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Appendix 2.   

Theoretical background of computational methods 

 

2.1  Quantum chemistry1 

The starting point of the following overview is the Schrödinger equation in its 

time dependent and time independent forms (2.1.1) and (2.1.2) respectively  

 ˆi
H

t

∂Ψ
= − Ψ

∂ ℏ
 (2.1.1) 

 Ĥ Eψ ψ=  (2.1.2) 

where the wave functions Ψ and ψ are functions of all coordinates of the relevant 

system and Ψ is also a function of time. In our case of a molecular Hamiltonian Ĥ is 

given by   
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where I and J refer to the nuclei i and j refer to electrons. The first term in (2.1.3) is 

the operator of the kinetic energy
2
 of the nuclei. The second term is the operator of the 

kinetic energy of the electrons. The third term is the potential energy of repulsions 

between the nuclei, IJr is the distance between the nuclei I and J with atomic numbers 

IZ and JZ . The fourth term is the potential energy of the attractions between the 

electrons and the nuclei and iIr is the distance between electron i  and nucleus I. The 

last term is the potential energy of the repulsions between the electrons, ijr  is the 

distance between electrons i  and j .  

The Born-Oppenheimer approximation simplifies the general molecular 

problem by separating nuclear and electronic motions. This approximation is 

reasonable since the mass of a typical nucleus is thousands of times greater than that 

of an electron. The nuclei move really slowly with respect to the electrons. Thus, the 

electronic motion can be described as occurring in a field of fixed nuclei. 

                                                

1
 This section in the theoretical background is based on references [1-4]. 
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 We can use the Born-Oppenheimer approximation to construct an electronic 

Hamiltonian, which neglects the kinetic energy term of the nuclei,  
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 (2.1.4) 

   

This Hamiltonian is used in the Schrödinger equation describing the motion of the 

electrons in the field of the fixed nuclei: 

 ˆ elec elec eff elec
H Eψ ψ=  (2.1.5) 

Solving this equation for the electronic wave function will produce the effective-

nuclear potential function 
effE that depends on the nuclear coordinates and describes 

the potential energy surface of the system. For bond electronic problem, ψ should 

satisfy two requirements: antisymmetricity and normalization. ψ  should change sign 

when two electrons of the molecule interchange and the integral of  ψ over all space 

should be equal to the number of electrons of the molecule. 

 In what follows, we briefly review some technical details concerning the 

numerical solution of the time independent Schrödinger equation for molecular 

systems. 

 

2.1.1   Molecular orbital theory 

Electrons can have spin up 1/ 2+ or down 1/ 2− . Most calculations are closed 

shell calculations, using doubly occupied orbitals, holding two electrons of opposite 

spins. We define two functions, α and β as follows: 

 
( ) ( )
( ) ( )

1,  0

0,  1

α α

β β

↑ = ↓ =

↑ = ↓ =
 (2.1.6) 

 Molecular orbital theory approximates ψ  the molecular wave function as a 

antisymmetrized product of orthonormal spatial one-electron functions (or “molecular 

orbitals”)  

 1 2
ˆ ( , ,....)A f fψ =  (2.1.7) 

where Â  is the antisymmetrization operator and  

 ( , , )i i i i i kf x y zφ σ=  (2.1.8) 

where 1/ 2 -1/21/ 2, ,    =   k σ α σ β= ± = and iφ  satisfies (2.1.9).  
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 (2.1.9) 

The antisymmetrization operator is defined as the operator that 

antisymmetrizes a product of n one-electron functions and multiplies them by 

( ) 1/ 2
!n

−
. This can be represented as the determinant  
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 (2.1.10) 

 

 The molecular orbitals themselves  are approximated as linear combinations of 

a pre-defined set of one-electron functions centered on the atomic nuclei and so bear 

some resemblance to atomic orbitals. A particular molecular orbital is then written in 

the form 

 
1

b

i si s

s

cφ χ
=

=∑  (2.1.11) 

where sic are the molecular orbital-expansion coefficients that are to be found and 

the basis functions 1,..., bχ χ  are chosen to be normalized.  

