
The Raymond and Beverly Sackler

Faculty of Exact Sciences

Shot-Noise in Fractional Wires:
a Universal Fano-Factor

that differs from the
Tunneling Charge

This thesis is submitted in partial fulfillment of the requirements

for the degree of Master of Science (M.Sc.)

at Tel-Aviv University

The Raymond and Beverly Sackler School

of Physics and Astronomy

by

Eyal Cornfeld

The research was carried out under the

supervision of Eran Sela

Tel-Aviv

March 2014





Contents

Abstract 1

1 A Review 2

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Quantized Conductance . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Universal Low Frequency Noise . . . . . . . . . . . . . . . . . . . 11

1.4.1 Thermal Noise . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.2 Shot Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.3 Disorder Effects . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 The Two Dimensional Limit . . . . . . . . . . . . . . . . . . . . . 14

1.5.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5.2 Hall Conductance . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.3 Quasiparticle Charge . . . . . . . . . . . . . . . . . . . . . 17

1.6 High Frequency Noise . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6.1 Tunneling Charge . . . . . . . . . . . . . . . . . . . . . . . 20

1.6.2 Shot Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 The paper 23

Bibliography 28

Hebrew Abstract i



Abstract

We consider partially gapped one dimensional conductors connected to normal

leads, as realized in fractional helical wires. At certain electron densities, some

distinct charge mode develops a gap due to electron interactions, leading to a

fractional conductance. For this state we study the current noise caused by

tunneling events inside the wire. We find that the noise’s Fano-factor is different

from the tunneling charge. This fact arises from charge scattering at the wire-leads

interfaces. The resulting noise is, however, universal - it depends only on the

identification of the gapped mode, and is insensitive to additional interactions in

the wire. We further show that the tunneling charge can be deduced from the

finite frequency noise, and yet is interaction dependent due to screening effects.
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Chapter 1

A Review

1.1 Introduction

A direct access to the electron charge e is given by the fluctuations in the current.

This has been demonstrated by Nyquist who studied independent emission events

of electrons from a cathode. When tunneling occurs by either one-electron or

multi-electron processes, one obtains an average charge, which may retain it’s

universality, as in the Kondo regime. Thus, generally, the noise S ∼ 〈I2〉 is

proportional to the tunneling current S ' 2q∗Itun where q∗ is named the Fano-

factor. The measurement of this noise, named shot-noise, is widely used in more

exotic systems, and has been applied to demonstrate superconductor Cooper-pair

charges as well as the fractional quantum Hall charges.

The rich phenomenology of the two dimensional quantum Hall states includes

edge states, a fully gapped bulk, non-abelian statistics, and are characterized by

fractional conductance. Nevertheless, the most remarkable property of fractional

quantum Hall states is their fractional quasiparticles. Their fractional charge

has been demonstrated via shot noise experiments using quantum point contacts.

These quantum Hall states can be understood by a model of tunnel coupled

wires [1]. Using this construction one may design new one dimensional systems
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with the phenomenology of two dimensional quantum Hall states. It was proposed,

that clean wires with spin-orbit coupling and Zeeman magnetic field are such

candidates, as interestingly, the edge states in such a realization are helical, with

counter propagating modes carrying opposite spins.

As eventually became clear, when connected to Fermi-liquid leads, clean

strongly interacting Luttinger-liquid wires display quantized conductance at e/h

at sufficiently low temperatures T . The conductance remains quantized in the

presence of interactions [2] much like the in the two dimensional fractional quantum

Hall effect, and the shot noise vanishes.

More recently there has been a strong interest in the study of quantum wires

with Rashba spin-orbit coupling. Upon applying a Zeeman field one obtains

a non-monotonic behavior where the conductance drops by 1e2/h as observed

in an experiments [3], signaling a partial gap in the spectrum. Even then, the

conductance remains independent of electron-electron interactions in the wire as

long as the leads are noninteracting. Interestingly, in this regime electrons with

opposite spins travel to opposite directions, giving a helical behavior resembling

the situation at the edge of a two dimensional topological insulator. Much of the

interest in these systems has been due to the realization that, in both 2D and 1D

systems, they may host Majorana fermions when coupled to a superconductor.

More exotic helical states were predicted to emerge given sufficiently strong

interactions [4]. Depending on the gate voltage, controlling the density in the wire,

a family of fractional helical states may be stabilized, characterized by a fractional

conductance and a partial gap Egap. These states are closely related to the family

of fractional quantum Hall states, although it now may be directly stabilized in

1D as long as the system is clean. Thus, although the leads are noninteracting,

a new state forms where the current is conducted by particles with fractional

charges that may be manifested in the shot-noise.

Shot noise appears in the current fluctuations and provides valuable information
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Figure 1.1: a) The chiral currents, incoming into the fractional wire from the
normal leads, and outgoing from the wire to the leads. b) The high-momentum
interaction process of the chiral currents illustrated on the electrons’ dispersion
curve. c) The tunneling and backscattering of the fractional wire’s gapped and

ballistic modes, respectively.

on electron-electron correlation effects in mesoscopic systems [5]. In particular its

interpretation as a measurement of the unit electric charge that tunnels through

a barrier is of great importance. It allowed the celebrated direct measurement

of the fractional charge of Laughlin quasiparticles (QP) in fractional quantum

Hall (FQH) systems [6]. It even remains so far the main experimental handle on

predicted non-abelian FQH states e.g. in the ν = 5
2

Moore-Read state [7].

An ideal situation for such a direct interpretation of shot-noise S occurs when

a current Itun consists of rare tunneling events of quasiparticles between two

channels in a strongly correlated electron system. In such general circumstances

the Fano-factor, given by the ratio q∗ = S
2Itun

, matches the total charge transferred

per tunneling event between the leads. Usually this charge corresponds to the

local elementary excitation charge defined inside the strongly correlated system

(i.e. the QP charge).

However, here we show that the shot-noise of a strongly correlated helical

wire with fractional conductance, is disparate. Helical wires consist of counter

propagating 1D modes of opposite spin. They were realized in semiconductors

either with spin orbit coupling under a magnetic field [3], or possibly due to
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internal magnetic ordering [8]. Sufficiently strong electron electron interactions in

such a system are predicted to stabilize fractional helical states with fractional

conductance [4]. Note that the fractional helical wire considered here is a special

case of a general class of partially gapped 1D conductors in which the tunneling

current flows parallel to a ballistic channel; see Fig. 1.1(c). We find, that in

such systems Coulomb interaction inside the wire and the existence of the second

ballistic channel affect the Fano-factor q∗ in two nontrivial manners. (i) The

tunneling charge may drag additional non-quantized charges from the ballistic

channel, yielding an interaction dependent local tunneling charge qtun. (ii) A

partial reflection of the tunneling charge results from a gradual screening of the

Coulomb interaction at the source and drain leads.

Consider a two dimensional quantum Hall sample, imagine transporting a bulk

quasiparticle towards the edge of the sample. The quasiparticle interacts with

the edge states via unscreened Coulomb bulk-edge interactions. This interaction

will generate a screening charge and hence, the total charge of the quasiparticle is

thus reduced. we show, by an exact calculation, that the tunnelling charge qtun

is indeed similarly non-quantized.

It is often the case that tunneling occurs in parallel to ballistic transport. The

quantum wire has a number of 1D modes, where part of these modes remain

ballistic whereas other modes are almost fully backscattered. This general situation

occurs in much more general setups such as edge states of quantum Hall samples in

the presence of point contact which partially depletes the electrons in a restricted

region. Due to these ballistic modes, the essential mechanism for the determination

of the total deposeted charge is the reflection of charge at the contacts. Suppose

that the a charge qtun have tunneled. It propagates inside the interacting wire as

a collective mode. Upon scattering with the contact, depending on the strength

of the interaction, a part of the charge is reflected and a part is transmitted. In

the absence of the ballistic channels, the reflected charge from one contact can
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not propagate to the opposite contact and hence, eventually after many round

tripes, will be fully transmitted into the leads. Thus the shot noise charge will

match qtun. However, the ballistic channels permit for some charge to be reflected

into the opposite contact and eventually escape.

In this work we provide a positive answer to the question of whether there is a

universal information contained in the low-frequency components of the shot-noise

of the aforementioned partially gapped 1D conductor. We further show that

the non-universal, interaction dependent local properties of the system can be

extracted from the shot-noise at finite frequency.

