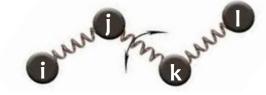

Answers to simple (but important!) quantum chemical questions.

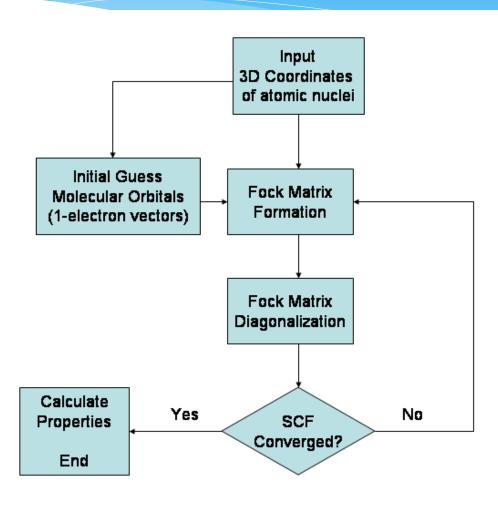

Zero energy

- * AB-initio: All particles (including electrons) are at infinity.
- * Molecular mechanics: Each term has it own zero energy "spring is fully relaxed".

$$\Delta E_{Stretch} = \sum_{Bonds} k_{Stretch} (r_{ij} - r_{eq})^2$$

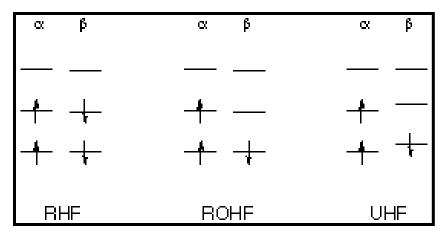
$$\Delta E_{Dihedral} = \sum_{Dihedral} \left[k_0 + \sum_{r=1}^{n} k_r \left(1 + \cos(r\theta_{ijkl}) \right) \right]$$

$$\Delta E_{Valance} = \sum_{Valance} k_{Valance} (\alpha_{ijk} - \alpha_{eq})^2$$


Born-Oppenheimer

* Due to the high ratio between the mass of the nuclei and electrons the wave function can be broken to its electron and nuclear components:

$$\Psi = \psi_{electrons} \cdot \psi_{nuclear}$$


- First the electronic Schrödinger equation is solved with fixed nuclei.
- * In the next step the Schrödinger equation for the nuclei is solved in the potential of the electrons.

Self consistent field (SCF) Solution to HF

RHF/ROHF/UHF

- * RHF Restricted HF: allows only for calculating closed shell systems, multiplicity =1.
- * ROHF Restricted Open Shell HF: allows open shell calculations.
- * UHF Unrestricted HF: allows open shell calculations, α and β have different spatial coordinates.

MO-LCAO

* Molecular orbitals are approximated as linear combinations of atomic orbitals.

Molecular
$$\phi_i=c_{1i}\chi_1+c_{2i}\chi_2+c_{3i}\chi_3+\cdots+c_{ni}\chi_n$$
 orbital i
$$\phi_i=\sum_r c_{ri}\chi_r$$
 Atomic orbital n

- * The atomic orbitals are expressed as a basis set of functions.
- * The c coefficients are determined throughout the HF calculation.

Chemical precision

- * In this lab we report precisions of 0.1%
- * Energy: \sim 10KJ/mole \longrightarrow Δ E=0.01 KJ/mole
 - ~ 0.01 hartree \longrightarrow $\Delta E=10^{-5}$ hartree
 - ~ 1 eV \longrightarrow Δ E=0.001 eV
 - ~ 10 Kcal/mole \longrightarrow $\Delta E=0.01$ Kcal/mole
- * Length: $\sim 1 \text{ Å}$ \longrightarrow $\Delta l=0.001 \text{ Å}$
- * Angle: $\sim 1-10^{\circ}$ \longrightarrow $\Delta\theta = 0.01^{\circ}$
- * Charge: ~1e \longrightarrow $\Delta q=0.001 e$
- * Dipole: ~1Debye \longrightarrow $\Delta\mu$ =0.001 Debye
- * The convergence parameters are the same