel, see arrows in Fig. 1.1(c), and
hence, lowering the electric current (I) = G,V + (L) — (Ips). As long as

this perturbation remains sufficiently small, we may treat these processes as

13



independent Poissonian events. We model these events by introducing an im-
purity term in Eq. (1.14), with 8t9bal(w)|z:+% o~ athal(w)|m:_% + 75 Jimp, With
the impurity backscattering current obaying [ dt [fimp) = 1’7” Then, following
similar arguments as above, we find a universal Fano-factor, originating from
the backscattering. The distinct topologies of the backscattering and tunneling
operators, as seen in Fig. 1.1(c), impel the differing of their Fano-factors. We

find the noise to be S = 2¢*(Liun) + 2¢5s(Ins), with gfis = %e (e.9. ¢hs = %e

LEgap
hvp

for v = %) Since the tunneling current exponentially decays with , 1t is

dominated by the backscattering contribution given a sufficiently long wire.

1.5 The Two Dimensional Limit

1.5.1 The Model

We stress that the fact that ¢* # g, in our system is consistent with the equality
of these two quantities appearing in many other systems, in particular for impurity
noise in FQH bars. We show that the tunneling charge ¢, and the Fano-factor
q* coincide and reduce to the Laughlin quasi-particle charge in the 2D FQH limit
of an array of many such wires coupled together. Therefore, we give here a brief
generalization of our model for the Kane-Mukhopadhyay-Lubensky [1] formulation
of the standard FQH effect. We treat an array of M = 2N tunnel coupled spinless
wires subject to a magnetic field. By increasing the number of wires the 2D limit is
gradually obtained, introducing a spatial separation of the edge and bulk physics.
This model, hence allows us to study the crossover from our 1D results to the
known 2D limit.

The model is schematically depicted in Fig 1.2. The Hamiltonian can be split
into two parts

H = Ho + Hint. (1.18)
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2N
W .

Figure 1.2: (i) The chiral currents within the normal leads on both sides of the
coupled wires’ array (numbered at the left interface). (ii) The gapped modes
within fractional array (numbered at the right interface). (iii) The tunneling
through the equidistant mode (center). (iv) The ballistic modes propagating

along the fractional edges (top and bottom).

Here H, describes the effective free Hamiltonian, which includes the contribution
of the low-momentum processes within the region of length L, and H;,; describes

the high-momentum interactions within the same region. We focus on the most

. . _ 1 .
relevant processes taking place at filling factors v = 5= described by
M-1
Hing ~ Z(wawﬁ)n¢fjlwg%(¢fjl i)+ hee, (1.19)
i=1

where the fermionic operators 1/11L /R correspond to left and right moving electrons
at the Fermi surface. Within the bosonization [12] formalism we introduce the
bosonic fields gof/ " such that %L IR eivl R, with their associated densities

LR

L/R
Pi /

= :F%@c% and currents jiL/R = i%@tgpiL/R. The interaction may now be

expressed in bosonized form as
M-1
Hine ~ Y cos(ngf — (n+ 1)l + (n+ gl —nell,). (1.20)
i=1

Following Ref. [1], we make a change of variables to the canonically conjugate pairs

[9i(x),0;(2)] = i%;;sign(z’ — x) given by (¢,0;)" = Baxa(pF, @f, 0F 1, 08 1) 7"

15



where the index 7 is to be understood as cyclical (i.e. ¢pr11 = 1), with

v n —(m+1) n+1l —n
By, = VY . (1.21)

2 -n n+1 n+1 —n

The interaction term now takes the simple form

Hone = Ail / dg() cos (f;‘%) | (1.22)

This interaction forms an energy-gap Eg,p, in the ¢ ... ¢y~ modes, while main-

taining the mode corresponding to the chiral edge states, @), as gapless.

1.5.2 Hall Conductance

At the ends of the coupled wires’ array there are M currents incoming from
the leads and M currents outgoing to the leads. The incoming currents are
determined by the chemical potential pf, g of the lead they emanate from, with

voltage difference eV = pup — g,

1
L .
1
<]’L >m:—£ - 27ThILLL

2

(1.23)

It is sufficient to focus on the zero frequency analysis. Charge conservation along

the edge-states implies

¢M|CC:+£ — ¢M|x:_£ )
2 : (1.24)

0M|x:+% = 9M|x:_é-

For simplicity we focus our study on bulk excitations equidistant from the edges
of the array. This can be done in the symmetric case of an even number of wires

M = 2N; see Fig 1.2. We therefore define the current flowing through the gap by

16



Jaap = L0 |a=o While (Dyignany) = 0.

