Introduction to Geometry O ptimization

Computational Chemistry lab 2014

Determination of the molecule configuration

- Triatomic molecule determine distances and the angle
- •Four-atomic molecule – determine angles and distances

3N- 6 parameters for an N-atomic molecule $(N>2)$ (3N atomic coordinates-3 c.o.m coordinates -3 angles)

Optimal configurations correspond to minima of the energy as a function of these parameters

Solution of the Schrödinger equation in the Born-Oppenheime $\mathbf{r}% _{0}$ approximation:

 $H_{tot} = (T_n + V_n) + T_e + V_{ne} + V_e = (H_n) + H_e$ $\bf{Electronic}\ SE\emph{:}\ }\ H_{e}\ \emph{\Psi}\ (r,R)\emph{=} E_{e}(R)\ \emph{\Psi}\ (r,R)$ *Ab -initio* or *semi -empirical empirical*solution $E_{e}(R)$ **electronic energy** *R* **– nucl di t ear coordina tes** $V_n(R)$ – **nuclei-nuclei interaction**

 $E(R) = V_n(R) + E_e(R)$ = potential energy surface (**PES**)

Molecular mechanics: PES ←molecular force field

Potential Energy Surface (PES)

A hypersurface in 3*N*-6 -dimensional hyperspace, where *N* is the number of atoms.

Global Minimum - that point that is the lowest value in the PES

 $H_2O - 3N-6=3$

- •One configuration is known for H_2
- •One configuration is known for H_2O
- • The planar and pyramidal configurations are known for $NH₃$

The number of local minima typically goes exponentially with the number of variables (degrees of freedom). Combinatorial Explosion Problem Possible Conformations (3ⁿ) for linear alkanes $CH_3(CH_2)_{n+1}CH_3$

Global minimum **- Mariana Trench** in the Pacific Ocean

Optimization/Goals

Geometry optimization is the name for the procedure that attempts to find the configuration of minimum energy of the molecule.

One-dimensional optimization

- *f'(x)=0* stationary point
- *f''(x)<0* maximum
- *f''(x)>0* minimum

Multidimensional Optimization

Force: $F = -VE$ (Potential energy) *f*=0 - Stationary Point (minimum, maximum, or saddle point)

Hessian matrix

A matrix of second-order derivatives of the energy with respect to atomic coordinates (e.g., Cartesian or internal coordinates) Sometimes called force matrix – matrix size of (3N-6)x(3N-6)

$$
H_{ij}(f) = \frac{\partial^2 f}{\partial x_i \partial x_j}
$$

Quadratic approximation

Approximate the complex energy landscape by harmonic potentials $[\nabla E(x_1^{(st)},...x_n^{(st)})=0]$ $(x_1^{(st)},...x_n^{(st)})$ $[\nabla E(x_1^{(st)},...x_n^{(st)})]$ *st n* around a stationary point $(x_1^{(st)},...x_n^{(st)})$

$$
E(x_1,...x_n) = E(x_1^{(st)},...x_n^{(st)}) + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n H_{ij}(E)(x_i - x_i^{(st)}) (x_j - x_j^{(st)})
$$

$$
E(x_1,...x_n) = E(x_1^{(st)},...x_n^{(st)}) + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n H_{ij}(E)(x_i - x_i^{(st)})(x_j - x_j^{(st)})
$$

Hessian matrix diagonalization (eigenproblem) $\varepsilon_k l_j^{(k)} = \sum_{i=1}^n H_{ij}l_i^{(k)}$
Eigenvalues $\varepsilon_k = m\omega_k^2 \omega_k$ - vibrational frequencies
Eigenvectors $l_j^{(k)}$ give normal coordinates $q_k = \sum_{i=1}^n l_i^{(k)}(x_i - x_i^{(st)})$
 $E(x_1,...x_n) = E(x_1^{(st)},...x_n^{(st)}) + \frac{1}{2} \sum_{k=1}^n \varepsilon_k q_k^2$
All $\varepsilon_k > 0(\omega_k - \text{real})$ All $\varepsilon_k < 0(\omega_k - \text{imaginary}) \varepsilon_k < 0(\omega_k - \text{imaginary/real})$
minimum maximum maximum
saddle point