We study a model equivalent to a two-wire version of the Kane-Mukhopadhyay-

Lubensky anisotropic tunnel coupled wires formulation of the FQH effect [1], which

reproduces the Laughlin fractional QPs and gapless fractional edge states. The

fractional wire is connected to noninteracting normal leads; see Fig. 1.1(a). It was

found [4, 9] that at filling factor ν = 1
2n+1

with integer n, when a large energy

gap forbids QP tunneling, the wire’s conductance is Gν = 2ν2

1+ν2
e2

h
(e.g. G 1

3
= 1

5
e2

h
).

This differs from the 2D FQH conductance of ν e
2

h
.

We first show that in the absence of tunneling, when the source-drain voltage

is smaller than the gap, this fractional conductance contains no shot-noise despite

not being a multiple of e2/h. This contrasts the partition noise S ∝ T (1− T ) [5]

induced by noninteracting electrons tunneling through a barrier with a transmission

probability T . It may be considered as a generalized equilibrium state where

opposite fractional chiralities are equilibrated with one reservoir only, either source

or drain. However, in general, the conductance has power law corrections due

to finite voltage or temperature. The situation corresponds to a renormalization

group flow of the perturbations from weak coupling to strong coupling.

Next, upon increasing voltage the differential conductance deviates from the

fractional value. As the voltage exceeds the energy gap the conductance eventually

acquires its maximal value of 2e2/h. At low voltages, the leading deviations of the
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current from its exactly fractional value occur due to fractional charges. Therefore,

when considering the effect of tunneling events, we find this system to exhibit

a remarkable universal shot-noise. The Fano-factor q∗, though different than

the tunneling charge, is universal and interaction independent. For clean wires,

we find it to be q∗ = 2ν
1+ν2

e (e.g. q∗ = 3
5
e for ν = 1

3
). Furthermore, effects of

disorder in the wire likewise produce a universal Fano-factor. This universality,

in our fractional partially gapped system, is rooted in the charge conservation of

the chiral modes in presence of Coloumb interaction. This is analogous to the

conductance quantization of quantum wires connected to noninteracting leads [2].

The non-universal interaction dependent local tunneling charge qtun, can be

extracted from the shot-noise at finite frequencies ω ∼ vF
L

, where L is the length of

the wire and vF is the Fermi velocity. A similar suggestion to use finite frequency

noise was made [10] to measure the charge fractionalization [11] in Luttinger

liquids.

1.2 The Model

We study an interacting quantum wire of length L, adiabatically connected to non-

interacting normal leads, containing both a Rashba spin-orbit (SO) coupling and a

Zeeman field. The model was introduced in Ref. [4] and we herein recapitulate its

crucial ingredients. The SO coupling horizontally shifts the electrons’ dispersion

relations by ±kSO according to their spin, thus creating four Fermi points. These

correspond to the left and right moving electrons with either spin up or spin down,

ψL↑ , ψ
R
↑ , ψ

L
↓ , ψ

R
↓ , denoted ψ1, ψ2, ψ3, ψ4; see Fig. 1.1(b).

Near the Fermi surface one can consider both low-momentum and high-

momentum physical processes involving scatterings amidst the Fermi points.

The former are the density-density processes, handled within the Luttinger-liquid

(LL) formalism [12] as a free bosonic Hamiltonian H0; see Eq. (1.7). The latter
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involve 2kF interactions originating from multi-electron processes described by

Hint. The total Hamiltonian is accordingly.

H = H0 +Hint. (1.1)

In clean wires with SO coupling, high-momentum scattering between spin up

and spin down can be generated by the magnetic field and by low momentum

interactions, and open partial gaps near certain electronic densities [4]. As pointed

out by Kane et al. [1], the multiparticle processes shown in Fig. 1.1(b), described

by the Hamiltonian

Hint ∼ (ψ†1ψ2)nψ†3ψ2(ψ†3ψ4)n + h.c., (1.2)

may open a partial gap at filling factors ν ≡ kF
kSO

= 1
2n+1

.

Treatment of this interaction is done within the bosonization formalism [12].

This is done by introducing four bosonic fields φi, such that ψi ∼ eiϕi , with their

associated densities and currents

ρi = (−1)i
1

2π
∂xϕi,

ji = (−1)i+1 1

2π
∂tϕi.

(1.3)

Thus, at any point in the wire or the leads, the total current is I = e
∑

i ji. The

interaction may now be expressed in its bosonized form

Hint ∼ cos(nϕ1 − (n+ 1)ϕ2 + (n+ 1)ϕ3 − nϕ4). (1.4)
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Following Ref. [1], we introduce new chiral bosons,




φLbal

φRgap


 ≡

√
ν




n+ 1 −n

−n n+ 1







ϕ1

ϕ2


 ,




φLgap

φRbal


 ≡

√
ν




n+ 1 −n

−n n+ 1







ϕ3

ϕ4


 ,

(1.5)

in terms of which the cosine interaction becomes a simple backscattering operator,

cos(
φRgap−φLgap√

ν
). By defining the canonically conjugate pairs θgap± φgap ≡ φ

L/R
gap and

θbal ± φbal ≡ φ
L/R
bal , the interaction term takes the simpler form

Hint =

∫
dx

[
g(x) cos

(
2φgap√
ν

)]
, (1.6)

where the effective high-momentum interaction strength g(x) adiabatically changes

from 0 at the leads to g inside the wire. When the scaling dimension ∆ of this

interaction is smaller than two, an energy-gap Egap is created in the φgap mode,

while the ballistic mode φbal remains gapless; see Fig. 1.1(c).

The low-momentum Hamiltonian H0 must be invariant under the switching

of both chirality L↔ R and spin ↑↔↓. The φ ≡ (φgap, φbal) fields are odd under

this transformation (φ→ −φ) while the θ ≡ (θgap, θbal) fields are even (θ → +θ).

The most general low-momentum Hamiltonian must therefore take the form

H0 =
~
2π

∫
dx
[
∂xφ

>Hφ
0 (x)∂xφ+ ∂xθ

>Hθ
0 (x)∂xθ

]
, (1.7)

where Hφ
0 (x) and Hθ

0(x) are symmetric 2 × 2 matrices. These matrices change

adiabatically from the noninteracting leads to a Luttinger liquid inside the wire,

which nevertheless doesn’t affect our universal results.
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1.3 Quantized Conductance

We begin our analysis by rederiving the fractional conductance [4] and showing

its universality [9]. At each end of the wire there are two incoming currents (from

the leads) and two outgoing currents (to the leads). We denote the incoming

left-moving currents by jin
iL
≡ jiL|x=+L

2
with iL ∈ {1, 3}, and the incoming right-

moving currents by jin
iR
≡ jiR |x=−L

2
with iR ∈ {2, 4}; see Fig. 1.1(a). The incoming

currents are determined by the chemical potential µL,R of the lead they emanate

from, with a voltage difference eV = µL − µR,

−〈jiL〉x=+L
2

=
1

2π~
µR,

〈jiR〉x=−L
2

=
1

2π~
µL.

(1.8)

Taking the limit of increasingly large Egap, the gapped mode φgap becomes station-

ary 〈∂tφgap〉 = 0. The ungapped modes satisfy [
∫ L

2

−L
2

dx∂xφ
L/R
bal ,H] = 0, resulting

in the conservation of their associated currents,

〈∂tφL/Rbal 〉x=+L
2

= 〈∂tφL/Rbal 〉x=−L
2
. (1.9)

We now express the four equations (1.8) for the incoming currents in terms of

〈∂tφ〉x=±L
2
, 〈∂tθ〉x=±L

2
using Eq. (1.5). We set 〈∂tφgap〉x=±L

2
= 0 and solve the

linear equations for the remaining modes in either side of the wire. Substituting

back to the original currents 〈ji〉 we find the total electric current 〈I〉 flowing

through the wire and the conductance [4]

Gν ≡
〈I〉
V

=
e

V

∑

i

〈ji〉x=x′ =
2ν2

1 + ν2

e2

2π~
, (1.10)

where x′ may be any point outside the wire in either of the leads. We emphasize

that the Hamiltonian H0 does not affect this result, as was shown by Meng et.

al. [9] using other methods.
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1.4 Universal Low Frequency Noise

We calculate the noise of the total current I(t), which at any point x′ inside the

wire can be expressed, using Eq. (1.5), as

1

e
I(t) =

√
ν

π
∂t(φgap + φbal) ≡ jgap + jbal. (1.11)

We start the calculation by defining the fluctuations of any operator O as

SO(ω)ij =

∫ ∞

−∞
dteiωt〈{δOi(t), δOj(0)}〉, (1.12)

with δO ≡ O − 〈O〉. By taking the Fourier transform of the operator O(t) over

a duration τ , one gets its spectral dependence O(ω) where ω = ωm = 2πm
τ

. Its

continuous spectral power is related to the noise by the Wiener-Khintchine theorem

1

τ
〈{δOi(ω), δOj(−ω)}〉 −−−→

τ→∞
SO(ω)ij (1.13)

At low frequencies ω � vF
L

the spectral components of the ungapped modes

vary slowly over time scales much longer than the propagation time through the

wire. In this limit, to leading order in ωL
vF

, one can rewrite Eq. (1.9) as a field

operator equation,

∂tφ
L/R
bal (ω)

∣∣∣
x=+L

2

' ∂tφ
L/R
bal (ω)

∣∣∣
x=−L

2

. (1.14)

A similar conservation argument for the gapped field, which follows from the rela-

tion [
∫ L

2

−L
2

dx∂xφgap,H] = 0, yields ∂tφgap(ω)|x=+L
2
' ∂tφgap(ω)|x=−L

2
= π√

ν
jgap(ω).