  

2.1.2  The variational principle 

 The variational principle states that given a system whose Hamiltonian 

operator Ĥ  is time independent and whose lowest energy eigenvalue is 0E , if φ  is 

any normalized well-behaved function of the coordinates of the system’s particles that 

satisfies the boundary conditions of the problem, then  

*

0
Ĥ d Eφ φ τ ≥∫  

Thus, the problem becomes one of finding the set of the coefficients sic of Eq. (2.1.11) 

that minimize the energy of the resultant wave function. 
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2.1.3  The Hartree-Fock method 

 We shall restrict ourselves to closed shell configurations, for such cases, a 

single Slater determinant is sufficient to describe the molecular wave function. Using 

the variational principle within this framework lead to the restricted HF theory. The 

Hartree-Fock energy for molecules with only closed shells is 

 
/ 2 / 2 / 2

1 1 1

2 (2 )
n n n

core

HF ii ij ij NN

i i j

E H J K V
= = =

= + − +∑ ∑∑  (2.1.12) 
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J r K rφ φ φ φ φ φ φ φ≡ ≡  (2.1.14) 

where 
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  and where  

 2

1

1

1ˆ (1)
2

core I

I I

Z
H

r
≡ − ∇ −∑  (2.1.16) 

ˆ (1)core
H  is the one-electron core Hamiltonian, which is the sum of the kinetic-energy 

operator for electron 1 and the potential-energy operator for the attractions between 

electron 1 and the nuclei. The sums over i  and j  are over the / 2n  occupied spatial 

orbitals iφ  of the -electronn molecule. The Coulomb integrals ijJ and the exchange 

integrals ijK are associated with electron-electron interaction and involve integrals 

over the coordinates of two electrons. 

The Hartree-Fock method uses the variational principle and looks for those 

orbitals iφ  that minimize HFE . Each molecular orbital is taken to be normalized: 

 (1) | (1) 1.i iφ φ =  (2.1.17) 

Moreover, for computational convenience the molecular orbitals are taken to be 

orthogonal:  

 (1) | (1) 0      for 
i j

i jφ φ = ≠  (2.1.18) 

One finds that the closed-shell orthogonal Hartree-Fock molecular orbitals satisfy 
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 ˆ (1) (1) (1)i i iF φ ε φ=  (2.1.19) 

where iε  is the orbital energy and where the (Hartree-) Fock operator F̂ is 
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j
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=
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The Coulomb operator ˆ
j

J and the exchange operator ˆ
j

K are defined by 
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 (2.1.21) 

where f  is an arbitrary function, the integrals are definite integrals over all space, 

ˆ (1)
j

J is the potential energy of interaction between electron 1 and a smeared-out 

electron with electronic density 
2

(2)
j

φ− ;the factor 2 in (2.1.20) occurs because there 

are two electrons in each spatial orbital. The exchange operator has no simple 

physical interpretation but arises from the requirement that the wave function must be 

antisymmetric with respect to electron exchange. 

To obtain expression for the orbital energies iε , we multiply (2.1.19) by 

*(1)iφ and integrate over all space. Using the fact that iφ  is normalized and using the 

fact that the Coulomb and exchange integrals can be written as 

 ˆ(1) | (1) | (1)ij i j iJ Jφ φ=  (2.1.22) 

  and 

 ˆ(1) | (1) | (1)ij i j iK Kφ φ=  (2.1.23) 

we obtain 

 
/ 2

* co

1

1

ˆ(1) (1) (1) 2
n

re

i i i ii ij ij

j

F dv H J Kε φ φ
=

 = = + − ∑∫  (2.1.24) 

 The spatial molecular orbitals are expanded as linear combinations of a set of 

local one-electron basis functions sχ   
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1

b

i si s

s

cφ χ
=

=∑  (2.1.25) 

To avoid confusion, we shall use the letters , , ,r s t u  to label the basis functions χ  and 

the letters , , ,i j k l  to label molecular orbitals iφ . Substitution of the expansion 

(2.1.25) into the Hartree-Fock equations (2.1.19) gives  

 ˆ
si s i si s

s s

c F cχ ε χ=∑ ∑  (2.1.26) 

Multiplication by 
*

rχ  and integration gives  

 
1

( ) 0,                = 1, 2,..., b
b

si rs i rs

s

c F S rε
=

− =∑  (2.1.27) 

 ˆand       ,                      |rs r s rs r sF F Sχ χ χ χ≡ ≡  (2.1.28) 

For a nontrivial solution, we must have 

 det( ) 0rs i rsF Sε− =  (2.1.29) 

 Since the rsF  integrals depend on the orbitals iφ  (throughout the dependence 

of �F  on the 'i sφ ), which in turn depend on the unknown coefficients sic , the 

(Hartree-Fock) Roothaan equations  (2.1.27) must be solved by an iterative process. 

