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The influence of topological singularities (fluxons) on two- and three-dimensional supersymmetric
quantum mechanics is investigated. It is proved that the Aharonov-Bohm effect is incompatible
with supersymmetry. The violation is a quantum effect and its quantitative amount is determined

by the topology.

I. INTRODUCTION

Among the global symmetries operating on quantum
systems, supersymmetry (SUSY)' possesses two related
unique features (apart from the obvious one of mixing bo-
sons and fermions). The SUSY generators satisfy an alge-
bra which contains the Hamiltonian, and consequently the
SUSY transformations mix the canonical coordinates with
their velocities. As a result of this property, it is in gen-
eral difficult to define closed supersymmetric systems,
since the boundary conditions tend to violate the SUSY
current conservation. In general such effects are not very
interesting since the amount of violation depends on the
size of the boundary, and exact conservation is restored
when this dimensional parameter disappears from the
problem.

The latter circumstance is changed drastically when the
boundary conditions are imposed on the system by the ac-
tion of a gauge field whose topology is nontrivial. The
field-free space in this case encloses some finite-size re-
gion (which may be shrunk to zero) which contains a
nonzero flux. The requirement that finite-energy wave
functions be single-valued in the relevant angular variable
then imposes a particular behavior on the wave functions
as the boundary is approached from the outside. If this
behavior causes a nonvanishing SUSY flux at the boun-
dary, which persists when the relevant dimension is
shrunk to zero, a breakdown of supersymmetry will be
generated. This violation is a topological quantum effect
in a system whose classical equations of motion are in-
variant.

In what follows, we investigate the effect of magnetic
fluxons on two-dimensional SUSY quantum mechanics,
with two complex supersymmetries. Specifically, we
prove that the Aharonov-Bohm effect’ is inconsistent
with supersymmetry. The SUSY breakdown is manifest-
ed through split supermultiplets and can be characterized
quantitatively by a flux-dependent anomalous commuta-
tor between the supercharges and the Hamiltonian. The
results may be derived both by solving directly the
Schrodinger equation for a singular fluxon and by taking
the limit R —0 of a regular fluxon of radius R. It should
be emphasized that (as will be seen) the SUSY violation is
not due to the global topology at « but rather depends on
the presence of a distribution of “holes” in configuration
space. Thus, the violations due to a fluxon and an anti-
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fluxon of equal and opposite strengths do not cancel but
introduce the distance between the two as a scale in the
nonconservation equation. The restriction to two (space)
dimensions is not crucial and we shall show that the
phenomenon also occurs in three spatial dimensions.

The paper is organized as follows. In Sec. II we discuss
two-dimensional SUSY quantum mechanics in the pres-
ence of singular fluxons. The case of regular fluxons is
investigated in Sec. III while Sec. IV deals with the gen-
eralization to three dimensions. We conclude with a dis-
cussion of the relevance of the preceding results to super-
symmetric gauge field theories. In Appendix A we exhib-
it the exact solution of the Aharonov-Bohm effect? for the
two-dimensional SUSY harmonic oscillator. This serves
to illustrate the phenomenon discussed in the paper. Ap-
pendix B demonstrates that the introduction of singular
fluxons into any two-dimensional supersymmetric theory
shifts the ground-state energy away from zero.

II. SUSY QUANTUM MECHANICS
AND SINGULAR FLUXONS

We shall investigate supersymmetric two-dimensional
quantum-mechanical Hamiltonians which can be derived
by reducing N=1 (3 + 1)-dimensional field theories to
(0 + 1) dimensions. In the language of quantum mechan-
ics we thus deal with fwo complex SUSY generators. We
introduce complex canonical variables:

[p7q]:Oa [P,CIT]Z[PT»Q]:‘:‘ » (1)
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q =7—2“(Qx+lfh)=7—2“re‘9 ,
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Corresponding to the complex boson “fields” g there are
two fermionic variables:

o=12: {XUYXT}ZO’ {XmXI}::Sm-' (3)

The SUSY generators are thus
Qo=Xop +iX7e,0'(q) , “@
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where w(q) is an analytic function of ¢ only. The SUSY
algebra is therefore’

{0,,0.}=f0}.0l}=0, (5)

{Q,, Q1) =8,.H , 6)
where the Hamiltonian is

H=pp" +ww+ X +xxw”) . (7)
Equations (5) and (6) insure the conservation of Q:

[Q,,H]=[Q},H]=0. ®)

Consider now the addition of an external gauge field
characterized by a vector potential a; and define the velo-
city operators p —a:

M=p—a, [I,1']=3,a,—8,a,=b, 9
where
1 .
a =-‘7_5(a1+ta2) , (10)

and b is the magnetic field. Suppose now that a is the
vector potential due to a distribution of singular fluxons,

j v

a=— ; m : (11
We easily find that the magnetic field vanishes:

b=0, (12)
while the flux enclosing the Ath singularity is

gﬁcA dT-a=2mv, . (13)

We define the Hamiltonian by replacing in Eq. (7) p by IL.
Viewed as differential operators acting on wave functions,
I

the generators Q, still satisfy Eqgs. (6) and (7) since for
g+-q 4 the vector potentials may be canceled by a gauge
transformation.* We shall show, however, that the SUSY
charges cease to be conserved, and derive their nonconser-
vation equation.’

Consider first the Schrodinger equation in the vicinity
of a given fluxon, which we put at the origin. Expanding
the wave function in angular momentum states,

Yg)=—r= 3

l——oo

e™yy(r), (14)

the most singular terms of the equation are given by the
kinetic part of H:

1 (I —v)
2

(Hyy =5 |~3,~+3,+ Bt . (19)

The condition for a finite-energy solution which belongs
to the domain of H is

(r) ~0¢§°’r”—” , (16)

where ¥\* is a constant vector in the four-state Hilbert
space defined by the fermion operators (X‘,,Xi). (Al-
though the solutions which behave as r~!?~*! are nor-
malized for |/ —v| <1, they are discarded by the require-
ment that H be self-adjoint.)

Let us calculate the rate of change of a matrix element

of Q:
i ($,0,8)=($, 0, HY) —(HU,Q,8) . (1)

Integrating by parts and using the commutativity of Q
and H when they act as differential operators on a given
wave function leads to

7,‘l"—tw,gaw—— S limr ) (e — 4T ((Qodi ()]

I=—w’

zllmr(” v+ |1-1— v}—l[!l__l_v|

2\/i r—0

T=1-W[|I—=v]| = |l—1—=v]|+1]

@1 1 X0 | 81 =V2 | Xg | 671~ (18)

In deriving Eq. (18) we have defined v to satisfy
O<v<l (19)

and used the polar representation for IT:

eiB

iv2

which explicitly exhibits the fact that the kinetic part of
Q shifts the angular momentum by one unit. Equation
(18) shows that although Q is classically conserved, quan-
tum effects induce an anomaly in the time derivative of
its matrix elements between finite-energy states. Note
that Q is periodic in v and vanishes when v—0,1; a shift
of v by an integer is evidently canceled by a corresponding

I —v
r

M= 9, — (20)

|
shift in /. An integral value of v means that the fluxon is
quantized in Dirac units and thus its effects can be
gauged away. The constants 1/)(10’, & depend only on the
flux v and on the infrared properties of the wave function
and the superpotential w. In Appendix A we evaluate ex-
plicitly these constants for the SUSY harmonic oscillator
and derive the induced split in the supermultiplet spec-
trum. In Appendix B we prove generally that the
ground-state energy is nonzero and is in fact positive. Fi-
nally, the generalization of Eq. (18) for the multifluxon
case is evidently

(¢,Qo¢> Vizw‘ﬂ’wuw [66(q)Wva(1—vy) ,
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where 9{%(g,) is the coefficient of |V2(q —gq,)| H=val
when g—gq4. It is clear that the violation persists even if
the total flux is zero (say, an equal number of fluxons and
antifluxons) since the coefficients ¥{°(q) depend on the
relative positions of the singularities. Hence, it is not the
global topology at infinity, but rather the existence of
holes in configuration space which is responsible for the

anomaly in Q..
III. REGULAR FLUXONS

We shall now prove that the anomalous time derivative
of g calculated in Sec. II can be gotten as the singular lim-
it of a system with regular fluxons. A theorem proved by
Crombrugghe and Rittenberg® shows that it is impossible
to construct a gauge-invariant quantum mechanics with
more than one complex supersymmetry generator for a
particle in an arbitrary external gauge field.” It is amus-
ing to note that the exceptions to this rule in two and
three dimensions are the fields of singular fluxons and
magnetic monopoles. The preceding statements may be
verified explicitly in our case since when p—p —a =II
the algebra [Egs. (5), (6), and (8)] necessanly breaks down
due to the noncommutativity of IT and I17. Let us define
the regularized Hamiltonian and supercharge by keeping
Egs. (4) and (7) with p—II. Assume that the magnetic
field b(r) is smooth so that the Schrodinger equation is
nonsingular at r—0. As a result, the SUSY violation is
now explicit and due to