When the array is fully gapped (i.e. Egap — 00) We set (jgap) = 0 and solve
these equations for the modes in either side of the wire (0;¢;),_, L, (040:) s L,
allowing us to calculate the total electric current flowing through the wire and

thus the conductance [4]

(1.25)

1.5.3 Quasiparticle Charge

The low temperature noise is dominated by the contribution from jg,, when the
gap is larger then the energy scales in the system (i.e. Egp > eV > kpT'). As
the tunneling events become scarce and independent, the spectrum exhibited
by Jgap is Poissonian S, = 2v(jgap). This allows us to calculate the electric

—521 <(I“::(;) is given by the ratio of

current noise Sy(w). The Fano-factor charge ¢* =
the zero-frequency noise to the tunneling current (Iy,,) = (I) — GyV which is
dominated by the contribution from (jgap) as well. Therefore a simple expression

for the Fano-factor charge is derived

v+1 N+ v—1 N
v—1 v+1

This expression tends to the Laughlin quasiparticle charge of ¢y, — re when

ve. (1.26)

N — oo and the 2D limit is approached.

1.6 High Frequency Noise

Contrary to the zero frequency noise, the high frequency noise is affected by
Coulomb interactions. It reveals short timescale processes, and is used to extract

the initial tunneling charge g;,, inside the wire. This charge encompasses the

17



screening cloud, formed by the interaction between the ballistic and gapped modes
afore hitting the leads.

Closed form expressions for S;(w) and gy, can be obtained for a broad family
of low-momentum interactions that are simultaneously diagonalizable with the
cosine perturbation Eq. (1.6). The Hamiltonian inside the wire contains both the
high momentum interaction H;, = f dx [g CoS (%%)] and the low momentum
interactions Hy. By the symmetry considerations explained in the main text,
the most general low momentum interactions may be represented by two real

symmetric 2 x 2 matrices H{ and H{ as

Ho = QE / dx [amTHgaxqs + 0,0 H20,0| . (1.27)
T

In general, the low momentum interactions may couple the ¢g,, field with the
¢ral field, and similarly 0,,, with 6y,. Such a coupling makes the treatment of
the cosine interaction non-trivial. In this appendix, we explicitly present a broad
family of low-momentum Hamiltonians that are simultaneously diagonalizable
with the cosine perturbation. Within this family of Hamiltonians, the effective
theory decomposes into two new decoupled Luttinger liquid sectors, where the
cosine interaction acts solely on one of them.

It is convenient to parameterize the two symmetric matrices by the six param-

eters Ky, Ky, uy, us, 7,77 as

uvy
qu _ efi'y(f’crz K1 0 ei'y¢o'g
0o — )
us Ko
b (1.28)
u1 K1 0
H9 _ efi'ygaz v ei'yeog
0 — )
14
0 T

where oy is the second Pauli matrix. There are two prominent cases to note: (i)

A tuning, where the gapped and ballistic modes decouple v¢ = 7% = 0. (ii) A

18



standard LL Hamiltonian [12] containing only four parameters due to symmetry
under inversions of either spin or chirality. The latter Hamiltonian is attained
by setting v¢ = ~? = Ty where Ky = K, Ky = K, and u; = u,, us = u, are the
Luttinger parameters and velocities, of the charge and spin sectors respectively.

We construct a canonical transformation

-
Il
N

1o,
AT0,

(1.29)
0

that retains the shape of the cosine interaction (i.e. gggap X (gap) While transform-
ing the Hamiltonian to a diagonal noninteracting form. The former condition is

satisfied by using

Ay 0
A= . (1.30)
A21 A22

In terms of ¢ and 6, the Hamiltonian matrices read

HY — HY = ATHS A,
(1.31)
HY — H) = (AHHJ(A™HT.
A transformation possessing the aforementioned properties exists only when
v =~? =~? and either (i) v = 0 or (ii) u = u; = uy. The former case is trivial,
since HJ and H{ are initially diagonal. A simple observation that #ﬁ]{f o =1
in the latter case, confirms the simultaneous diagonalizability of the Hamiltonian
matrices.
In order to construct the full transformation, we pursue a noninteracting form
by imposing H, o = ﬁ]g and explicitly demanding the diagonality of either of the
matrices yields a condition on the ratio ﬁ—ﬁ. The transformed low-momentum

Hamiltonian H, inside the wire is hence both diagonalized and noninteracting.

The gapped fields (ﬁgap,égap) propagate with velocity g, = u; and are fully
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decoupled from the ballistic fields (gz;bal, ébal) propagating with velocity up. = us.

The interaction Hamiltonian takes the form

Hint = /dm [g(m) cos(2V Adgap) | (1.32)

where the matrix element Aq; is related to the scaling dimension of the interaction

via A — AT%I _ chos (7) + sin ('y

. An explicit form of the transformation matrix is

1 vA 0
A= — : (1.33)

VA | (8= ) cos(y)sin(y) /5
Whereas the original model has six parameters characterizing the low momentum
interactions, we have found a four parameter subspace, which is decomposable into
one free sector and one sector with a cosine perturbation. This model is exactly
solvable either via Bethe-ansatz [14] or upon further tuning A = 3 by means of
refermionization. These may ultimately be used in future works to explore the

full crossover behavior in the system.