Steepest Descent

Steepest descent direction $g = \nabla E$

$$
\mathbf{r} = (x_1, \dots, x_n), \mathbf{g} \quad (3N-6) \text{-dimensional vectors}
$$

$$
\mathbf{r}_{\scriptscriptstyle i+1} = \mathbf{r}_{\scriptscriptstyle i} + \lambda_{\scriptscriptstyle i} \mathbf{g}_{\scriptscriptstyle i} \, / \, | \, \mathbf{g}_{\scriptscriptstyle i} |
$$

Advantage:

•local minimization is guaranteed

•fast minimization far from the minimum Disadvantage:

- slow descent along narrow valleys
- slow convergence near minima

In HYPERCHEM

if $E(\mathbf{r}_{i+1}) < E(\mathbf{r}_i)$ then $\lambda_{i+1} = 1.2\lambda_i$ else $\lambda_{i+1} = 0.5\lambda_i$

History gradient information is not kept

Conjugate Gradient Methods

 $\sqrt{2}$

Search direction is chosen using history gradient information Initial direction – the steepest descent direction, $\mathbf{h}_0 = \mathbf{g}_0 = -\nabla E$ $\mathbf{r}_{i+1} = \mathbf{r}_{i} + \xi \mathbf{h}_{i}$

 ξ is defined by a one-dimensional minimization along the search direction.

$$
\mathbf{h}_{i+1} = \mathbf{g}_{i+1} + \gamma_{i+1} \mathbf{h}_{i}
$$

$$
\text{Fletcher-Reeves method:} \quad \gamma_{i+1} = \frac{|\mathbf{g}_{i+1}|^2}{|\mathbf{g}_i|^2} \quad \text{where } \mathbf{g}_i
$$
\nDolet, **Fibiere method:**
$$
\gamma = \frac{(\mathbf{g}_{i+1} - \mathbf{g}_i)\mathbf{g}_{i+1}}{|\mathbf{g}_i|^2} \quad \text{where } \mathbf{g}_i
$$

Polak-Ribiere method: $\gamma_{i+1} = \frac{(\mathbf{g}_{i+1} - \mathbf{g}_i) \mathbf{g}_{i+1}}{2}$ $\gamma_{i+1} =$ $|\mathbf{g}_i|^2$

Polak-Ribiere may be superior for nonquadratic functions.

Gradient history is equivalent to implicit use of the Hessian matrix.

Newton-Raphson Methods

Explicit use of Hessian matrix.

n Quadratic approximation : $E(\mathbf{r}) = E(\mathbf{r}_0) - \sum (F_k q_k - \frac{1}{2} \varepsilon_k q_k^2)$ 2 $F_{k}(r_{k}) - \sum_{k} (F_{k}q_{k} - \frac{1}{2} \varepsilon_{k} q_{k}^{2})$ $E(\mathbf{r})=E$ $f(\mathbf{r}_0) = E(\mathbf{r}_0) - \sum (F_k q_k - \frac{1}{2} \varepsilon_k q_k)$ *n*

 $\sum^n q_k \mathbf{l}_k \qquad \stackrel{k=1}{\nabla}$ $\sum_{k=1}^{n} q_k \mathbf{I}_k$ $\qquad \nabla E(\mathbf{r}_0) = -\sum_{k=1}^{n} q_k$ q_k - normal coordinates, $\sum_{k=1}$ $-\mathbf{r}_{0} = \sum q_{k} \mathbf{I}_{k}$ $\mathbf{r} - \mathbf{r}_0 = \sum q_i$ $\nabla E(\mathbf{r}_0) = -\sum_{k=1}^n F_k \mathbf{l}_k$

 $\varepsilon_{\rm k}$ and ${\bf l}_{\rm k}$ - eigenvalues and eigenvectors of the Hessian matrix at ${\bf r}_{\rm 0}$

