Transition States and Reaction Paths

Computational Chemistry lab2013

Potential Energy Surface (PES)

A 3N-6-dimensional hypersurface in, where N is the number of atoms.

Saddle point - Transition state

Transition State

Arrhenius equation

$$
k = Ae^{-E_A/k_bT}
$$

 k - rate constant $E_{\scriptscriptstyle\mathcal{A}}$ – activation energy T – temperature $k_b^{}-$ Boltzmann constant

Multidimensional Optimization

∇*f*=0 - Stationary Point (minimum, maximum, or saddle point)Force: $F = -VE$ (Potential energy)

Hessian matrix

A matrix of second-order derivativesof the energy with respect to atomic coordinates (e.g., Cartesian or internal coordinates)Sometimes called force matrix –matrix size of $(3N-6)x(3N-6)$

$$
H_{ij}(f) = \frac{\partial^2 f}{\partial x_i \partial x_j}
$$

Quadratic approximation

around a stationary point $\vec{x}^{(st)} = (x_1^{(st)},...x_n^{(st)})$ Approximate the complex energy landscape by harmonic potentials1 $(st) = f(x^{(st)})$ $r^{(st)}$ *n* $\vec{x}^{(st)} = (x_i^{(st)}, \dots x_i^{(st)})$ $\vec{x}^{(st)} = (x_1^{(st)},...x_n^{(st)})$ [VE $(\vec{x}^{(st)}) = 0$] ∑∑= $=$ =+ ∇ −+−*n in j* \int _{*j*} $-x_j^{(st)}$ \sum_i ^{$-x_i$ (st}) $\widetilde{x}^{(st)}$ $E(\vec{x}) = E(\vec{x}^{(st)}) + \nabla E(\vec{x}^{(st)})$ *xExExxxHxxxxx* $1 \quad j=1$ $\mathcal{L}(st)$ $\mathcal{L}(t - x^{(st)})$ $\mathcal{L}(t - x^{(st)})$ 2 $\overline{f}(\vec{x}) = E(\vec{x}^{(st)}) + \overline{\nabla E(\vec{x}^{(st)})} (\overline{\vec{x} - \vec{x}}^{(st)}) + \frac{1}{2} \sum \sum H_{ij}(\vec{x}^{(st)}) (x_i - x_i^{(st)}) (x_j - x_j^{(st)})$ \rightarrow \rightarrow r \rightarrow \rightarrow \rightarrow

 24.7

 Γ $\partial^2 f$ $\partial^2 f$

Quadratic approximation

∑== \sum^{n} $H_{ij}l_{i}^{(k)}$ *iHessian* matrix diagonalization (eigenproblem) $\varepsilon_k l_j^{(k)} = \sum_{i=1}^k H_{ij} l_i^{(k)}$ 1Eigenvalues $\varepsilon_k = m\omega_k^2$ ω_k - vibrational frequencies Eigenvectors $l_j^{(k)}$ give normal coordinates $q_k = \sum_{i=1}^k q_i$ == $=\sum_{i}^{n}l_{i}^{(k)}(x_{i}-x_{i}^{(k)}))$ *i* $q_k = \sum_l^{(k)} (x_i - x_i^{(0)})$ 1∑= $= E(X_1^{(s_1)},...X_n^{(s_n)}) +$ *n kk ^k st n* $E(x_1,...x_n) = E(x_1^{(st)},...x_n^{(st)}) + \frac{1}{2}\sum_{k} \varepsilon_k q_k^2$ 1 $(x_1,...x_n) = E(x_1^{(st)},...x_n^{(st)}) + \frac{1}{2}\sum \varepsilon_i$ ∑∑= $=$ = $= E(x_1^{(st)},...x_n^{(st)}) + \frac{1}{2}\sum_{i=1}^{n} \sum_{j=1}^{n} H_{ij}(\vec{x}^{(st)}) (x_i - x_i^{(st)}) (x_j - x_j^{(st)})$ *ij* $x_i - x_i^{(st)}$ $\iint\limits_{ij} \bigl(\vec{x}^{\text{(st)}}$ *st n* $E(x_1,...x_n) = E(x_1^{(st)},...x_n^{(st)}) + \frac{1}{2}\sum_{i=1}^{n}\sum_{i=1}^{n}H_{ij}(\vec{x}^{(st)}) (x_i - x_i^{(st)}) (x_j - x_i^{(st)})$ 1 $j=1$ $\mathbf{r}^{(st)}$ (x = $\mathbf{r}^{(st)}$)(x = $\mathbf{r}^{(st)}$) 2 $(x_1,...x_n) = E(x_1^{(st)},...x_n^{(st)}) + \frac{1}{2}\sum_{j} H_{ij}(\vec{x}^{(st)}) (x_i - x_i^{(st)}) (x_j - x_j^{(st)})$ Approximate the complex energy landscape by harmonic potentialsaround a stationary point $\vec{x}^{(st)} = (x_1^{(st)},... x_n^{(st)})$ $[\nabla E(\vec{x}^{(st)}) = 0]$

Algorithms for Finding Transition **States**

No general methods which are guarantied to find!