One starts with guesses for the occupied molecular orbitals expressions as linear 

combinations of basis functions. This initial set of molecular orbitals is used to 

compute the Fock operator F̂  from (2.1.20) and (2.1.21). The matrix elements 

(2.1.28) are computed and the secular equation (2.1.29) is solved to give an initial set 

of 'siε . These 'siε are used to solve (2.1.27) for an improved set of coefficients, giving 

an improved set of molecular orbitals, which are then used to compute an improved 

F̂ and so on. One continues until no further improvement in molecular orbitals 

coefficients and energies occurs from one cycle to the next. 

 A Hartree-Fock wave function takes into account the interactions between 

electrons only in an average way. Actually, we must consider the instantaneous 

interactions between electrons. Since electrons repel each other they tend to keep out 

of each other’s way. The motions of electrons are correlated with each other, and we 

speak about electron correlation. One way to include correlation is by using the 

density functional theory. 
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2.1.4  Density Functional theory (DFT)  

2.1.4.1  Electron probability density 

The electronic wave function ψ  of an n-electron molecule is a function of the 

spatial and spin coordinates of the electrons of the molecule. We know that  

 ( )
2

1 1 1 1 1
,..., , ,..., ....

n s sn n n n
x z m m dx dy dz dx dy dzψ  (2.1.30) 

 

is the probability of simultaneously finding electron 1 with spin 1sm  in the volume 

1 1 1dx dy dz  at 1, 1 1( , )x y z , electron 2 with spin 2sm  in the volume 2 2 2dx dy dz  at 2, 2 2( , )x y z  

and so on. The probability density ρ  of finding an electron in the point ( , , )x y z  is  

 
2

2 1 2

 

( , , ) ... ( , , , ,..., , ,..., ) ...
s

n s sn n

all m

x y z n x y z x z m m dx dzρ ψ= ∑ ∫ ∫  (2.1.31) 

 Let ( )iB r
�

be a function of the spatial coordinates ( , , )i i ix y z  of electron i . For 

an -electronn molecule, consider the average value 

 
2

1 1 1

( ) * ( ) ( )
n n n

i i i

i i i

B r B r d B r dψ ψ ψ ψ τ ψ τ
= = =

= =∑ ∑ ∑∫ ∫
� � �

 (2.1.32) 

 

Since the electrons are indistinguishable, each term in the sum 
2

i

Bdψ τ∑∫ must have 

the same value. Hence, 

 
2

1

1

( ) ( )
n

i

i

B r n B r dψ ψ ψ τ
=

=∑ ∫
� �

 (2.1.33) 

 

  Since 1( )B r
�

 depends only on 1 1 1, ,x y z , we can integrate over the spatial 

coordinates of electrons 2 to n  and sum over all spin coordinates. From (2.1.31), this 

produces the electron probability density 1( )rρ
�

. Therefore, 

 1 1 1

1

( ) ( ) ( )
n

i

i

B r r B r drψ ψ ρ
=

=∑ ∫
� � � �

 (2.1.34) 

  

The subscript 1 on the integration variables is not needed, and the final result is  

 *

1

( ) ( ) ( )
n

i

i

B r d r B r drψ ψ τ ρ
=

=∑∫ ∫
� � � �

 (2.1.35) 

where the integration is over the three spatial coordinates , , .x y z  
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2.1.4.2  The Hohenberg-Kohn theorem 

In 1964, Hohenberg and Kohn
3
 proved that for molecules with a 

nondegenerate ground state, all the ground-state molecular electronic properties are 

uniquely determined by the ground state probability density 0( )rρ
�

 where 

 
2

0 0 2 1 2

 

( ) ... ( , ,..., , ,..., )
s

n s sn n

all m

r n r r r m m dr drρ ψ= ⋅⋅⋅∑ ∫ ∫
� � � � � �

 (2.1.36) 

and 0ψ is the ground state electronic wave function of an -electronn molecule. One 

says that the ground state electronic energy 0E  is a functional of 0ρ  and writes 

0 0 0[ ]E E ρ= , where the square brackets denote a functional relation. Density 

Functional Theory (DFT) attempts to calculate 0E  and other molecular properties 

from the ground state electron density 0ρ .   