1.6.1 Tunneling Charge

As the gapped fields are fully decoupled from the ballistic fields, a tunneling
event corresponds to a 27 jump in the gapped field Mﬁg}égap, while leaving dpa
unaffected. The current at any point 2’ inside the wire can be decomposed
as —I %[(An + A21>atégap + (A + A22>8t(5bal] = 5gap + jbal- Since the
ballistic fields are decoupled from the gapped fields, the total tunneling charge is

Gon = [dt] = [ dt[ejgap] = (1 + ﬁ—ﬁ) ve, given explicitly by

Gtun = 1+

(% _;((L> COS(W) Sm(ﬂ ve. (1'34)

Sheos?() + 4 sin ()
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This expression continuously interpolates between two prominent particular cases:
(i) A free theory of the ¢ and 0 fields, giving ¢y, = ve. (ii) A Luttinger-Liquid [12]

with velocities u,, u, and compressibilities K,, K, of the charge and spin sectors,

2K, K,

satisfying v, = v,, for which we obtain gy, = yovesmidd

1.6.2 Shot Noise

The ballistic chiral fields &ﬁf = O + gzNSbal are free. Therefore an appropriate

phase shift can be included to account for the propagation time between the leads,

TL/R ivLl 7L/R
@), =T W), (1.35)

oty
Ml

Repeating the low frequency derivation, this phase shift is used to derive a lengthy
high frequency expression for I(w)|,_, L in terms of j™ and jg.,. We focus on
the low-temperature noise when Eg,, > eV > kgT'. At high applied voltages
eV > hw the spectrum exhibited by jy.p is Poissonian S5, (W) = 2222 (5ap). This

allows us to calculate the finite frequency electric current noise

Sr(w) = 2¢" (Tyun) (qmn)z + - (q;%) , (1.36)

1+ a?tan?(4%)

2v

Where o = W

. This result tends to the zero frequency universal value of

St = 2q* (L) It oscillates as a function of w between ¢* and a minimal value of

()

This minimum is interaction dependent and may serve as a probe for measuring
Gwun affected by the low-momentum processes within the wire.
The essential condition for the realization of fractional wires is strong enough

Coulomb interactions [4]. Hence, the effects predicted in this paper should be
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experimentally measurable. We believe that insights from this work will shed
light on the interpretation of noise measurements in 2D FQH systems with

multicomponent edge structures.
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Shot-Noise in Fractional Wires: a Universal Fano-Factor Different than the Tunneling
Charge

Eyal Cornfeld,! Izhar Neder,! and Eran Selal!
! Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv, 69978, Israel

We consider partially gapped one dimensional (1D) conductors connected to normal leads, as
realized in fractional helical wires. At certain electron densities, some distinct charge mode develops
a gap due to electron interactions, leading to a fractional conductance. For this state we study
the current noise caused by tunneling events inside the wire. We find that the noise’s Fano-factor
is different from the tunneling charge. This fact arises from charge scattering at the wire-leads
interfaces. The resulting noise is, however, universal - it depends only on the identification of the
gapped mode, and is insensitive to additional interactions in the wire. We further show that the
tunneling charge can be deduced from the finite frequency noise, and yet is interaction dependent

due to screening effects.

PACS numbers: 73.23.-b, 71.10.Pm, 71.70.Ej

Introduction - Shot noise appears in the current fluc-
tuations and provides valuable information on electron-
electron correlation effects in mesoscopic systems [1]. In
particular its interpretation as a measurement of the unit
electric charge that tunnels through a barrier is of great
importance. It allowed the celebrated direct measure-
ment of the fractional charge of Laughlin quasiparticles
(QP) in fractional quantum Hall (FQH) systems [2]. It
even remains so far the main experimental handle on pre-
dicted non-abelian FQH states e.g. in the v = % Moore-
Read state [3].

An ideal situation for such a direct interpretation of
shot-noise S occurs when a current Ii,, consists of rare
tunneling events of quasiparticles between two channels
in a strongly correlated electron system. In such general
circumstances the Fano-factor, given by the ratio ¢* =
ﬁ, matches the total charge transferred per tunneling
event between the leads. Usually this charge corresponds
to the local elementary excitation charge defined inside
the strongly correlated system (i.e. the QP charge).

However, here we show that the shot-noise of a strongly
correlated helical wire with fractional conductance, is dis-
parate. Helical wires consist of counter propagating 1D
modes of opposite spin. They were realized in semicon-
ductors either with spin orbit coupling under a magnetic
field [4], or possibly due to internal magnetic ordering [5].
Sufficiently strong electron electron interactions in such a
system are predicted to stabilize fractional helical states
with fractional conductance [6]. Note that the fractional
helical wire considered here is a special case of a gen-
eral class of partially gapped 1D conductors in which the
tunneling current flows parallel to a ballistic channel; see
Fig. 1(c). We find, that in such systems Coulomb inter-
action inside the wire and the existence of the second bal-
listic channel affect the Fano-factor ¢* in two nontrivial
manners. (i) The tunneling charge may drag additional
nonquantized charges from the ballistic channel, yielding
an interaction dependent local tunneling charge gquy. (ii)
A partial reflection of the tunneling charge results from

2) Normal Fractional Normal
1 out 1in
zm _ N — — I _At

—n S N, ——
Jout g — — — - T — 3in

sin oy 4 out

b) \ V & ) _<ballistic - <
= gapped
:Dﬁﬁﬁé’fffﬁ'é"f""{:

back»écattering

it A et > : >

spin up spin down

v=1/(2n+1)

Figure 1: a) The chiral currents, incoming into the fractional
wire from the normal leads, and outgoing from the wire to
the leads. b) The high-momentum interaction process of the
chiral currents illustrated on the electrons’ dispersion curve.
¢) The tunneling and backscattering of the fractional wire’s
gapped and ballistic modes, respectively.

a gradual screening of the Coulomb interaction at the
source and drain leads.