Global methods – interpolation between reactant and product

Linear Synchronous Transit (LST)

Quadratic Synchronous Transit (QST)

Local methods – augmented Newton-Raphson

Eigenvector following

Berny algorithm

Synchronous Transit-Guided Quasi-Newton (STQN) method – QST+quasi-Newton

Force-field parameters in molecular mechanics are defined for equilibrium structures and can be inapplicable to transition structures.

Quantum calculations only

(recent semi-empirical potentials are applicable too)

Linear synchronous transit (LST)-search for a maximum along a linear path between reactants and products

Linear synchronous transit (LST) search for a maximum along a linear path between reactants and products

Quadratic synchronous transit

(QST) - search for a maximum along an arc connecting reactants and products, and for a minimum in all directions perpendicular to the arc

- Best case the transition state is found.
- General case search is finished in a wrong saddle point or in a point with wrong number of negative eigenvalues (>1) .

Newton(-Raphson) method:

Quadratic approximation : $E(\mathbf{R}) = E(\mathbf{R}_0) - \sum (F_k q_k - \frac{1}{2} \varepsilon_k q_k^2)$ One-step search for quadratic functions $q_k = F_k$ */* ε_k For arbitrary functions**Quasi-Newton** – no explicit computation of the Hessian matrix. *q* q_k - normal coordinates, $\mathbf{R} - \mathbf{R}_0 = \sum q_k \mathbf{l}_k$, 1 $\varepsilon_{\rm k}$ and ${\bf l}_{\rm k}$ - eigenvalues and eigenvectors of the Hessian matrix at ${\bf R}_{\rm 0}$ =— κ = *nk* $\mathbf{R} - \mathbf{R}$ ₀ = $\sum q_k \mathbf{l}$ _k $\mathbf{I}_k, \ \nabla E(\mathbf{R}_{0}) = -\sum$ =*n* E **(R**₀) = $-\sum F_k$ **l**_k *k*12 \mathbf{v}_k 91 10^{*l*} \angle ¹ k ^{*k*} k 2^{\angle k ^{*k*} k} $k=1$ $\mathbf{R} = (x_1, \dots, x_n)$ - (3N-6) -dimensional vector *n* $E(\mathbf{R}) = E(\mathbf{R}_0) - \sum (F_k q_k - \frac{1}{2} \mathcal{E}_k q)$ $\prod_k(\mathbf{R}_i)F_k(\mathbf{R}_i)/\mathcal{E}_k(\mathbf{R}_i)$ $\sum_{i} k(\mathbf{R}_{i})^{T} k(\mathbf{R}_{i})^{T} k(\mathbf{R}_{i})^{T} c_{k}(\mathbf{R}_{i})$ *n* $\mathbf{R}_{i+1} = \mathbf{R}_i + \sum \mathbf{l}_k(\mathbf{R}_i) F_k(\mathbf{R}_i)$ \mathcal{E}_1 $\mathbf{R}_{i} = \mathbf{R}_{i} + \sum_{k} \mathbf{I}_{k}(\mathbf{R}_{i}) F_{k}(\mathbf{R}_{i}) / \varepsilon_{k}(\mathbf{R}_{i})$ =+**R** Θ **R**ts(3N-6) -dimensional vectors

Finds the closest stationary point (either minimum, maximum, or saddle point).*k*=

Transition state $-\varepsilon_1(\mathbf{R})<0$, $\varepsilon_k(\mathbf{R})>0$ (k>1)

Rational function optimization (RFO)

$$
\mathbf{R}_{i+1} = \mathbf{R}_i + \sum_{k=1}^n \mathbf{l}_k(\mathbf{R}_i) \frac{F_k(\mathbf{R}_i)}{\varepsilon_k(\mathbf{R}_i) - \lambda_k}
$$

Berny algorithm (Gaussian, Opt=TS) \mathbf{R}_i
 $\varepsilon_1 = \min(\varepsilon_k) < \lambda_k \equiv \lambda \le \varepsilon_2/2$
Eigenvector Following Method
(Gaussian, Opt=EF; Hyperchem)
 $\lambda_1 = (\varepsilon_1 + \sqrt{\varepsilon_1^2 + 4F_1^2})/2$
 $k > 1 : \lambda_k \equiv \lambda = \sum_{i>1} F_i^2 / (\lambda - \varepsilon_i)$

Clamber "up valley"

Clamber "up valley"

Synchronous Transit-Guided Quasi-Newton (STQN)

approach to the quadratic region quadratic synchronous transitcomplete the optimizationeigenvector-following algorithm

Gaussian, Opt=QST3: input reactants, products, and estimate of transition state

Gaussian, Opt=QST2; Hyperchem: input reactants and products only, automatic estimate of transition state

Is the correct TS found?

- Look at the transition state geometry to make sure it's the right one.
- Use several algorithms.
- Try several estimates of transition state.
- Follow reaction path to be sure that the transition state connects the correct reactants and products.

Reaction Paths

Steepest descent path from transition state to reactants and productsIRC-internal reaction coordinate