We use this equation with Eqs. (1.14),(1.5) to express I(ω) in terms of the Fourier
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components of the incoming currents and the tunneling current,

I(ω)|x=±L
2

=

{
ν

1 + ν

1 + ν2

[
jin

1 (ω) + jin
4 (ω)

]

−ν 1− ν
1 + ν2

[
jin

2 (ω) + jin
3 (ω)

]
+

2

1 + ν2
jgap(ω)

}
e. (1.15)

1.4.1 Thermal Noise

When the wire is fully gapped (i.e. Egap →∞) we may neglect the contribution

of jgap. The leading contribution to the electric current noise SI(ω) stems from

the thermal noise of the incoming fields jin, which is given by [5] Sjin(ω)ij =

δij
ω
2π

coth( ~ω
2kBT

). This and Eq. (1.15) can be utilized in order to derive the noise

of the electric current

SI(ω) = 2e2 ω

2π
coth(

~ω
2kBT

)
2ν2

1 + ν2
. (1.16)

This expression tends to the Johnson-Nyquist zero frequency result of SI =

4kBTGν . As this holds in the presence of voltages eV � kBT , it ushers the

conclusion that although we have a non-integer conductance, there is no zero

temperature noise.

1.4.2 Shot Noise

We move on to evaluate the noise when the gap is finite and yet larger than the

energy scales in the system Egap � {eV, kBT}. At low temperatures eV � kBT

the dominating contribution to SI(ω) comes from tunneling events through the

gap. Hence we define the shot-noise charge, or Fano-factor, as q∗ ≡ SI(ω=0)
2〈Itun〉 ,

namely by the ratio of the zero-frequency noise to the tunneling current 〈Itun〉 ≡

〈I〉 − GνV . At a single tunneling event the combination of the gapped mode

2φgap√
ν

subject to the cosine potential changes by 2π from one minima to another.
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From the definition of jgap, the charge carried by it during the tunneling event

is heuristically
∫
dt[jgap] = ν. Defining a tunneling rate Γ = 〈jgap〉

ν
, we may read

the charge transfered between the leads at each such event off from Eq. (1.15)

to be q∗ = 〈Itun〉
Γ

= 2ν
1+ν2

e. This charge indeed matches the Fano factor, as we

consecutively show.

As Egap � eV , the tunneling events become scarce and independent. Therefore,

at low frequencies eV � ~ω, the spectrum exhibited by jgap is Poissonian [13],

Sjgap(ω) = 2ν〈jgap〉. Using Eq. (1.15) and the Poissonian form of Sjgap we obtain

the shot-noise charge

q∗ =
SI(ω = 0)

2〈Itun〉
=

2ν

1 + ν2
e. (1.17)

This is our main result. One may understand the fact that q∗ differs from the

tunneling charge as follows. Upon arriving to a given lead, the tunneling charge

that has tunneled is no longer an eigenstate, and gets partially reflected. The

existence of the ballistic channels permits multiple reflections of this charge

between the opposite leads. Importantly, due to the formation of the gap in the

fractional wire, the original chiral charges are not conserved [
∫
dx∂xϕi,H] 6= 0,

allowing the multiple reflections to modify the overall transmitted charge to

a different value. Remarkably, this shot-noise charge attains a universal value

unaffected by low-momentum Coulomb interactions. This universality stems from

the connection to the noninteracting leads much like the conductivity [2].

1.4.3 Disorder Effects

We briefly discuss the influence of a small amount of disorder. The leading

perturbation of an impurity was shown to be HBS ∼ cos(1−ν√
ν
φbal|x=xBS

) [4], mani-

festing in backscatterings of the ballistic channel, see arrows in Fig. 1.1(c), and

hence, lowering the electric current 〈I〉 = GνV + 〈Itun〉 − 〈IBS〉. As long as

this perturbation remains sufficiently small, we may treat these processes as
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independent Poissonian events. We model these events by introducing an im-

purity term in Eq. (1.14), with ∂tθbal(ω)|x=+L
2
' ∂tθbal(ω)|x=−L

2
+ π√

ν
jimp, with

the impurity backscattering current obaying
∫
dt [jimp] = 1−ν

2
. Then, following

similar arguments as above, we find a universal Fano-factor, originating from

the backscattering. The distinct topologies of the backscattering and tunneling

operators, as seen in Fig. 1.1(c), impel the differing of their Fano-factors. We

find the noise to be S = 2q∗〈Itun〉+ 2q∗BS〈IBS〉, with q∗BS = ν(1−ν)
1+ν2

e (e.g. q∗BS = 1
5
e

for ν = 1
3
). Since the tunneling current exponentially decays with LEgap

~vF
, it is

dominated by the backscattering contribution given a sufficiently long wire.

1.5 The Two Dimensional Limit

1.5.1 The Model

We stress that the fact that q∗ 6= qtun in our system is consistent with the equality

of these two quantities appearing in many other systems, in particular for impurity

noise in FQH bars. We show that the tunneling charge qtun and the Fano-factor

q∗ coincide and reduce to the Laughlin quasi-particle charge in the 2D FQH limit

of an array of many such wires coupled together. Therefore, we give here a brief

generalization of our model for the Kane-Mukhopadhyay-Lubensky [1] formulation

of the standard FQH effect. We treat an array of M = 2N tunnel coupled spinless

wires subject to a magnetic field. By increasing the number of wires the 2D limit is

gradually obtained, introducing a spatial separation of the edge and bulk physics.

This model, hence allows us to study the crossover from our 1D results to the

known 2D limit.

The model is schematically depicted in Fig 1.2. The Hamiltonian can be split

into two parts

H = H0 +Hint. (1.18)
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Figure 1.2: (i) The chiral currents within the normal leads on both sides of the
coupled wires’ array (numbered at the left interface). (ii) The gapped modes
within fractional array (numbered at the right interface). (iii) The tunneling
through the equidistant mode (center). (iv) The ballistic modes propagating

along the fractional edges (top and bottom).

Here H0 describes the effective free Hamiltonian, which includes the contribution

of the low-momentum processes within the region of length L, and Hint describes

the high-momentum interactions within the same region. We focus on the most

relevant processes taking place at filling factors ν = 1
2n+1

described by

Hint ∼
M−1∑

i=1

(ψL†i ψ
R
i )nψL†i+1ψ

R
i (ψL†i+1ψ

R
i+1)n + h.c., (1.19)

where the fermionic operators ψ
L/R
i correspond to left and right moving electrons

at the Fermi surface. Within the bosonization [12] formalism we introduce the

bosonic fields ϕ
L/R
i , such that ψ

L/R
i ∼ eiϕ

L/R
i , with their associated densities

ρ
L/R
i = ∓ 1

2π
∂xϕ

L/R
i and currents j

L/R
i = ± 1

2π
∂tϕ

L/R
i . The interaction may now be

expressed in bosonized form as

Hint ∼
M−1∑

i=1

cos(nϕLi − (n+ 1)ϕRi + (n+ 1)ϕLi+1 − nϕRi+1). (1.20)

Following Ref. [1], we make a change of variables to the canonically conjugate pairs

[φi(x), θj(x
′)] = iπ

2
δijsign(x′ − x) given by (φi, θi)

> = B2×4(ϕ
L
i , ϕ

R
i , ϕ

L
i+1, ϕ

R
i+1)

>
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where the index i is to be understood as cyclical (i.e. ϕM+1 = ϕ1), with

B2×4 =

√
ν

2




n −(n+ 1) n+ 1 −n

−n n+ 1 n+ 1 −n


 . (1.21)

The interaction term now takes the simple form

Hint =
M−1∑

i=1

∫
dxg(x) cos

(
2φi√
ν

)
. (1.22)

This interaction forms an energy-gap Egap in the φ1 . . . φM−1 modes, while main-

taining the mode corresponding to the chiral edge states, φM , as gapless.