In this work we provide a positive answer to the ques-
tion of whether there is a universal information contained
in the low-frequency components of the shot-noise of the
aforementioned partially gapped 1D conductor. We fur-
ther show that the non-universal, interaction dependent
local properties of the system can be extracted from the
shot-noise at finite frequency.

We study a model equivalent to a two-wire version
of the Kane-Mukhopadhyay-Lubensky anisotropic tun-
nel coupled wires formulation of the FQH effect [7], which
reproduces the Laughlin fractional QPs and gapless frac-
tional edge states. The fractional wire is connected
to noninteracting normal leads; see Fig. 1(a). It was



found [6, 8] that at filling factor v = ﬁ with integer
n, when a large energy gap for?idgs QP tunneling, t2he
225 (e Gy = 15).
This differs from the 2D FQH conductance of V%.

We first show that in the absence of tunneling, this
fractional conductance contains no shot-noise. This con-
trasts the partition noise S o 7(1 — 7) [1] induced by
noninteracting electrons tunneling through a barrier with
a transmission probability 7. Next, when considering the
effect of tunneling events, we find this system to exhibit
a remarkable universal shot-noise. The Fano-factor ¢*,
though different than the tunneling charge, is universal
and interaction independent. For clean wires, we find it
to be ¢* = 1J2r’;2e (e.9. ¢ = %e for v = %) Furthermore,
effects of disorder in the wire likewise produce a universal
Fano-factor. This universality, in our fractional partially
gapped system, is rooted in the charge conservation of the
chiral modes in presence of Coloumb interaction. This is
analogous to the conductance quantization of quantum

wires connected to noninteracting leads [9].

wire’s conductance is G, =

The non-universal interaction dependent local tunnel-
ing charge guun, can be extracted from the shot-noise at
finite frequencies w ~ %, where L is the length of the
wire and vp is the Fermi velocity. A similar suggestion
to use finite frequency noise was made [10] to measure

the charge fractionalization [11] in Luttinger liquids.

The Model - We study an interacting quantum wire of
length L, adiabatically connected to non-interacting nor-
mal leads, containing both a Rashba spin-orbit (SO) cou-
pling and a Zeeman field. The model was introduced in
Ref. [6] and we herein recapitulate its crucial ingredients.
The SO coupling horizontally shifts the electrons’ disper-
sion relations by +kgo according to their spin, thus cre-
ating four Fermi points. These correspond to the left and
right moving electrons with either spin up or spin down,
1/)11*/7 ¢f» 1/Jf, 1/’57 denoted d)la ¢27 1;[)3’ 1/}4; see Flg 1(b)

Near the Fermi surface one can consider both low-
momentum and high-momentum physical processes in-
volving scatterings amidst the Fermi points. The for-
mer are the density-density processes, handled within
the Luttinger-liquid (LL) formalism [12] as a free bosonic
Hamiltonian Hg; see Eq. (6). The latter involve 2kp in-
teractions originating from multi-electron processes de-
scribed by Hint. The total Hamiltonian is accordingly.

H=Ho+ Hint- (1)

In clean wires with SO coupling, high-momentum scat-
tering between spin up and spin down can be generated
by the magnetic field and by low momentum interactions,
and open partial gaps near certain electronic densities [6].
As pointed out by Kane et al. [7], the multiparticle pro-
cesses shown in Fig. 1(b), described by the Hamiltonian

Hine ~ (Y102) " Yipa (hepa)™ + hec., (2)

_1
2n+1"

Treatment of this interaction is done within the
bosonization formalism [12]. This is done by introduc-
ing four bosonic fields ¢;, such that 1; ~ e, with
their associated densities p; = (71)%6@% and currents
i = (—1)”1%@%. Thus, at any point in the wire or the
leads, the total current is I = e}, j;. The interaction
may now be expressed in its bosonized form

may open a partial gap at filling factors v = lfTi) =

Hint ~ cos(ngr — (n+1)p2 + (n+ 1)z —nps).  (3)

Following Ref. [7], we introduce new chiral bosons,
¢1l)/a1 — n+l -n ¥1
<¢gap =V -n n+l 2 )’
L n+l —n ©3
ap | =
()= (20 (2)

in terms of which the cosine interaction becomes a simple

Ggap— P
%) By defining the

canonically conjugate pairs Ogap+dgap = ¢é’a/§ and Oy +

(4)

backscattering operator, cos(

Pbal = (;Sﬁ 4 IR, the interaction term takes the simpler form

Hint = /dx {g(x) cos <2¢\%P>} , (5)

where the effective high-momentum interaction strength
g(z) adiabatically changes from 0 at the leads to ¢ inside
the wire. When the scaling dimension A of this interac-
tion is smaller than two, an energy-gap Eg,p, is created
in the ¢ga, mode, while the ballistic mode ¢y, remains
gapless; see Fig. 1(c).