 

2.1.4.3  The Hohenberg-Kohn variational theorem 

 0E  and 0ψ  are the ground state eigenvalue and eigenfunction  of the electronic 

Hamiltonian defined for a given nuclear configuration 

 2

1 1

1 1ˆ ˆ ˆ ˆv( )
2

n n

i i Ne ee

i i j i j ij

H r T V V
r= = >

= − ∇ + + = + +∑ ∑ ∑∑
�

 (2.1.37) 

where 

 2

1 1

1 1ˆ ˆ ˆ,      v( ),      
2

n n

i Ne i ee

i i j i j ij

T V r V
r= = >

= − ∇ = =∑ ∑ ∑∑
�

 (2.1.38) 

  and where  

 v( ) I
i

I iI

Z
r

r
= −∑

�
 (2.1.39) 

Taking the average of the purely electronic Hamiltonian for the ground state, we have  

 0 0 0 0 0 0 0
ˆ ˆ ˆ

Ne ee Ne eeE T V V T V Vψ ψ ψ ψ ψ ψ= + + = + +  (2.1.40) 

According to the first theorem of Hohenberg and Kohn, each of the average values of 

this equation is a molecular property determined by the ground state electronic wave 

                                                

3 See Ref. [5]. 
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function, which, in turn, is determined by 0( )rρ
�

. Therefore, each of these averages is 

a functional of 0ρ : 

 [ ] [ ] [ ] [ ]0 v 0 0 0 0Ne eeE E T V Vρ ρ ρ ρ= = + +  (2.1.41) 

where 

 
v v [ ] [ ] [ ] [ ]Ne eeE E T V Vρ ρ ρ ρ= ≡ + +  (2.1.42) 

Now, we can use (2.1.35) to get  

 0 0 0

1

v( ) ( )v( )
n

Ne i

i

V r r r drψ ψ ρ
=

= =∑ ∫
� � � �

 (2.1.43) 

where v( )r
�

 is the nuclear attraction potential energy function for an electron located 

at point r
�

. Thus 0[ ]NeV ρ  is known but the functionals 0[ ]T ρ  and 0[ ]eeV ρ are 

unknown. We have  

 [ ] [ ] [ ] [ ]0 v 0 0 0 0 0 0
( )v( ) ( )v( ) +F

ee
E E r r dr T V r r drρ ρ ρ ρ ρ ρ= = + + =∫ ∫

� � � � � �

 (2.1.44) 

where  

 [ ] [ ] [ ]0 0 0eeF T Vρ ρ ρ≡ +  (2.1.45) 

 To turn (2.1.44) from a formal relation to a practical tool, we need a second 

theorem proven by Hohenberg and Kohn, and an approach developed by Kohn and 

Sham.  

Hohenberg and Kohn proved that for every density function ( )rρ
�

 that 

satisfies 

 ( )r dr nρ =∫
� �

 (2.1.46) 

and 

 ( ) 0         for all r rρ ≥
��

 (2.1.47) 

 

the following inequality holds:  

 [ ]0 vE E ρ≤  (2.1.48) 

 

where vE  is the energy functional in (2.1.44). Since 0 v 0[ ]E E ρ= , where 0ρ  is the 

true ground state electron density, the true ground state electron density minimizes the 

energy functional v[ ]E ρ . 
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2.1.4.4  The Kohn-Sham method 

 In 1965, Kohn and Sham
4
 devised a practical method for finding 0ρ and for 

finding 0E from 0ρ . Kohn and Sham considered a fictitious reference system (denoted 

by subscript s ) of n  noninteracting electrons, which experience the same external 

potential energy function v ( )s ir
�

, where v ( )s ir
�

 is such as to make the ground state 

electron probability density ( )s rρ
�

 of the reference system equal to the exact ground 

state electron probability density 0( )rρ
�

 of the molecule we are interested in;  

 
0( ) ( )s r rρ ρ=

� �
 (2.1.49) 

Since Hohenberg and Kohn proved that the ground state probability density 

function determines the external potential, once ( )s rρ
�

 is defined, v ( )s ir
�

 is uniquely 

determined.  

