Introduction to Geometry Optimization

Computational Chemistry lab 2014

Determination of the molecule configuration

- Triatomic molecule determine distances and the angle
- Four-atomic molecule determine angles and distances

3N- 6 parameters for an N-atomic molecule (N>2) (3N atomic coordinates-3 c.o.m coordinates -3 angles)

Optimal configurations correspond to minima of the energy as a function of these parameters

Solution of the Schrödinger equation in the Born-Oppenheimer approximation:

 $H_{tot} = (T_n + V_n) + T_e + V_{ne} + V_e = (H_n) + H_e$ Electronic SE: $H_e \Psi(r, R) = E_e(R) \Psi(r, R)$ Ab-initio or semi-empirical solution $E_e(R)$ – electronic energy R – nuclear coordinates $V_n(R)$ – nuclei-nuclei interaction

 $E(R) = V_n(R) + E_e(R)$ = potential energy surface (**PES**)

Molecular mechanics: PES ← molecular force field

Potential Energy Surface (PES)

A hypersurface in 3N-6 -dimensional hyperspace, where N is the number of atoms.

Global Minimum - that point that is the lowest value in the PES

 $H_2O - 3N-6=3$

- One configuration is known for H_2
- One configuration is known for H_2O
- The planar and pyramidal configurations are known for NH₃

The number of local minima typically goes exponentially with the number of variables (degrees of freedom). Combinatorial Explosion Problem Possible Conformations (3^{*n*}) for linear alkanes CH₃(CH₂)_{*n*+1}CH₃

n = 1	3
n = 2	9
n = 5	243
<i>n</i> = 10	59,049
<i>n</i> = 15	14,348,90

Global minimum - Mariana Trench in the Pacific Ocean

Optimization/Goals

Geometry optimization is the name for the procedure that attempts to find the configuration of minimum energy of the molecule.

One-dimensional optimization

- *f*'(*x*)=0 stationary point
- *f''(x)<0* maximum
- f''(x) > 0 minimum

Multidimensional Optimization

Force: $F = -\nabla E$ (Potential energy)

 $\nabla f=0$ - Stationary Point (minimum, maximum, or saddle point)

Hessian matrix

A matrix of second-order derivatives of the energy with respect to atomic coordinates (e.g., Cartesian or internal coordinates) Sometimes called force matrix – matrix size of (3N-6)x(3N-6) H(

$$H_{ij}(f) = \frac{\partial^2 f}{\partial x_i \partial x_j}$$

Quadratic approximation

Approximate the complex energy landscape by harmonic potentials around a stationary point $(x_1^{(st)}, \dots, x_n^{(st)})$ $[\nabla E(x_1^{(st)}, \dots, x_n^{(st)}) = 0]$

$$E(x_1, \dots, x_n) = E(x_1^{(st)}, \dots, x_n^{(st)}) + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n H_{ij}(E)(x_i - x_i^{(st)})(x_j - x_j^{(st)})$$

	$\frac{\partial f}{\partial x_1^2}$	$\frac{\partial}{\partial x_1 \partial x_2}$	• • •	$\frac{\partial f}{\partial x_1 \partial x_n}$
f) =	$\frac{\partial^2 f}{\partial x_2 \partial x_1}$	$rac{\partial^2 f}{\partial x_2^2}$		$\frac{\partial^2 f}{\partial x_2 \partial x_n}$
,,	÷	÷	۰.	÷
	$\frac{\partial^2 f}{\partial x_n \partial x_1}$	$rac{\partial^2 f}{\partial x_n \partial x_2}$		$\frac{\partial^2 f}{\partial x_n^2}$

 $r \partial^2 f \partial^2 f$

 $\partial^2 f =$

$$E(x_{1},...x_{n}) = E(x_{1}^{(st)},...x_{n}^{(st)}) + \frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}H_{ij}(E)(x_{i} - x_{i}^{(st)})(x_{j} - x_{j}^{(st)})$$
Hessian matrix diagonalization (eigenproblem) $\varepsilon_{k}l_{j}^{(k)} = \sum_{i=1}^{n}H_{ij}l_{i}^{(k)}$
Eigenvalues $\varepsilon_{k} = m\omega_{k}^{2}$ ω_{k} - vibrational frequencies
Eigenvectors $l_{j}^{(k)}$ give normal coordinates $q_{k} = \sum_{i=1}^{n}l_{i}^{(k)}(x_{i} - x_{i}^{(st)})$
 $E(x_{1},...x_{n}) = E(x_{1}^{(st)},...x_{n}^{(st)}) + \frac{1}{2}\sum_{k=1}^{n}\varepsilon_{k}q_{k}^{2}$
All $\varepsilon_{k} > 0(\omega_{k} - \text{real})$ All $\varepsilon_{k} < 0(\omega_{k} - \text{imaginary})$ $\varepsilon_{k} <> 0(\omega_{k} - \text{imaginary/real})$

Steepest Descent

Steepest descent direction $\mathbf{g} = -\nabla E$

$$\mathbf{r} = (x_1, \dots, x_n), \mathbf{g} - (3N-6)$$
 -dimensional vectors

 $\mathbf{r}_{i+1} = \mathbf{r}_i + \lambda_i \mathbf{g}_i / |\mathbf{g}_i|$

Advantage:

local minimization is guaranteed

•fast minimization far from the minimum Disadvantage:

- slow descent along narrow valleys
- slow convergence near minima

In HYPERCHEM

$$r_{2}$$

if $E(\mathbf{r}_{i+1}) < E(\mathbf{r}_i)$ then $\lambda_{i+1} = 1.2\lambda_i$ else $\lambda_{i+1} = 0.5\lambda_i$