The low-momentum Hamiltonian o must be invari-
ant under the switching of both chirality L < R and
spin T4>|. The ¢ = (Pgap, Pba1) fields are odd under this
transformation (¢ — —¢) while the 6 = (0gap, Opar) fields
are even ( — +6). The most general low-momentum
Hamiltonian must therefore take the form

Hy = % /dx [amTHg(x)aqu + 80,07 H (2)0,6]
(6)
where HJ(x) and H{(x) are symmetric 2 x 2 matrices.
These matrices change adiabatically from the noninter-
acting leads to a Luttinger liquid inside the wire, which
nevertheless doesn’t affect our universal results.

Quantized Conductance - We begin our analysis by
rederiving the fractional conductance [6] and showing its
universality [8]. At each end of the wire there are two
incoming currents (from the leads) and two outgoing cur-
rents (to the leads). We denote the incoming left-moving
currents by ji* = j; |m:+% with i, € {1,3}, and the
incoming right-moving currents by ];2 = Jinlpe_ L with
ir € {2,4}; see Fig. 1(a). The incoming currents are de-
termined by the chemical potential p7, r of the lead they



emanate from, with a voltage difference eV = pp — pg,

—(Jir)amrt = soi by (in)ae—t = gogbr.  (7)

2 2

Taking the limit of increasingly large Ey,p, the gapped
mode ¢gap becomes stationary (0¢¢pgap) = 0. The un-

gapped modes satisfy [f_%é d:raxngéE{lR,H] = 0, resulting
2

in the conservation of their associated currents,
L/R L/R
<8t¢ba/1 )a= +L = <at¢ba/1 - L. (8)

We now express the four equations (7) for the incoming
currents in terms of <8t¢)x:i%, <8t9)m:i% using Eq. (4).
We set (J¢¢gap)p—+L = 0 and solve the linear equations
for the remaining modes in either side of the wire. Sub-
stituting back to the original currents (j;) we find the
total electric current (I) flowing through the wire and
the conductance [6]

Iy e ) 207 2
G, = vV oV ;(]i>z:z/ = m%a (9)

where 2’ may be any point outside the wire in either of
the leads. We emphasize that the Hamiltonian Hg does
not affect this result, as was shown by Meng et. al. [§]
using other methods.

Universal Low Frequency Noise - We calculate the
noise of the total current I(¢), which at any point z’
inside the wire can be expressed, using Eq. (4), as é[ (t) =
gé‘t(%ap + Pbal) = Jeap + Jbal. We start the calculation
by defining the fluctuations of any operator O as

So(wly = [ e ({50,(0.60,0).  (10)

with O = O — (0). By taking the Fourier
transform of the operator O(t) over a duration 7,
one gets its spectral dependence O(w) where w =
w,m = 2 Tts continuous spectral power is re-
lated to the noise by the Wiener-Khintchine theorem
7{{00i(w),00;(-w)}) —— So(w)s;-

At low frequencies w < % the spectral components of
the ungapped modes vary slowly over time scales much
longer than the propagation time through the wire. In
this limit, to leading order in %, one can rewrite Eq. (8)
as a field operator equation,

o' @)| = ae @) .

2

A similar conservation argument for the gapped field,

which follows from [[2, dzd;¢eap, H] = 0, yields
2

at¢gap(w)|x:+g = 8t¢gap(w)|x:—g = %jgap(w)- We

use this equation with Egs. (11),(4) to express I(w) in
terms of the Fourier components of the incoming cur-

rents and the tunneling current,

1+v

T2 1" (w) + 4 (w)]

H)lmsy = {v

1—v
—v
1412

) + 6] + 1y e (12

When the wire is fully gapped (i.e. Egap — 00) we may
neglect the contribution of jga,. The leading contribution
to the electric current noise Sy (w) stems from the thermal
noise of the incoming fields j, which is given by [1]

Sjin(W)ij = bij5r coth(%). This and Eq. (12) can be
utilized in order to derive the noise of the electric current
hw 202
= 2e°— h 1
Srlw) = 62 coth( )T 2 (13)

This expression tends to the Johnson-Nyquist zero fre-
quency result of S; = 4kgTG,. As this holds in the
presence of voltages eV > kpT, it ushers the conclusion
that although we have a non-integer conductance, there
is no zero temperature noise.

We move on to evaluate the noise when the gap is fi-
nite and yet larger than the energy scales in the system
Egap > {eV, kpT}. At low temperatures eV > kpT the
dominating contribution to Sy(w) comes from tunneling
events through the gap. Hence we define the shot-noise
charge, or Fano-factor, as ¢* = S;&‘:’i?, namely by the
ratio of the zero-frequency noise to the tunneling cur-
rent (Iyun) = (I) — G, V. At a single tunneling event the

combination of the gapped mode 24:/@’

subject to the co-
sine potential changes by 27 from one minima to another.
From the definition of jyap, the charge carried by it during

the tunneling event is heuristically [ dt[jgap] = v. Defin-

ing a tunneling rate I' = @g—:p), we may read the charge

transfered between the leads at each such event off from
Eq. (12) to be ¢* = @ = lil;Q e. This charge indeed
matches the Fano factor, as we consecutively show.