 The Hamiltonian of the reference system is 

 2

1 1

1 ˆˆ v ( )  
2

n n
KS

s i s i i

i i

H r h
= =

 = − ∇ + ≡  
∑ ∑

�
 (2.1.50) 

where 

 21ˆ v ( )
2

KS

i i s i
h r≡ − ∇ +

�
 (2.1.51) 

ˆKS

ih is the one electron Kohn-Sham Hamiltonian. The ground state wave function 

,0sψ of the reference system is the antisymmetrized product (Slater determinant) of the 

lowest energy Kohn-Sham spin orbitals 
KS

iu of the reference system, where the spatial 

part ( )KS

i irθ
�

of each spin-orbital is an eigenfunction of ˆKS

ih , that is  

 ,0 1 2 ,              ( )KS

s n i i i iu u u u rψ θ σ= ⋅ ⋅ ⋅ =
�

 (2.1.52) 

 ˆKS KS KS KS

i i i ih θ ε θ=  (2.1.53) 

and iσ  is a spin function (either α or β ) and 'sKS

iε  are the Kohn-Sham orbital 

energies. 

Let T∆  be defined by 

                                                

4 See Ref. [6] 
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 [ ] [ ] [ ]sT T Tρ ρ ρ∆ ≡ −  (2.1.54) 

where, for convenience, the zero subscript on ρ  is omitted. T∆  is the difference in 

the average ground state electronic kinetic energy between the molecule and the 

reference system. Let 

 [ ] [ ]
( ) ( )1 2

1 2

12

1

2
ee ee

r r
V V d r dr

r

ρ ρ
ρ ρ∆ ≡ − ∫ ∫

�� ��
� �

 (2.1.55) 

where 12r is the distance between points 1 1 1( , , )x y z  and 2 2 3( , , )x y z . The quantity 

( ) ( )1 2

1 2

12

1

2

r r
d r dr

r

ρ ρ
∫ ∫

�� ��
� �

 is the classical expression for the electrostatic interelectronic 

repulsion energy if the electrons where smeared out in a continuous distribution of 

charge with electron density ρ . 

 With the definitions (2.154) and (2.1.55), (2.1.44) becomes 

[ ] [ ] [ ] [ ]1 2
v 1 2

12

( ) ( )1
( ) ( )

2
ees

r r
E r v r dr T dr dr T V

r

ρ ρ
ρ ρ ρ ρ ρ= + + + ∆ + ∆∫ ∫ ∫

� �
� � � � �

 (2.1.56) 

The functionals T∆  and eeV∆  are unknown. Defining the exchange-correlation 

energy functional [ ]xcE ρ   by  

 [ ] [ ] [ ]eexc
E T Vρ ρ ρ≡ ∆ + ∆  (2.1.57) 

we have  

 [ ] [ ] [ ]1 2
0 v 1 2

12

( ) ( )1
( ) ( )

2
s xc

r r
E E r v r dr T dr dr E

r

ρ ρ
ρ ρ ρ ρ= = + + +∫ ∫ ∫

� �
� � � � �

 (2.1.58) 

Since the wave function of the reference system is a Slater determinant of 
KS

iu , 

we have 

 
2

1

n
KS

s i

i

ρ ρ θ
=

= =∑  (2.1.59) 

Thus, (2.1.58) becomes  
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[ ]21 1 2
0 1 1 1 2

11 12

( ) 1 1 ( ) ( )
(1) (1)

2 2

n
KS KS

i i xc

i

r r r
E Z dr drdr E

r r
α

α α

ρ ρ ρ
θ θ ρ

=

= − − ∇ + +∑ ∑∫ ∫ ∫
� � �
� � �

 (2.1.60) 

 Now, we need to find 
KS

iθ and [ ]xcE ρ . The Hohenberg-Kohn variational 

theorem tells us that we can find the ground state energy by varying ρ  so as to 

minimize [ ]vE ρ . Equivalently, instead of varying ρ , we can vary 
KS

iθ . It is 

convenient to constrain 'sKS

iθ  to be orthonormal. Kohn and Sham orbitals that 

minimize the expression (2.1.60) satisfy: 

 
2 2
1 2

1 12

( )1
v (1) (1) (1)

2

KS KS KS

xc i i i

Z r
dr

r r

α

α α

ρ
θ ε θ

 
− ∇ − + + = 
 

∑ ∫
�
�

 (2.1.61) 

where v (1)xc is defined by (2.1.62) and the exchange-correlation potential vxc  is the 

functional derivative
5
 of the exchange potential energy xcE : 

 
[ ]

v ( )
( )

xc

xc

E
r

r

δ ρ

δρ
≡

�
�  (2.1.62) 

Eq. (2.1.61) is a single one-electron eigenvalue problem that is easily solved in 

principle, however, both xcE in the expression (2.1.60) and vxc in (2.1.61) and (2.1.62) 

are unknown. Several approximations to xcE are discussed below. 