1.5.2 Hall Conductance

At the ends of the coupled wires’ array there are M currents incoming from

the leads and M currents outgoing to the leads. The incoming currents are

determined by the chemical potential µL,R of the lead they emanate from, with

voltage difference eV = µL − µR,

−〈jLi 〉x=+L
2

=
1

2π~
µR,

〈jRi 〉x=−L
2

=
1

2π~
µL.

(1.23)

It is sufficient to focus on the zero frequency analysis. Charge conservation along

the edge-states implies

φM |x=+L
2

= φM |x=−L
2
,

θM |x=+L
2

= θM |x=−L
2
.

(1.24)

For simplicity we focus our study on bulk excitations equidistant from the edges

of the array. This can be done in the symmetric case of an even number of wires

M = 2N ; see Fig 1.2. We therefore define the current flowing through the gap by
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jgap ≡
√
ν
π
∂tφN |x=0 while 〈∂tφi/∈{N,2N}〉 = 0.

When the array is fully gapped (i.e. Egap →∞) we set 〈jgap〉 = 0 and solve

these equations for the modes in either side of the wire 〈∂tφi〉x=±L
2
, 〈∂tθi〉x=±L

2
,

allowing us to calculate the total electric current flowing through the wire and

thus the conductance [4]

GN ≡
〈I〉
V

= ν



1− 2

[(
ν + 1

ν − 1

)2N

+ 1

]−1




e2

2π~
. (1.25)

1.5.3 Quasiparticle Charge

The low temperature noise is dominated by the contribution from jgap when the

gap is larger then the energy scales in the system (i.e. Egap � eV � kBT ). As

the tunneling events become scarce and independent, the spectrum exhibited

by jgap is Poissonian Sjgap = 2ν〈jgap〉. This allows us to calculate the electric

current noise SI(ω). The Fano-factor charge q∗ ≡ SI(ω=0)
2〈Itun〉 is given by the ratio of

the zero-frequency noise to the tunneling current 〈Itun〉 ≡ 〈I〉 − GNV which is

dominated by the contribution from 〈jgap〉 as well. Therefore a simple expression

for the Fano-factor charge is derived

q∗N =



1− 2

[(
ν + 1

ν − 1

)N
+

(
ν − 1

ν + 1

)N]−1


 νe. (1.26)

This expression tends to the Laughlin quasiparticle charge of q∗N → νe when

N →∞ and the 2D limit is approached.

1.6 High Frequency Noise

Contrary to the zero frequency noise, the high frequency noise is affected by

Coulomb interactions. It reveals short timescale processes, and is used to extract

the initial tunneling charge qtun inside the wire. This charge encompasses the

17



screening cloud, formed by the interaction between the ballistic and gapped modes

afore hitting the leads.

Closed form expressions for SI(ω) and qtun can be obtained for a broad family

of low-momentum interactions that are simultaneously diagonalizable with the

cosine perturbation Eq. (1.6). The Hamiltonian inside the wire contains both the

high momentum interaction Hint =
∫
dx
[
g cos

(
2φgap√

ν

)]
and the low momentum

interactions H0. By the symmetry considerations explained in the main text,

the most general low momentum interactions may be represented by two real

symmetric 2× 2 matrices Hφ
0 and Hθ

0 as

H0 =
~
2π

∫
dx
[
∂xφ

>Hφ
0 ∂xφ+ ∂xθ

>Hθ
0∂xθ

]
. (1.27)

In general, the low momentum interactions may couple the φgap field with the

φbal field, and similarly θgap with θbal. Such a coupling makes the treatment of

the cosine interaction non-trivial. In this appendix, we explicitly present a broad

family of low-momentum Hamiltonians that are simultaneously diagonalizable

with the cosine perturbation. Within this family of Hamiltonians, the effective

theory decomposes into two new decoupled Luttinger liquid sectors, where the

cosine interaction acts solely on one of them.

It is convenient to parameterize the two symmetric matrices by the six param-

eters K1, K2, u1, u2, γ
φ, γθ as

Hφ
0 = e−iγ

φσ2




u1ν
K1

0

0 u2K2

ν


 eiγ

φσ2 ,

Hθ
0 = e−iγ

θσ2




u1K1

ν
0

0 u2ν
K2


 eiγ

θσ2 ,

(1.28)

where σ2 is the second Pauli matrix. There are two prominent cases to note: (i)

A tuning, where the gapped and ballistic modes decouple γφ = γθ = 0. (ii) A
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standard LL Hamiltonian [12] containing only four parameters due to symmetry

under inversions of either spin or chirality. The latter Hamiltonian is attained

by setting γφ = γθ = π
4
, where K1 = Kρ, K2 = Kσ and u1 = uρ, u2 = uσ are the

Luttinger parameters and velocities, of the charge and spin sectors respectively.

We construct a canonical transformation

φ̃ = A−1φ,

θ̃ = A>θ,

(1.29)

that retains the shape of the cosine interaction (i.e. φ̃gap ∝ φgap) while transform-

ing the Hamiltonian to a diagonal noninteracting form. The former condition is

satisfied by using

A =




A11 0

A21 A22


 . (1.30)

In terms of φ̃ and θ̃, the Hamiltonian matrices read

Hφ
0 → H̃φ

0 = A>Hφ
0A,

Hθ
0 → H̃θ

0 = (A−1)Hθ
0 (A−1)>.

(1.31)

A transformation possessing the aforementioned properties exists only when

γ ≡ γφ = γθ and either (i) γ = 0 or (ii) u ≡ u1 = u2. The former case is trivial,

since Hφ
0 and Hθ

0 are initially diagonal. A simple observation that 1
u2
H̃φ

0 H̃
θ
0 = 1

in the latter case, confirms the simultaneous diagonalizability of the Hamiltonian

matrices.

In order to construct the full transformation, we pursue a noninteracting form

by imposing H̃φ
0 = H̃θ

0 and explicitly demanding the diagonality of either of the

matrices yields a condition on the ratio A21

A11
. The transformed low-momentum

Hamiltonian H0 inside the wire is hence both diagonalized and noninteracting.

The gapped fields (φ̃gap, θ̃gap) propagate with velocity ugap = u1 and are fully
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decoupled from the ballistic fields (φ̃bal, θ̃bal) propagating with velocity ubal = u2.

The interaction Hamiltonian takes the form

Hint =

∫
dx
[
g(x) cos(2

√
∆φ̃gap)

]
, (1.32)

where the matrix element A11 is related to the scaling dimension of the interaction

via ∆ =
A2

11

ν
= K1 cos2(γ)

ν2
+ sin2(γ)

K2
. An explicit form of the transformation matrix is

A =
1√
ν∆




ν∆ 0
(
K1

ν
− ν

K2

)
cos(γ) sin(γ)

√
K1

K2


 . (1.33)

Whereas the original model has six parameters characterizing the low momentum

interactions, we have found a four parameter subspace, which is decomposable into

one free sector and one sector with a cosine perturbation. This model is exactly

solvable either via Bethe-ansatz [14] or upon further tuning ∆ = 1
2

by means of

refermionization. These may ultimately be used in future works to explore the

full crossover behavior in the system.

1.6.1 Tunneling Charge

As the gapped fields are fully decoupled from the ballistic fields, a tunneling

event corresponds to a 2π jump in the gapped field 2A11√
ν
φ̃gap, while leaving φ̃bal

unaffected. The current at any point x′ inside the wire can be decomposed

as 1
e
I =

√
ν
π

[(A11 + A21)∂tφ̃gap + (A12 + A22)∂tφ̃bal] ≡ j̃gap + j̃bal. Since the

ballistic fields are decoupled from the gapped fields, the total tunneling charge is

qtun =
∫
dtI =

∫
dt[ej̃gap] =

(
1 + A21

A11

)
νe, given explicitly by

qtun =



1 +

(
K1

ν
− ν

K2

)
cos(γ) sin(γ)

K1

ν
cos2(γ) + ν

K2
sin2(γ)



 νe. (1.34)
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This expression continuously interpolates between two prominent particular cases:

(i) A free theory of the φ and θ fields, giving qtun = νe. (ii) A Luttinger-Liquid [12]

with velocities uρ, uσ and compressibilities Kρ, Kσ of the charge and spin sectors,

satisfying vρ = vσ, for which we obtain qtun = 2KρKσ
KρKσ+ν2

νe.