As Eg.p > eV, the tunneling events become scarce
and independent. Therefore, at low frequencies eV >
fuwo, the spectrum exhibited by jgap is Poissonian [13],
Sjeap (@) = 20(jgap). Using Eq. (12) and the Poissonian

form of Sj,,, we obtain the shot-noise charge

_ Siw=0) 2
<Itun> ]. + V2

This is our main result. One may understand the fact
that ¢* differs from the tunneling charge as follows. Upon
arriving to a given lead, the tunneling charge that has
tunneled is no longer an eigenstate, and gets partially
reflected. The existence of the ballistic channels permits
multiple reflections of this charge between the opposite
leads. Importantly, due to the formation of the gap in
the fractional wire, the original chiral charges are not
conserved [ [ dzd,p;, H] # 0, allowing the multiple reflec-

*

(14)



tions to modify the overall transmitted charge to a dif-
ferent value. Remarkably, this shot-noise charge attains
a universal value unaffected by low-momentum Coulomb
interactions. This universality stems from the connection
to the noninteracting leads much like the conductivity [9].

We briefly discuss the influence of a small amount of
disorder. The leading perturbation of an impurity was
shown to be Hps ~ co8(2 Phallz=aps) [6], manifest-
ing in backscatterings of the ballistic channel, see ar-
rows in Fig. 1(c), and hence, lowering the electric current
(I) = G,V 4 (Itun) — {Ins). As long as this perturba-
tion remains sufficiently small, we may treat these pro-
cesses as independent Poissonian events. We model these
events by introducing an impurity term in Eq. (11), with
8t6bal(w)|x:+% ~ 8t9ba1( )‘x*—f f_]lmp, with the im-
purity backscattering current obaying [ dt [jimp] = 1;”.
Then, following similar arguments as above, we find a
universal Fano-factor, originating from the backscatter-
ing. The distinct topologies of the backscattering and
tunneling operators, as seen in Fig. 1(c), impel the dif-

fering of their Fano-factors. We find the noise to be
v

S = 2¢"(Itun) + 2qs(IBs), with ¢fs = 1(+V2 e (e.g.
Gpg = 16 for v = %) Sinco the tunneling current ex-
ponentially decays with £ g;", it is dominated by the
backscattering Contrlbutlon given a sufficiently long wire.

We stress that the fact that ¢* # guun in our system
is consistent with the equality of these two quantities
appearing in many other systems, in particular for impu-
rity noise in FQH bars. In the appendices we show that
the tunneling charge g, and the Fano-factor ¢* coincide
and reduce to the Laughlin quasi-particle charge in the
2D FQH limit of an array of many such wires coupled
together.

High Frequency Noise - Contrary to the zero fre-
quency noise, the high frequency noise is affected by
Coulomb interactions. It reveals short timescale pro-
cesses, and is used to extract the initial tunneling charge
Gtun inside the wire. This charge encompasses the screen-
ing cloud, formed by the interaction between the ballistic
and gapped modes afore hitting the leads.

Closed form expressions for Sy(w) and gtun can be ob-
tained for a broad family of low-momentum interactions
that are simultaneously diagonalizable with the cosine
perturbation Eq. (5) [14]. This is done via a canoni-
cal transformation ((;Nﬁgap, (;NSbal)T = A Y (Pgap, Pval) | and
(égap,ébal)T = AT(Ggap,Gbal)T, such that nggap X Pgap
(i.e. A12 =0). The transformed low-momentum Hamil-
tonian Hg inside the wire is diagonalized with the gapped
fields (gap; Ogap) associated with a velocity ugap, and
fully decoupled from the ballistic fields (gbbal, Qbal) prop-
agating with velocity up, = w. The interaction Hamil-

tonian takes the form Hiy, = [dx {g(m) COS(Q\%l beap)

. . . . A2
with scaling dimension A = =11

A tunneling event corresponds to a 27 jump in the

4

gapped field Mﬁgﬁgap, while leaving ¢, unaffected. The
current at any point 2’ inside the wire can be decomposed
as *I = V[(Au + A21)at(£gap + (Ap + A22)8t(£bal] =
jgap + ]bal Since the ballistic fields are decoupled from
the gapped fields, the total tunneling charge is qun =

[dtI = [ dt[ejgap) = (1 + A21) ve. This procedure may
be used in future works to enable exact crossover so-

lutions either via Bethe-ansatz [15], or at A = 1 via
refermionization.