 

                                                

5 The following formula allows one to find the functional derivative of most functionals occur in DFT. 

For functionals defined by  

[ ] ( , , , , , , )

f d b

x y z

e c a

F g x y z dxdydzρ ρ ρ ρ ρ= ∫ ∫ ∫  

where ρ is a functional of ,   and x y z that vanishes at the limits of the integral, and where 

,( / )x y zxρ ρ≡ ∂ ∂ etc., the functional derivative can be shown to be given by  

 

x y z

F g g g g

x y z

δ
δρ ρ ρ ρ ρ

∂ ∂ ∂ ∂ ∂ ∂ ∂
= − − −

∂ ∂ ∂ ∂ ∂ ∂ ∂
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2.1.4.5  The exchange and correlation energy functionals 

It is a common practice to write xcE  as the sum of an exchange-energy 

functional xE and a correlation-energy functional cE : 

 
xc x cE E E= +  (2.1.63) 

and to look for approximations for each of these contributions. For example, for 

closed-shell molecules 
xE may be defined by formula  

 12

1 1

1
(1) (2) 1/ (1) (2)

4

n n
Ks KS Ks KS

x i j j i

i j

E rθ θ θ θ
= =

≡ − ∑∑  (2.1.64) 

and the correlation-energy functional, defined by  

 c xc xE E E≡ −  (2.1.65) 

is evaluated by one of the currently available models (such as the VWN
6
). This 

procedure usually gives poor results for molecular properties. Thus, in practice, it is 

better to model both xE and cE  because this leads to cancellation of errors and better 

results. The simplest example is the Local density Approximation (LDA). 

 

2.1.4.6  The local density approximation (LDA) 

 Hohenberg and Kohn showed that if ρ varies extremely slowly with position, 

then [ ]xcE ρ is accurately given by 

 [ ] ( ) ( )
LDA

xc xcE r drρ ρ ε ρ= ∫
� �

 (2.1.66) 

where the integral is all over space and ( )xcε ρ  is the exchange plus correlation energy 

per electron in a homogeneous electron gas with electron density ρ . Good 

approximation for xcε  are available. In particular, separating it to its exchange and 

correlation components 

 ( ) ( ) ( )xc x cε ρ ε ρ ε ρ= +  (2.1.67) 

the exchange contribution is known explicitly  

                                                

6 See below. 



 14 

 ( )
1/ 3

1/ 33 3
( ) ( )

4
x

rε ρ ρ
π
 = −  
 

�
 (2.1.68) 

and the correlation part can be readily calculated as was done by Vosko, Wilk and 

Nusair
7
. We will not reproduce their result here, and simply write  

 ( ) ( )VWN

c cε ρ ε ρ=  (2.1.69) 

where VWN

cε is a known function. 

Taking the functional derivative of LDA

xcE , one finds  

 
( )

v ( ( )) ( )
LDA

LDA xc xc
xc xc

E
r r

δ ε ρ
ε ρ ρ

δρ ρ
∂

= = +
∂

� �
 (2.1.70) 

Kohn and Sham suggested the use of (2.1.66) and (2.1.70) as approximations 

to xcE and vxc  in (2.1.60) and (2.1.57). This procedure is called the local density 

approximation. To summarize, in this approximation 

 [ ]1/3
v v v ,       v (3 / ) ( ) ,    v v          LDA LDA LDA LDA LDA VWN

xc x c x c crπ ρ= + = − =
�

 (2.1.71) 

 [ ]
1/3

4 /33 3
( )

4

LDA

x xE dr r drρε ρ
π
 ≡ = −  
 

∫ ∫
� � �

 (2.1.72) 

For open-shell molecules and molecular geometries near dissociation, the 

Local-Spin-Density Approximation (LSDA) gives better results than the LDA. 