One-step optimization f quadratic functi One-step optimization

of quadratic functions $q_k = \frac{F_k}{\epsilon_k} \Longrightarrow \nabla E(\mathbf{r}) = 0$

For arbitrary functions

$$
\mathbf{r}_{i+1} = \mathbf{r}_i + \sum_{k=1}^n \mathbf{l}_k(\mathbf{r}_i) F_k(\mathbf{r}_i) / \varepsilon_k(\mathbf{r}_i)
$$

Descent direction for $\varepsilon_k(\mathbf{r}_i) > 0$

Finds the closest stationary point (either minimum, maximum, or saddle point).

Obtaining, storing, and diagonalaizing the Hessian

Numerical calculation $-$ (3N)² calculations of energy Diagonalization - (3N)³ operations Memory - $(3N)^2$ Extremely expensive for large molecules.

Block Diagonal Newton-Raphson

$\partial^2 E$ ∂x_1^2	$\partial^2 E$ $\partial x_1 \partial y_1$	$\partial^2 E$ $\partial x_1 \partial z_1$	0		0
$\partial^2 E$ $\partial x_1 \partial y_1$	$\partial^2 E$ $\overline{\partial y_1^2}$	$\partial^2 E$ $\partial y_{\scriptscriptstyle 1} \partial z_{\scriptscriptstyle 1}$	0		0
$\partial^2 E$ $\partial x_1 \partial z_1$	$\partial^2 E$ $\partial y_1 \partial z_1$	$\partial^2 E$ ∂z_1^2			
θ		0	$\partial^2 E$ ∂x_2^2	$\partial^2 E$ $\partial x_2 \partial y_2$	$\partial^2 E$ $\partial x_2 \partial z_2$
0		()	$\partial^2 E$ $\partial x_2 \partial y_2$	$\partial^2 E$ $\overline{\partial y_2^2}$	$\partial^2 E$ $\partial y_2 \partial z_2$
0		()	$\partial^2 E$ $\partial x_2 \partial z_2$	$\partial^2 E$ $\partial y_2 \partial z_2$	$\partial^2 E$ $\overline{\partial z_2^2}$

Calculation - 9N

Diagonalization - 27N

Memory – 9 N

Gaussian

The Hessian matrix is calculated and processed on the first step only It is updated using the computed energies and gradients

Rational functionBerny algorithm **optimization** (RFO) step

$$
\mathbf{r}_{i+1} = \mathbf{r}_i + \sum_{k=1}^n \mathbf{l}_k(\mathbf{r}_i) \frac{F_k(\mathbf{r}_i)}{\varepsilon_k(\mathbf{r}_i) - \lambda}
$$

 $\varepsilon_{\rm k}$ and ${\bf l}_{\rm k}$ - eigenvalues and eigenvectors \blacksquare of the Hessian matrix at **^r**i

 λ $\text{min}(\varepsilon_k)$ (λ 0 for ε_k 0)

step always toward to a minimum.

A **linear search** between the latest point and the best previous point.

Convergence criteria

- •One configuration is known for H_2
- •One configuration is known for H_2O
- • The planar and pyramidal configurations are known for $NH₃$

The number of local minima typically goes exponentially with the number of variables (degrees of freedom). Combinatorial Explosion Problem

Possible Conformations (3ⁿ) for linear alkanes $CH_3(CH_2)_{n+1}CH_3$

Global minimization

- **"building up" the structure**: combining a large molecule from preoptimized fragments (protein from preoptimized aminoacids)
- **conformational sampling**: take various starting points for local minimization (simulation of nature)
- None of these are guaranteed to find the global minimum!

Global Minimum- conformational sampling

- \bullet Molecular Dynamics
- • Monte Carlo
- •Simulated Annealing
- •Tabu search
- \bullet Genetic Algorithms
- • Ant Colon y Optimizations
- \bullet Diffusion Methods
- • Distance Geometry Methods