The ballistic chiral fields qgﬁa/lR = ébal + ¢~7bal are free.
Therefore an appropriate phase shift can be included to
account for the propagation time between the leads,

~§a/1R(w) y eIz— qu/]R(w) . (15)

2 -2

Repeating the low frequency derivation, this phase shift
is used to derive a lengthy high frequency expression for
I(w)|$=i% in terms of 5 and jga,. We focus on the
low-temperature noise when Eg., > eV > kpT. At
high applied voltages eV >> hw the spectrum exhibited
by Jgap is Poissonian S5 = (w) = 2%un (5. o). This allows
us to calculate the ﬁnlte frequency electric current noise

2
2 1— qf%
1) = 20" n) § (222 coele)

q* 1+a2tan2(%)
(16)
where o = W. This result tends to the zero fre-

quency universal value of S; = 2¢* (Iyn). It oscillates as
a function of w between ¢* and a minimal value of

)

This minimum is interaction dependent and may serve
as a probe for measuring ¢, affected by the low-
momentum processes within the wire.

The essential condition for the realization of fractional
wires is strong enough Coulomb interactions [6]. Hence,
the effects predicted in this paper should be experimen-
tally measurable. We believe that insights from this work
will shed light on the interpretation of noise measure-
ments in 2D FQH systems with multicomponent edge
structures.
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Appendix A

We give here a brief generalization of our model for
the Kane-Mukhopadhyay-Lubensky [7] formulation of
the standard FQH effect. We treat an array of M = 2N
tunnel coupled spinless wires subject to a magnetic field.
By increasing the number of wires the 2D limit is grad-
ually obtained, introducing a spatial separation of the
edge and bulk physics. This model, hence allows us to
study the crossover from our 1D results to the known 2D
limit.

The model is schematically depicted in Fig A.1. The
Hamiltonian can be split into two parts

H =Ho+ Hing- (A1)
Here Ho describes the effective free Hamiltonian, which
includes the contribution of the low-momentum processes
within the region of length L, and Hi,; describes the
high-momentum interactions within the same region. We
focus on the most relevant processes taking place at filling
factors v = ﬁ described by

M—-1

Hine ~ > Wi e i o (i vf)" +he., (A2)

i=1

where the fermionic operators z/)LL /R correspond to left
and right moving electrons at the Fermi surface. Within
the bosonization [12] formalism we introduce the bosonic

ioL/E . .
fields @f/R, such that wiL/R ~ il R, with their associ-
ated densities pf/R = ¥iawcpf/R and currents jiL/R =
i%@twf/ % The interaction may now be expressed in

bosonized form as

M—1
Hine ~ ) cos(ng} — (n+1)pf + (n+ Dl —nefly).
i=1
(A.3)
Following Ref. [7], we make a change of
variables to the canonically conjugate pairs
(6i(2).6,(=")] =  iZb,sign(a’ — x) given by

(0,0:)T = Boxalel, ol oF, 08 ,)T where the
index i is to be understood as cyclical (i.e. i1 = ¢1),
with

\/Z( n —(n+1) n+1 —n
Boxa = "5

The interaction term now takes the simple form

Hone = z [ irotoreos (%)

This interaction forms an energy-gap FEg,, in the
¢1...¢0p—1 modes, while maintaining the mode corre-
sponding to the chiral edge states, ¢s, as gapless.

2 -n n+1

(A.5)
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Figure A.1: (i) The chiral currents within the normal leads

on both sides of the coupled wires’ array (numbered at the
left interface). (ii) The gapped modes within fractional array
(numbered at the right interface). (iii) The tunneling through
the equidistant mode (center). (iv) The ballistic modes prop-
agating along the fractional edges (top and bottom).

At the ends of the coupled wires’ array there are M
currents incoming from the leads and M currents outgo-
ing to the leads. The incoming currents are determined
by the chemical potential pr, g of the lead they emanate
from, with voltage difference eV = ur, — ur,

() oez =

2

—()e=rt = Trakns sk (A6)

2

It is sufficient to focus on the zero frequency analysis.
Charge conservation along the edge-states implies

OMlpeyr = Ol
i ’ (A7)
Onlo—yz = Omlo_ 2.

For simplicity we focus our study on bulk excitations
equidistant from the edges of the array. This can be
done in the symmetric case of an even number of wires
M = 2N; see Fig A.1. We therefore define the current
flowing through the gap by jeap = %(%(ﬁmm:o while
(Osdig(n2ny) = 0.

When the array is fully gapped (i.e. Egap — 00) we
set (Jeap) = 0 and solve these equations for the modes in
either side of the wire (atgbi)x:i%, (8t9i)z:i%, allowing
us to calculate the total electric current flowing through
the wire and thus the conductance [6]

) v+1\*N | | e
=L —pl1-2 1 .
G 14 v v—1 + 27h
(A.8)

The low temperature noise is dominated by the con-
tribution from jga, when the gap is larger then the en-



ergy scales in the system (i.e. Egap > eV > kgT).
As the tunneling events become scarce and independent,
the spectrum exhibited by jgap is Poissonian S;,, =
2U(jgap). This allows us to calculate the electric cur-
rent noise S7(w). The Fano-factor charge ¢* = S;&“:;g)) is
given by the ratio of the zero-frequency noise to the tun-
neling current (Iyy,) = (I) —GnV which is dominated by
the contribution from (jgap) as well. Therefore a simple
expression for the Fano-factor charge is derived

N N7 1
v+1 v—1
. (A9
(1) ()] [ oo
This expression tends to the Laughlin quasiparticle

charge of g5 — ve when N — oo and the 2D limit is
approached.