1.6.2 Shot Noise

The ballistic chiral fields φ̃
L/R
bal ≡ θ̃bal ± φ̃bal are free. Therefore an appropriate

phase shift can be included to account for the propagation time between the leads,

φ̃
L/R
bal (ω)

∣∣∣
x=+L

2

= e∓i
ωL
u φ̃

L/R
bal (ω)

∣∣∣
x=−L

2

. (1.35)

Repeating the low frequency derivation, this phase shift is used to derive a lengthy

high frequency expression for I(ω)|x=±L
2

in terms of jin and j̃gap. We focus on

the low-temperature noise when Egap � eV � kBT . At high applied voltages

eV � ~ω the spectrum exhibited by j̃gap is Poissonian Sj̃gap(ω) = 2 qtun
e
〈j̃gap〉. This

allows us to calculate the finite frequency electric current noise

SI(ω) = 2q∗〈Itun〉





(
qtun

q∗

)2

+
1−

(
qtun
q∗

)2

1 + α2 tan2(ωL
2u

)




, (1.36)

where α = 2ν
A2

22(1+ν2)
. This result tends to the zero frequency universal value of

SI = 2q∗〈Itun〉. It oscillates as a function of ω between q∗ and a minimal value of

min
ω

{
S(ω)

2〈Itun〉

}
=
q2

tun

q∗
. (1.37)

This minimum is interaction dependent and may serve as a probe for measuring

qtun affected by the low-momentum processes within the wire.

The essential condition for the realization of fractional wires is strong enough

Coulomb interactions [4]. Hence, the effects predicted in this paper should be
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experimentally measurable. We believe that insights from this work will shed

light on the interpretation of noise measurements in 2D FQH systems with

multicomponent edge structures.
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Chapter 2

The paper
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Shot-Noise in Fractional Wires: a Universal Fano-Factor Different than the Tunneling
Charge

Eyal Cornfeld,1 Izhar Neder,1 and Eran Sela1

1Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel Aviv, 69978, Israel

We consider partially gapped one dimensional (1D) conductors connected to normal leads, as
realized in fractional helical wires. At certain electron densities, some distinct charge mode develops
a gap due to electron interactions, leading to a fractional conductance. For this state we study
the current noise caused by tunneling events inside the wire. We find that the noise’s Fano-factor
is different from the tunneling charge. This fact arises from charge scattering at the wire-leads
interfaces. The resulting noise is, however, universal - it depends only on the identification of the
gapped mode, and is insensitive to additional interactions in the wire. We further show that the
tunneling charge can be deduced from the finite frequency noise, and yet is interaction dependent
due to screening effects.

PACS numbers: 73.23.-b, 71.10.Pm, 71.70.Ej

Introduction - Shot noise appears in the current fluc-
tuations and provides valuable information on electron-
electron correlation effects in mesoscopic systems [1]. In
particular its interpretation as a measurement of the unit
electric charge that tunnels through a barrier is of great
importance. It allowed the celebrated direct measure-
ment of the fractional charge of Laughlin quasiparticles
(QP) in fractional quantum Hall (FQH) systems [2]. It
even remains so far the main experimental handle on pre-
dicted non-abelian FQH states e.g. in the ν = 5

2 Moore-
Read state [3].

An ideal situation for such a direct interpretation of
shot-noise S occurs when a current Itun consists of rare
tunneling events of quasiparticles between two channels
in a strongly correlated electron system. In such general
circumstances the Fano-factor, given by the ratio q∗ =
S

2Itun
, matches the total charge transferred per tunneling

event between the leads. Usually this charge corresponds
to the local elementary excitation charge defined inside
the strongly correlated system (i.e. the QP charge).

However, here we show that the shot-noise of a strongly
correlated helical wire with fractional conductance, is dis-
parate. Helical wires consist of counter propagating 1D
modes of opposite spin. They were realized in semicon-
ductors either with spin orbit coupling under a magnetic
field [4], or possibly due to internal magnetic ordering [5].
Sufficiently strong electron electron interactions in such a
system are predicted to stabilize fractional helical states
with fractional conductance [6]. Note that the fractional
helical wire considered here is a special case of a gen-
eral class of partially gapped 1D conductors in which the
tunneling current flows parallel to a ballistic channel; see
Fig. 1(c). We find, that in such systems Coulomb inter-
action inside the wire and the existence of the second bal-
listic channel affect the Fano-factor q∗ in two nontrivial
manners. (i) The tunneling charge may drag additional
nonquantized charges from the ballistic channel, yielding
an interaction dependent local tunneling charge qtun. (ii)
A partial reflection of the tunneling charge results from

Figure 1: a) The chiral currents, incoming into the fractional
wire from the normal leads, and outgoing from the wire to
the leads. b) The high-momentum interaction process of the
chiral currents illustrated on the electrons’ dispersion curve.
c) The tunneling and backscattering of the fractional wire’s
gapped and ballistic modes, respectively.

a gradual screening of the Coulomb interaction at the
source and drain leads.

In this work we provide a positive answer to the ques-
tion of whether there is a universal information contained
in the low-frequency components of the shot-noise of the
aforementioned partially gapped 1D conductor. We fur-
ther show that the non-universal, interaction dependent
local properties of the system can be extracted from the
shot-noise at finite frequency.

We study a model equivalent to a two-wire version
of the Kane-Mukhopadhyay-Lubensky anisotropic tun-
nel coupled wires formulation of the FQH effect [7], which
reproduces the Laughlin fractional QPs and gapless frac-
tional edge states. The fractional wire is connected
to noninteracting normal leads; see Fig. 1(a). It was
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2

found [6, 8] that at filling factor ν = 1
2n+1 with integer

n, when a large energy gap forbids QP tunneling, the

wire’s conductance is Gν = 2ν2

1+ν2
e2

h (e.g. G 1
3

= 1
5
e2

h ).

This differs from the 2D FQH conductance of ν e
2

h .

We first show that in the absence of tunneling, this
fractional conductance contains no shot-noise. This con-
trasts the partition noise S ∝ T (1 − T ) [1] induced by
noninteracting electrons tunneling through a barrier with
a transmission probability T . Next, when considering the
effect of tunneling events, we find this system to exhibit
a remarkable universal shot-noise. The Fano-factor q∗,
though different than the tunneling charge, is universal
and interaction independent. For clean wires, we find it
to be q∗ = 2ν

1+ν2 e (e.g. q∗ = 3
5e for ν = 1

3 ). Furthermore,
effects of disorder in the wire likewise produce a universal
Fano-factor. This universality, in our fractional partially
gapped system, is rooted in the charge conservation of the
chiral modes in presence of Coloumb interaction. This is
analogous to the conductance quantization of quantum
wires connected to noninteracting leads [9].

The non-universal interaction dependent local tunnel-
ing charge qtun, can be extracted from the shot-noise at
finite frequencies ω ∼ vF

L , where L is the length of the
wire and vF is the Fermi velocity. A similar suggestion
to use finite frequency noise was made [10] to measure
the charge fractionalization [11] in Luttinger liquids.

The Model - We study an interacting quantum wire of
length L, adiabatically connected to non-interacting nor-
mal leads, containing both a Rashba spin-orbit (SO) cou-
pling and a Zeeman field. The model was introduced in
Ref. [6] and we herein recapitulate its crucial ingredients.
The SO coupling horizontally shifts the electrons’ disper-
sion relations by ±kSO according to their spin, thus cre-
ating four Fermi points. These correspond to the left and
right moving electrons with either spin up or spin down,
ψL↑ , ψ

R
↑ , ψ

L
↓ , ψ

R
↓ , denoted ψ1, ψ2, ψ3, ψ4; see Fig. 1(b).

Near the Fermi surface one can consider both low-
momentum and high-momentum physical processes in-
volving scatterings amidst the Fermi points. The for-
mer are the density-density processes, handled within
the Luttinger-liquid (LL) formalism [12] as a free bosonic
Hamiltonian H0; see Eq. (6). The latter involve 2kF in-
teractions originating from multi-electron processes de-
scribed by Hint. The total Hamiltonian is accordingly.

H = H0 +Hint. (1)

In clean wires with SO coupling, high-momentum scat-
tering between spin up and spin down can be generated
by the magnetic field and by low momentum interactions,
and open partial gaps near certain electronic densities [6].
As pointed out by Kane et al. [7], the multiparticle pro-
cesses shown in Fig. 1(b), described by the Hamiltonian

Hint ∼ (ψ†1ψ2)nψ†3ψ2(ψ†3ψ4)n + h.c., (2)

may open a partial gap at filling factors ν ≡ kF
kSO

= 1
2n+1 .