History gradient information is not kept

Conjugate Gradient Methods

 $| \sim |^2$

Search direction is chosen using history gradient information Initial direction – the steepest descent direction, $\mathbf{h}_0 = \mathbf{g}_0 = -\nabla E$ $\mathbf{r}_{i+1} = \mathbf{r}_i + \xi \mathbf{h}_i$

 ξ is defined by a one-dimensional minimization along the search direction.

$$\mathbf{h}_{i+1} = \mathbf{g}_{i+1} + \gamma_{i+1} \mathbf{h}_i$$

Fletcher-Reeves method:
$$\gamma_{i+1} = \frac{|\mathbf{g}_{i+1}|}{|\mathbf{g}_i|^2}$$

Polak-Ribiere method: $\gamma_{i+1} = \frac{(\mathbf{g}_{i+1} - \mathbf{g}_i)\mathbf{g}_{i+1}}{|\mathbf{g}_i|^2}$

Polak-Ribiere may be superior for nonquadratic functions.

Gradient history is equivalent to implicit use of the Hessian matrix.

Newton-Raphson Methods

Explicit use of Hessian matrix.

Quadratic approximation : $E(\mathbf{r}) = E(\mathbf{r}_0) - \sum_{k=1}^n (F_k q_k - \frac{1}{2}\varepsilon_k q_k^2)$ q_k - normal coordinates, $\mathbf{r} - \mathbf{r}_0 = \sum_{k=1}^n q_k \mathbf{l}_k$ $\nabla E(\mathbf{r}_0) = -\sum_{k=1}^n F_k \mathbf{l}_k$

 ε_k and \mathbf{l}_k - eigenvalues and eigenvectors of the Hessian matrix at \mathbf{r}_0

One-step optimization
of quadratic functions
$$q_k = \frac{F_k}{\varepsilon_k} \Longrightarrow \nabla E(\mathbf{r}) = 0$$

For arbitrary functions

$$\mathbf{r}_{i+1} = \mathbf{r}_i + \sum_{k=1}^n \mathbf{l}_k(\mathbf{r}_i) F_k(\mathbf{r}_i) / \varepsilon_k(\mathbf{r}_i)$$

Descent direction for $\varepsilon_k(\mathbf{r}_i) > 0$

Finds the closest stationary point (either minimum, maximum, or saddle point).

Obtaining, storing, and diagonalaizing the Hessian

Numerical calculation $-(3N)^2$ calculations of energy Diagonalization $-(3N)^3$ operations Memory $-(3N)^2$ Extremely expensive for large molecules.

Block Diagonal Newton-Raphson

$\left(\begin{array}{c} \frac{\partial^2 E}{\partial x_1^2} \end{array}\right)$	$\frac{\partial^2 E}{\partial x_1 \partial y_1}$	$\frac{\partial^2 E}{\partial x_1 \partial z_1}$	0	0	0
$\frac{\partial^2 E}{\partial x_1 \partial y_1}$	$\frac{\partial^2 E}{\partial y_1^2}$	$\frac{\partial^2 E}{\partial y_1 \partial z_1}$	0	0	0
$\frac{\partial^2 E}{\partial x_1 \partial z_1}$	$\frac{\partial^2 E}{\partial y_1 \partial z_1}$	$\frac{\partial^2 E}{\partial z_1^2}$	0	0	0
0	0	0	$rac{\partial^2 E}{\partial x_2^2}$	$\frac{\partial^2 E}{\partial x_2 \partial y_2}$	$\frac{\partial^2 E}{\partial x_2 \partial z_2}$
0	0	0	$\frac{\partial^2 E}{\partial x_2 \partial y_2}$	$\frac{\partial^2 E}{\partial y_2^2}$	$\frac{\partial^2 E}{\partial y_2 \partial z_2}$
0	0	0	$\frac{\partial^2 E}{\partial x_2 \partial z_2}$	$\frac{\partial^2 \bar{E}}{\partial y_2 \partial z_2}$	$\frac{\partial^2 E}{\partial z_2^2} \bigg)$

Calculation - 9N

Diagonalization - 27N

Memory – 9N

Gaussian

The Hessian matrix is calculated and processed on the first step only It is updated using the computed energies and gradients

Berny algorithm Rational function optimization (RFO) step

$$\mathbf{r}_{i+1} = \mathbf{r}_i + \sum_{k=1}^n \mathbf{l}_k(\mathbf{r}_i) \frac{F_k(\mathbf{r}_i)}{\varepsilon_k(\mathbf{r}_i) - \lambda}$$

 ε_k and \mathbf{l}_k - eigenvalues and eigenvectors of the Hessian matrix at \mathbf{r}_i

 $\lambda < \min(\varepsilon_k) \ (\lambda < 0 \text{ for } \varepsilon_k < 0)$

- step always toward to a minimum.

A **linear search** between the latest point and the best previous point.

Convergence criteria

- One configuration is known for H_2
- One configuration is known for H_2O
- The planar and pyramidal configurations are known for NH₃

The number of local minima typically goes exponentially with the number of variables (degrees of freedom). Combinatorial Explosion Problem

Possible Conformations (3^n) for linear alkanes $CH_3(CH_2)_{n+1}CH_3$

n = 1	3
n = 2	9
n = 5	243
<i>n</i> = 10	59,049
n = 15	14,348,907

Global minimization

- "building up" the structure: combining a large molecule from preoptimized fragments (protein from preoptimized aminoacids)
- **conformational sampling**: take various starting points for local minimization (simulation of nature)
- None of these are guaranteed to find the global minimum!

Global Minimum- conformational sampling

- Molecular Dynamics
- Monte Carlo
- Simulated Annealing
- Tabu search
- Genetic Algorithms
- Ant Colony Optimizations
- Diffusion Methods
- Distance Geometry Methods