1-2

ay =

Appendix B

The Hamiltonian inside the wire contains both the high
momentum interaction Hiny = [ dz {g cos (24’%)} and

the low momentum interactions Hg. By the symmetry
considerations explained in the main text, the most gen-
eral low momentum interactions may be represented by
two real symmetric 2 x 2 matrices Hg) and Hf as

Ho = % /dx [&cngH{faqu— 8,0THIO,0|.  (B.1)
In general, the low momentum interactions may couple
the ¢gap field with the ¢y, field, and similarly 0,4, with
Opal. Such a coupling makes the treatment of the cosine
interaction non-trivial. In this appendix, we explicitly
present a broad family of low-momentum Hamiltonians
that are simultaneously diagonalizable with the cosine
perturbation. Within this family of Hamiltonians, the
effective theory decomposes into two new decoupled Lut-
tinger liquid sectors, where the cosine interaction acts
solely on one of them.

It is convenient to parameterize the two symmetric ma-
trices by the six parameters K1, Ko, uq,us,7%,7% as

i 220 i
HY = e~z < IBl wi, | €7 7%
14
K (B.2)
v

e, 0\ 4o
Hg:6 el gz( 0 uzu>€l’y 027
K>

where o9 is the second Pauli matrix. There are two
prominent cases to note: (i) A tuning, where the gapped
and ballistic modes decouple v* = 7% = 0. (ii) A stan-
dard LL Hamiltonian [12] containing only four param-
eters due to symmetry under inversions of either spin
or chirality. The latter Hamiltonian is attained by set-

ting 7% = 4% = 4, where K7 = K,, Ky = K, and

U] = U, Uy = U, are the Luttinger parameters and ve-
locities, of the charge and spin sectors respectively.

We construct a canonical transformation ¢ = A~1¢ ,
6 = AT that retains the shape of the cosine interaction
(i.e. Qggap X (gap) While transforming the Hamiltonian
to a diagonal noninteracting form. The former condition
is satisfied by using

A11 0
A= .
( A9 Aso )

In terms of 55 and 6, the Hamiltonian matrices read

(B.3)

HY — HY = ATHS A, B.4)

HE — Hy = (A" HG(A™H). '
A transformation possessing the aforementioned proper-
ties exists only when v = 7% = 4 and either (i) v = 0
or (ii) v = u; = ug. The former case is trivial, since
Hg’ and H{ are initially diagonal. A simple observa-
tion that ﬁHgHg = 1 in the latter case, confirms the
simultaneous diagonalizability of the Hamiltonian matri-
ces. Explicitly demanding the diagonality of either of the

matrices yields a condition on the ratio 42. Recalling

All

A21

that the tunneling charge is gqun = (1 + Au) ve we get

1 (51— ) cos(y) sin()

£Lcos?(7) + 4 sin®(7)

Gtun =

ve (B.5)

This expression continuously interpolates between two
prominent particular cases: (i) A free theory of the ¢
and 6 fields, giving giun = ve. (ii) A Luttinger-Liquid [12]
with velocities u,, u, and compressibilities K,, K, of the

charge and spin sectors, satisfying v, = v, for which we
2K, K,

obtain Qtun — VCW.

In order to construct the full transformation, we pursue

a noninteracting form by imposing Hg’ = H{. The trans-

formed low-momentum Hamiltonian # inside the wire is

hence both diagonalized and noninteracting. The gapped

fields (¢gap, Oeap) Propagate with velocity ugap, = 41 and

are fully decoupled from the ballistic fields (¢bal, Obal)

propagating with velocity upa = wuge. The interaction
Hamiltonian takes the form

i = [ dx [g(0)cos(2VAGy)] . (BO)

where the matrix element Ay is related to the scaling

2 2
dimension of the interaction via A = % = w +

.2
%. An explicit form of the transformation matrix is

1 VA 0
A=A ( (5~ 1) os(y)sin(a) \/§> - (B



To conclude, whereas the original model has six param-
eters characterizing the low momentum interactions, we
have found a four parameter subspace, which is decom-
posable into one free sector and one sector with a cosine
perturbation. This model is exactly solvable either via
Bethe-ansatz [15] or upon further tuning A = 1 by means
of refermionization. These may ultimately be used to ex-
plore the full crossover behavior in the system.
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TAT NN OVPRND INRNIND INNN ONYNN YYIN DX OIPIN DX AT 2NN NAY .7PIaY
WONN NI NNPN N IRNINYI ,NMIND JWONN NNY DRI"OTPNY OIRXIN 1IN .VIND
MON RON PONNN MY NON IPNR ININ YYIN L1029 DY G .DVIND VIND P2 Pwnna
1Y 7292 NNT RD 0D DN DD MNX LPIDIND WO Hya YN N1ana nTyva
MY YAV 1PNV N NON ,D?ND O TNA MDNYNN YYINN NNINN JYON NN PPoNY

2ONVYNN 0N MYV apy Ponnn
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