Treatment of this interaction is done within the
bosonization formalism [12]. This is done by introduc-
ing four bosonic fields φi, such that ψi ∼ eiϕi , with
their associated densities ρi = (−1)i 1

2π∂xϕi and currents
ji = (−1)i+1 1

2π∂tϕi. Thus, at any point in the wire or the
leads, the total current is I = e

∑
i ji. The interaction

may now be expressed in its bosonized form

Hint ∼ cos(nϕ1 − (n+ 1)ϕ2 + (n+ 1)ϕ3 − nϕ4). (3)

Following Ref. [7], we introduce new chiral bosons,

(
φLbal

φRgap

)
≡ √ν

(
n+ 1 −n
−n n+ 1

)(
ϕ1

ϕ2

)
,

(
φLgap

φRbal

)
≡ √ν

(
n+ 1 −n
−n n+ 1

)(
ϕ3

ϕ4

)
,

(4)

in terms of which the cosine interaction becomes a simple

backscattering operator, cos(
φRgap−φLgap√

ν
). By defining the

canonically conjugate pairs θgap±φgap ≡ φL/Rgap and θbal±
φbal ≡ φL/Rbal , the interaction term takes the simpler form

Hint =

∫
dx

[
g(x) cos

(
2φgap√

ν

)]
, (5)

where the effective high-momentum interaction strength
g(x) adiabatically changes from 0 at the leads to g inside
the wire. When the scaling dimension ∆ of this interac-
tion is smaller than two, an energy-gap Egap is created
in the φgap mode, while the ballistic mode φbal remains
gapless; see Fig. 1(c).

The low-momentum Hamiltonian H0 must be invari-
ant under the switching of both chirality L ↔ R and
spin ↑↔↓. The φ ≡ (φgap, φbal) fields are odd under this
transformation (φ→ −φ) while the θ ≡ (θgap, θbal) fields
are even (θ → +θ). The most general low-momentum
Hamiltonian must therefore take the form

H0 =
~

2π

∫
dx
[
∂xφ

>Hφ
0 (x)∂xφ+ ∂xθ

>Hθ
0 (x)∂xθ

]
,

(6)

where Hφ
0 (x) and Hθ

0 (x) are symmetric 2 × 2 matrices.
These matrices change adiabatically from the noninter-
acting leads to a Luttinger liquid inside the wire, which
nevertheless doesn’t affect our universal results.

Quantized Conductance - We begin our analysis by
rederiving the fractional conductance [6] and showing its
universality [8]. At each end of the wire there are two
incoming currents (from the leads) and two outgoing cur-
rents (to the leads). We denote the incoming left-moving
currents by jin

iL
≡ jiL |x=+L

2
with iL ∈ {1, 3}, and the

incoming right-moving currents by jin
iR
≡ jiR |x=−L2 with

iR ∈ {2, 4}; see Fig. 1(a). The incoming currents are de-
termined by the chemical potential µL,R of the lead they
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emanate from, with a voltage difference eV = µL − µR,

−〈jiL〉x=+L
2

= 1
2π~µR, 〈jiR〉x=−L2 = 1

2π~µL. (7)

Taking the limit of increasingly large Egap, the gapped
mode φgap becomes stationary 〈∂tφgap〉 = 0. The un-

gapped modes satisfy [
∫ L

2

−L2
dx∂xφ

L/R
bal ,H] = 0, resulting

in the conservation of their associated currents,

〈∂tφL/Rbal 〉x=+L
2

= 〈∂tφL/Rbal 〉x=−L2 . (8)

We now express the four equations (7) for the incoming
currents in terms of 〈∂tφ〉x=±L2 , 〈∂tθ〉x=±L2 using Eq. (4).

We set 〈∂tφgap〉x=±L2 = 0 and solve the linear equations

for the remaining modes in either side of the wire. Sub-
stituting back to the original currents 〈ji〉 we find the
total electric current 〈I〉 flowing through the wire and
the conductance [6]

Gν ≡
〈I〉
V

=
e

V

∑

i

〈ji〉x=x′ =
2ν2

1 + ν2

e2

2π~
, (9)

where x′ may be any point outside the wire in either of
the leads. We emphasize that the Hamiltonian H0 does
not affect this result, as was shown by Meng et. al. [8]
using other methods.

Universal Low Frequency Noise - We calculate the
noise of the total current I(t), which at any point x′

inside the wire can be expressed, using Eq. (4), as 1
eI(t) =√

ν
π ∂t(φgap +φbal) ≡ jgap + jbal. We start the calculation

by defining the fluctuations of any operator O as

SO(ω)ij =

∫ ∞

−∞
dteiωt〈{δOi(t), δOj(0)}〉, (10)

with δO ≡ O − 〈O〉. By taking the Fourier
transform of the operator O(t) over a duration τ ,
one gets its spectral dependence O(ω) where ω =
ωm = 2πm

τ . Its continuous spectral power is re-
lated to the noise by the Wiener-Khintchine theorem
1
τ 〈{δOi(ω), δOj(−ω)}〉 −−−−→

τ→∞
SO(ω)ij .

At low frequencies ω � vF
L the spectral components of

the ungapped modes vary slowly over time scales much
longer than the propagation time through the wire. In
this limit, to leading order in ωL

vF
, one can rewrite Eq. (8)

as a field operator equation,

∂tφ
L/R
bal (ω)

∣∣∣
x=+L

2

' ∂tφ
L/R
bal (ω)

∣∣∣
x=−L2

. (11)

A similar conservation argument for the gapped field,

which follows from [
∫ L

2

−L2
dx∂xφgap,H] = 0, yields

∂tφgap(ω)|x=+L
2
' ∂tφgap(ω)|x=−L2 = π√

ν
jgap(ω). We

use this equation with Eqs. (11),(4) to express I(ω) in
terms of the Fourier components of the incoming cur-

rents and the tunneling current,

I(ω)|x=±L2 =

{
ν

1 + ν

1 + ν2

[
jin
1 (ω) + jin

4 (ω)
]

−ν 1− ν
1 + ν2

[
jin
2 (ω) + jin

3 (ω)
]

+
2

1 + ν2
jgap(ω)

}
e. (12)

When the wire is fully gapped (i.e. Egap → ∞) we may
neglect the contribution of jgap. The leading contribution
to the electric current noise SI(ω) stems from the thermal
noise of the incoming fields jin, which is given by [1]
Sjin(ω)ij = δij

ω
2π coth( ~ω

2kBT
). This and Eq. (12) can be

utilized in order to derive the noise of the electric current

SI(ω) = 2e2 ω

2π
coth(

~ω
2kBT

)
2ν2

1 + ν2
. (13)

This expression tends to the Johnson-Nyquist zero fre-
quency result of SI = 4kBTGν . As this holds in the
presence of voltages eV � kBT , it ushers the conclusion
that although we have a non-integer conductance, there
is no zero temperature noise.

We move on to evaluate the noise when the gap is fi-
nite and yet larger than the energy scales in the system
Egap � {eV, kBT}. At low temperatures eV � kBT the
dominating contribution to SI(ω) comes from tunneling
events through the gap. Hence we define the shot-noise

charge, or Fano-factor, as q∗ ≡ SI(ω=0)
2〈Itun〉 , namely by the

ratio of the zero-frequency noise to the tunneling cur-
rent 〈Itun〉 ≡ 〈I〉 −GνV . At a single tunneling event the

combination of the gapped mode
2φgap√

ν
subject to the co-

sine potential changes by 2π from one minima to another.
From the definition of jgap, the charge carried by it during
the tunneling event is heuristically

∫
dt[jgap] = ν. Defin-

ing a tunneling rate Γ =
〈jgap〉
ν , we may read the charge

transfered between the leads at each such event off from
Eq. (12) to be q∗ = 〈Itun〉

Γ = 2ν
1+ν2 e. This charge indeed

matches the Fano factor, as we consecutively show.

As Egap � eV , the tunneling events become scarce
and independent. Therefore, at low frequencies eV �
~ω, the spectrum exhibited by jgap is Poissonian [13],
Sjgap(ω) = 2ν〈jgap〉. Using Eq. (12) and the Poissonian
form of Sjgap we obtain the shot-noise charge

q∗ =
SI(ω = 0)

2〈Itun〉
=

2ν

1 + ν2
e. (14)

This is our main result. One may understand the fact
that q∗ differs from the tunneling charge as follows. Upon
arriving to a given lead, the tunneling charge that has
tunneled is no longer an eigenstate, and gets partially
reflected. The existence of the ballistic channels permits
multiple reflections of this charge between the opposite
leads. Importantly, due to the formation of the gap in
the fractional wire, the original chiral charges are not
conserved [

∫
dx∂xϕi,H] 6= 0, allowing the multiple reflec-
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tions to modify the overall transmitted charge to a dif-
ferent value. Remarkably, this shot-noise charge attains
a universal value unaffected by low-momentum Coulomb
interactions. This universality stems from the connection
to the noninteracting leads much like the conductivity [9].