Whereas in the LDA, electrons with opposite spins paired with each other have the 

same KS orbital, the LSDA allows such electrons to have different spatial KS orbitals 

KS

iαθ and 
KS

iβθ . Thus, in LSDA, one deals separately with the electron density ( )r
αρ
�

 

due to spin-α electrons and density ( )r
βρ
�

 due to spin-β electrons. The LDA and 

LSDA are based on uniform electron gas model, which is appropriate for a system 

where ρ  varies slowly with position. 

 

2.1.4.7  Performing Kohn-Sham density functional calculations 

 How does one do a molecular density functional calculation with LDA

xcE (or 

some other functional)? 

                                                

7 See Vosko, S. H., Wilk, L., and Nusair, M. (1980). Canadian Journal of Physics. 58, 1200. 
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1. One starts with initial guess of ρ , which is usually found by 

superposing calculated electron densities of the individual atoms at the 

chosen molecular geometry. 

2. From the initial guess of ( )rρ
�

, an initial estimate of v ( )xc r
�

 is found 

from (2.1.70) and (2.1.71). 

3. This initial v ( )xc r
�

 is used in the Kohn-Sham equations (2.1.61), which 

are solved for the initial estimate of the KS orbitals. In solving 

(2.1.61), the 'sKS

iθ are usually expanded in terms of a set of basis 

functions 
rχ (

1

b
KS

i ri r

r

cθ χ
=

=∑ ), and the equations that are solves are  

 
1

( ) 0,             1, 2,....,
b

KS KS

si rs i rs

s

c h S r bε
=

− = =∑  (2.1.73) 

where  

 ˆ ,  |
KS KS

rs r s rs r sh h Sχ χ χ χ= ≡  (2.1.74) 

and ˆKS
h  is in (2.1.51) and (2.1.53). 

4. The initially found 'sKS

iθ are used in (2.1.59) to get an improved 

electronic density, which is then used to find an improved vxc , which 

is then used in the KS equations (2.1.61) to find improved KS orbitals, 

and so on. 

5. The iterations continue until there is no further significant change in 

the density and the KS orbitals. 

6.  Once the calculation has converged, one can find 0E  from (2.1.60) 

and other electronic molecular properties. 

 

2.1.4.8  Gradient Corrected hybrid functionals 

Functionals that go beyond the LSDA aim to correct the LSDA for the 

variation of electron density with position. They do this by including the gradients of 

αρ and βρ  in the integrand. Thus, 
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 , ( ( ), ( ), ( ), ( ))
GGA

xcE f r r r r dr
α β α β α βρ ρ ρ ρ ρ ρ  = ∇ ∇  ∫

� � � � �
 (2.1.75) 

where f is some function of spin densities and their gradients. The letters GGA stand 

for Generalized Gradient Approximation. The term gradient correlated functional is 

also used. GGA

xcE  is usually split into exchange and correlation parts, which are 

modeled separately: 

 GGA GGA GGA

xc x cE E E= +  (2.1.76) 

Hybrid exchange-correlation functionals are widely used. A Hybrid 

functional mixes together the formula (2.1.64) for xE with gradient-corrected xE and 

cE  formulas. For example, the popular B3LYP (or Becke 3 LYP) hybrid functional 

(where 3 indicates a three parameter functional) is defined by 

 3 88

0 0(1 ) (1 )B LYP LSDA exact B VWN LYP

xc x x x x x c c c cE a a E a E a E a E a E= − − + + + − +  (2.1.77) 

where  

 ( ) ( )
1/ 3

4 / 3 4 /33 6

4

LSDA

x
E dr

α βρ ρ
π
   = − +     

∫
�

 (2.1.78) 

exact

xE (which is sometimes denoted HF

xE , since it uses a Hartree-Fock definition of 

xE ) is given by (2.1.64), 88B

xE is the Becke’s 1988 gradient-corrected exchange 

functional
8
, VWN

cE is the Vosko-Wilk-Nusair expression for the LSDA correlation 

functional
9
, LYP

cE is the Lee-Yang-Parr gradient-corrected-correlation functional
10

 and 

the parameter values 0 0.20a = , 0.72xa =  and 0.81ca = , were chosen to give good 

fits to experimental molecular atomization energies. 

 

 

 

                                                

8 See Ref [7]. 

9
 See Ref [8]. 

10 See Ref [9]. 
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