We briefly discuss the influence of a small amount of
disorder. The leading perturbation of an impurity was
shown to be HBS ∼ cos( 1−ν√

ν
φbal|x=xBS

) [6], manifest-

ing in backscatterings of the ballistic channel, see ar-
rows in Fig. 1(c), and hence, lowering the electric current
〈I〉 = GνV + 〈Itun〉 − 〈IBS〉. As long as this perturba-
tion remains sufficiently small, we may treat these pro-
cesses as independent Poissonian events. We model these
events by introducing an impurity term in Eq. (11), with
∂tθbal(ω)|x=+L

2
' ∂tθbal(ω)|x=−L2 + π√

ν
jimp, with the im-

purity backscattering current obaying
∫
dt [jimp] = 1−ν

2 .
Then, following similar arguments as above, we find a
universal Fano-factor, originating from the backscatter-
ing. The distinct topologies of the backscattering and
tunneling operators, as seen in Fig. 1(c), impel the dif-
fering of their Fano-factors. We find the noise to be

S = 2q∗〈Itun〉 + 2q∗BS〈IBS〉, with q∗BS = ν(1−ν)
1+ν2 e (e.g.

q∗BS = 1
5e for ν = 1

3 ). Since the tunneling current ex-

ponentially decays with
LEgap

~vF , it is dominated by the
backscattering contribution given a sufficiently long wire.

We stress that the fact that q∗ 6= qtun in our system
is consistent with the equality of these two quantities
appearing in many other systems, in particular for impu-
rity noise in FQH bars. In the appendices we show that
the tunneling charge qtun and the Fano-factor q∗ coincide
and reduce to the Laughlin quasi-particle charge in the
2D FQH limit of an array of many such wires coupled
together.

High Frequency Noise - Contrary to the zero fre-
quency noise, the high frequency noise is affected by
Coulomb interactions. It reveals short timescale pro-
cesses, and is used to extract the initial tunneling charge
qtun inside the wire. This charge encompasses the screen-
ing cloud, formed by the interaction between the ballistic
and gapped modes afore hitting the leads.

Closed form expressions for SI(ω) and qtun can be ob-
tained for a broad family of low-momentum interactions
that are simultaneously diagonalizable with the cosine
perturbation Eq. (5) [14]. This is done via a canoni-
cal transformation (φ̃gap, φ̃bal)

> ≡ A−1(φgap, φbal)
> and

(θ̃gap, θ̃bal)
> ≡ A>(θgap, θbal)

>, such that φ̃gap ∝ φgap

(i.e. A12 = 0). The transformed low-momentum Hamil-
tonianH0 inside the wire is diagonalized with the gapped
fields (φ̃gap, θ̃gap) associated with a velocity ugap, and

fully decoupled from the ballistic fields (φ̃bal, θ̃bal) prop-
agating with velocity ubal ≡ u. The interaction Hamil-

tonian takes the form Hint =
∫
dx
[
g(x) cos( 2A11√

ν
φ̃gap)

]

with scaling dimension ∆ =
A2

11

ν .

A tunneling event corresponds to a 2π jump in the

gapped field 2A11√
ν
φ̃gap, while leaving φ̃bal unaffected. The

current at any point x′ inside the wire can be decomposed

as 1
eI =

√
ν
π [(A11 + A21)∂tφ̃gap + (A12 + A22)∂tφ̃bal] ≡

j̃gap + j̃bal. Since the ballistic fields are decoupled from
the gapped fields, the total tunneling charge is qtun =∫
dtI =

∫
dt[ej̃gap] =

(
1 + A21

A11

)
νe. This procedure may

be used in future works to enable exact crossover so-
lutions either via Bethe-ansatz [15], or at ∆ = 1

2 via
refermionization.

The ballistic chiral fields φ̃
L/R
bal ≡ θ̃bal ± φ̃bal are free.

Therefore an appropriate phase shift can be included to
account for the propagation time between the leads,

φ̃
L/R
bal (ω)

∣∣∣
x=+L

2

= e∓i
ωL
u φ̃

L/R
bal (ω)

∣∣∣
x=−L2

. (15)

Repeating the low frequency derivation, this phase shift
is used to derive a lengthy high frequency expression for
I(ω)|x=±L2 in terms of jin and j̃gap. We focus on the

low-temperature noise when Egap � eV � kBT . At
high applied voltages eV � ~ω the spectrum exhibited
by j̃gap is Poissonian Sj̃gap(ω) = 2 qtune 〈j̃gap〉. This allows
us to calculate the finite frequency electric current noise

SI(ω) = 2q∗〈Itun〉





(
qtun

q∗

)2

+
1−

(
qtun
q∗

)2

1 + α2 tan2(ωL2u )




,

(16)
where α = 2ν

A2
22(1+ν2)

. This result tends to the zero fre-

quency universal value of SI = 2q∗〈Itun〉. It oscillates as
a function of ω between q∗ and a minimal value of

min
ω

{
S(ω)

2〈Itun〉

}
=
q2
tun

q∗
. (17)

This minimum is interaction dependent and may serve
as a probe for measuring qtun affected by the low-
momentum processes within the wire.

The essential condition for the realization of fractional
wires is strong enough Coulomb interactions [6]. Hence,
the effects predicted in this paper should be experimen-
tally measurable. We believe that insights from this work
will shed light on the interpretation of noise measure-
ments in 2D FQH systems with multicomponent edge
structures.
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by a Marie Curie CIG grant and the Israel Science Foun-
dation (ES).
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Appendix A

We give here a brief generalization of our model for
the Kane-Mukhopadhyay-Lubensky [7] formulation of
the standard FQH effect. We treat an array of M = 2N
tunnel coupled spinless wires subject to a magnetic field.
By increasing the number of wires the 2D limit is grad-
ually obtained, introducing a spatial separation of the
edge and bulk physics. This model, hence allows us to
study the crossover from our 1D results to the known 2D
limit.

The model is schematically depicted in Fig A.1. The
Hamiltonian can be split into two parts

H = H0 +Hint. (A.1)

Here H0 describes the effective free Hamiltonian, which
includes the contribution of the low-momentum processes
within the region of length L, and Hint describes the
high-momentum interactions within the same region. We
focus on the most relevant processes taking place at filling
factors ν = 1

2n+1 described by

Hint ∼
M−1∑

i=1

(ψL†i ψRi )nψL†i+1ψ
R
i (ψL†i+1ψ

R
i+1)n + h.c., (A.2)

where the fermionic operators ψ
L/R
i correspond to left

and right moving electrons at the Fermi surface. Within
the bosonization [12] formalism we introduce the bosonic

fields ϕ
L/R
i , such that ψ

L/R
i ∼ eiϕ

L/R
i , with their associ-

ated densities ρ
L/R
i = ∓ 1

2π∂xϕ
L/R
i and currents j

L/R
i =

± 1
2π∂tϕ

L/R
i . The interaction may now be expressed in

bosonized form as

Hint ∼
M−1∑

i=1

cos(nϕLi − (n+ 1)ϕRi + (n+ 1)ϕLi+1−nϕRi+1).

(A.3)
Following Ref. [7], we make a change of
variables to the canonically conjugate pairs
[φi(x), θj(x

′)] = iπ2 δijsign(x′ − x) given by
(φi, θi)

> = B2×4(ϕLi , ϕ
R
i , ϕ

L
i+1, ϕ

R
i+1)> where the

index i is to be understood as cyclical (i.e. ϕM+1 = ϕ1),
with

B2×4 =

√
ν

2

(
n −(n+ 1) n+ 1 −n
−n n+ 1 n+ 1 −n

)
. (A.4)

The interaction term now takes the simple form

Hint =

M−1∑

i=1

∫
dxg(x) cos

(
2φi√
ν

)
. (A.5)

This interaction forms an energy-gap Egap in the
φ1 . . . φM−1 modes, while maintaining the mode corre-
sponding to the chiral edge states, φM , as gapless.

Figure A.1: (i) The chiral currents within the normal leads
on both sides of the coupled wires’ array (numbered at the
left interface). (ii) The gapped modes within fractional array
(numbered at the right interface). (iii) The tunneling through
the equidistant mode (center). (iv) The ballistic modes prop-
agating along the fractional edges (top and bottom).

At the ends of the coupled wires’ array there are M
currents incoming from the leads and M currents outgo-
ing to the leads. The incoming currents are determined
by the chemical potential µL,R of the lead they emanate
from, with voltage difference eV = µL − µR,

−〈jLi 〉x=+L
2

= 1
2π~µR, 〈jRi 〉x=−L2 = 1

2π~µL. (A.6)

It is sufficient to focus on the zero frequency analysis.
Charge conservation along the edge-states implies

φM |x=+L
2

= φM |x=−L2 ,

θM |x=+L
2

= θM |x=−L2 .
(A.7)

For simplicity we focus our study on bulk excitations
equidistant from the edges of the array. This can be
done in the symmetric case of an even number of wires
M = 2N ; see Fig A.1. We therefore define the current

flowing through the gap by jgap ≡
√
ν
π ∂tφN |x=0 while

〈∂tφi/∈{N,2N}〉 = 0.

When the array is fully gapped (i.e. Egap → ∞) we
set 〈jgap〉 = 0 and solve these equations for the modes in
either side of the wire 〈∂tφi〉x=±L2 , 〈∂tθi〉x=±L2 , allowing

us to calculate the total electric current flowing through
the wire and thus the conductance [6]

GN ≡
〈I〉
V

= ν



1− 2

[(
ν + 1

ν − 1

)2N

+ 1

]−1




e2

2π~
.

(A.8)

The low temperature noise is dominated by the con-
tribution from jgap when the gap is larger then the en-
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ergy scales in the system (i.e. Egap � eV � kBT ).
As the tunneling events become scarce and independent,
the spectrum exhibited by jgap is Poissonian Sjgap =
2ν〈jgap〉. This allows us to calculate the electric cur-

rent noise SI(ω). The Fano-factor charge q∗ ≡ SI(ω=0)
2〈Itun〉 is

given by the ratio of the zero-frequency noise to the tun-
neling current 〈Itun〉 ≡ 〈I〉−GNV which is dominated by
the contribution from 〈jgap〉 as well. Therefore a simple
expression for the Fano-factor charge is derived

q∗N =



1− 2

[(
ν + 1

ν − 1

)N
+

(
ν − 1

ν + 1

)N]−1


 νe. (A.9)

This expression tends to the Laughlin quasiparticle
charge of q∗N → νe when N → ∞ and the 2D limit is
approached.

Appendix B

The Hamiltonian inside the wire contains both the high

momentum interaction Hint =
∫
dx
[
g cos

(
2φgap√

ν

)]
and

the low momentum interactions H0. By the symmetry
considerations explained in the main text, the most gen-
eral low momentum interactions may be represented by
two real symmetric 2× 2 matrices Hφ

0 and Hθ
0 as

H0 =
~

2π

∫
dx
[
∂xφ

>Hφ
0 ∂xφ+ ∂xθ

>Hθ
0∂xθ

]
. (B.1)

In general, the low momentum interactions may couple
the φgap field with the φbal field, and similarly θgap with
θbal. Such a coupling makes the treatment of the cosine
interaction non-trivial. In this appendix, we explicitly
present a broad family of low-momentum Hamiltonians
that are simultaneously diagonalizable with the cosine
perturbation. Within this family of Hamiltonians, the
effective theory decomposes into two new decoupled Lut-
tinger liquid sectors, where the cosine interaction acts
solely on one of them.

It is convenient to parameterize the two symmetric ma-
trices by the six parameters K1,K2, u1, u2, γ

φ, γθ as

Hφ
0 = e−iγ

φσ2

( u1ν
K1

0

0 u2K2

ν

)
eiγ

φσ2 ,

Hθ
0 = e−iγ

θσ2

(
u1K1

ν 0
0 u2ν

K2

)
eiγ

θσ2 ,

(B.2)

where σ2 is the second Pauli matrix. There are two
prominent cases to note: (i) A tuning, where the gapped
and ballistic modes decouple γφ = γθ = 0. (ii) A stan-
dard LL Hamiltonian [12] containing only four param-
eters due to symmetry under inversions of either spin
or chirality. The latter Hamiltonian is attained by set-
ting γφ = γθ = π

4 , where K1 = Kρ,K2 = Kσ and

u1 = uρ, u2 = uσ are the Luttinger parameters and ve-
locities, of the charge and spin sectors respectively.

We construct a canonical transformation φ̃ = A−1φ ,
θ̃ = A>θ that retains the shape of the cosine interaction
(i.e. φ̃gap ∝ φgap) while transforming the Hamiltonian
to a diagonal noninteracting form. The former condition
is satisfied by using

A =

(
A11 0
A21 A22

)
. (B.3)

In terms of φ̃ and θ̃, the Hamiltonian matrices read

Hφ
0 → H̃φ

0 = A>Hφ
0A,

Hθ
0 → H̃θ

0 = (A−1)Hθ
0 (A−1)>.

(B.4)

A transformation possessing the aforementioned proper-
ties exists only when γ ≡ γφ = γθ and either (i) γ = 0
or (ii) u ≡ u1 = u2. The former case is trivial, since

Hφ
0 and Hθ

0 are initially diagonal. A simple observa-

tion that 1
u2 H̃

φ
0 H̃

θ
0 = 1 in the latter case, confirms the

simultaneous diagonalizability of the Hamiltonian matri-
ces. Explicitly demanding the diagonality of either of the
matrices yields a condition on the ratio A21

A11
. Recalling

that the tunneling charge is qtun =
(

1 + A21

A11

)
νe we get

qtun =



1 +

(
K1

ν − ν
K2

)
cos(γ) sin(γ)

K1

ν cos2(γ) + ν
K2

sin2(γ)



 νe (B.5)

This expression continuously interpolates between two
prominent particular cases: (i) A free theory of the φ
and θ fields, giving qtun = νe. (ii) A Luttinger-Liquid [12]
with velocities uρ, uσ and compressibilities Kρ,Kσ of the
charge and spin sectors, satisfying vρ = vσ, for which we

obtain qtun = νe
2KρKσ
KρKσ+ν2 .

In order to construct the full transformation, we pursue
a noninteracting form by imposing H̃φ

0 = H̃θ
0 . The trans-

formed low-momentum HamiltonianH0 inside the wire is
hence both diagonalized and noninteracting. The gapped
fields (φ̃gap, θ̃gap) propagate with velocity ugap = u1 and

are fully decoupled from the ballistic fields (φ̃bal, θ̃bal)
propagating with velocity ubal = u2. The interaction
Hamiltonian takes the form

Hint =

∫
dx
[
g(x) cos(2

√
∆φ̃gap)

]
, (B.6)

where the matrix element A11 is related to the scaling

dimension of the interaction via ∆ =
A2

11

ν = K1 cos2(γ)
ν2 +

sin2(γ)
K2

. An explicit form of the transformation matrix is

A =
1√
ν∆

(
ν∆ 0(

K1

ν − ν
K2

)
cos(γ) sin(γ)

√
K1

K2

)
. (B.7)
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To conclude, whereas the original model has six param-
eters characterizing the low momentum interactions, we
have found a four parameter subspace, which is decom-
posable into one free sector and one sector with a cosine
perturbation. This model is exactly solvable either via
Bethe-ansatz [15] or upon further tuning ∆ = 1

2 by means
of refermionization. These may ultimately be used to ex-
plore the full crossover behavior in the system.
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תקציר

רגילים, למגעים המחוברים חלקי אנרגיה פער בעלי חד־מימדיים במוליכים עוסק המחקר

המטען מערוצי חלק מסויימות, אלקטרונים בצפיפויות קוונטיים. חוטים ידי על ובמימושם

למוליכות המוביל דבר האלקטרונים, בין גומלין מפעולות כתוצאה אנרגיה פער מפתחים

דרך מנהור מאירועי כתוצאה הנוצר החשמלי הרעש את חוקרים אנו זה מצב עבור שברית.

המטען מפיזורי מקורה זו ושתוצאה המנהור, ממטען שונה שמקדם־פאנו מוצאים אנו החוט.

תלוי אלא הגומלין בפעולות תלוי אינו הנוצר הרעש כן, פי על אף למגעים. החוט בין בממשק

שניתן בלבד זאת לא כי ומראים, מוסיפים אנו האנרגיה. פער בעל הערוץ במבנה בלעדית

מפעולות מושפע שהינו אף אלא סופיים, בתדרים החשמלי מהרעש המנהור מטען את להסיק

החשמלי. המיסוך השפעות עקב הגומלין

i
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