(Qo,H]=7{ILb}X, . (22)
Let us choose (a,b) in the following way,
. 10 ’
— L), b= "(r” (23)
where
v(r)=v, b=0r >R, v(r)»0:r—0. (24)

Consider now a wave function of definite angular momen-
ta which for » >R contains only momenta small com-
pared to R~". The behavior of ¥;(r) inside the circle
r <R and at the surface r > R is thus

r <Ray(r)~Ap R0
(25)

r>R:1/JI(r)~ SO)(’,“—VI +7/Ir~|1—V|R2]1~V]) ,

where z//(O) is by definition the constant used for the singu-
lar limit. The matching conditions for ¥ and ¢ at » =R
lead to

_2”_—‘/_1_ 26)
[1—v|+1~

The matrix element of Eq. (22) between v; and ¢;_, leads
to (only ¢, ¢o contributes)

A=A +y)=y}”

a I ) o)
1 Q0 |8) == 14y 147 | X, | 447)
R !
X fo drv'(r)[2v(r)—2]

=iV2 | Xy |66 W(1—v) 27)

which is exactly Eq. (18) derived previously for the singu-
lar case. We conclude that the SUSY violation may be
considered either as an effect of the singular topology or
as the regularization-independent limit of the explicit non-
conservation induced by a smooth external magnetic field.

IV. GENERALIZATION TO THREE DIMENSIONS

Consider any SUSY quantum-mechanical system whose
generators are of the form

Qo=X Miypi+ -+, (28)

where p; are canonical momenta conjugate to ¢;, and X
are fermion operators. Suppose we add a closed or open
fluxon centered around the line g; =g;(s) where s is a pa-
rameter. When | g;—g;(s)| —0 we can choose locally a
coordinate system in which the Hamiltonian would be

=L +p 24 -, (29)

where II is the same as in the two-dimensional case and
p| are the momenta in the direction perpendicular to the
plane on which the flux is defined. Clearly the require-
ment of finite energy leads to

U1(q1,92,9))~ (g1 +g) " 1 %fi(g) (30)

where f;(q) is regular at g;=q;(s)=0. We may now re-
peat the procedure of Secs. II and III to prove

d
:17<¢7Q0¢>
=V2v(1—v) [ ds(¥q(s) | X, | (g 31

where ds is the line element along the fluxon and
¥i%(q(s)) is the coefficient of |g—q(s)|!"~*| when g
approaches ¢ (s) in a plane orthogonal to the flux line.
Again note that there is no cancellation between positive
and negative flux. In particular, a closed fluxon will con-
tribute to the anomaly a term proportional to its length.
Also, Eq. (30) may evidently be derived as the limit of the
corresponding regularized equation by repeating the pro-
cedure of Sec. IIL.

V. SUMMARY AND DISCUSSION

In the present paper we have investigated the influence
of topological singularities on quantum-mechanical SUSY
systems in two and three dimensions. The topological
singularities can be viewed as holes in configurational
space (fluxons) with appropriate boundary conditions
which necessarily lead to the breaking of SUSY. The
amount of breaking is independent of the size of the hole
and is just affected by the total amount of flux going
through it. The violation is a quantum effect which is
manifested only because the existence of nontrivial flux
generates a finite SUSY current which flows into the
singular points decreed by the topology. The algebraic re-
lations between the differential operators which represent
the supercharges and the Hamiltonian are left unchanged.
Furthermore it was proved that the results obtained for
the singular-fluxon case can be viewed as a limiting case
of the nonconservation of supersymmetry in the presence
of a regular fluxon whose size shrinks to zero. This limit-
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ing process leaves behind a well-defined spectrum and
finite-energy wave functions which vanish on the singular
fluxon. The rate at which the wave functions go to zero is
determined by the total flux and for an improperly quan-
tized fluxon leads to a nonanalytic behavior which causes
the SUSY violation.

The interesting question is what happens in SUSY
gauge field theories which admit (with a nonvanishing
probability) regular fluxon configurations with a finite
mass and contain matter fields whose charge is not quan-
‘tized in units of the inverse fluxon strength. Truncation
of the system to a finite number of degrees of freedom
(such as retaining only the zero modes) seems to yield a
quantum-mechanical system which is of the type con-
sidered in this paper.

It would be interesting to find out whether SUSY is
indeed broken. Of course a much more careful analysis
should be performed before any definite conclusions are
reached. In particular the crucial question is whether in a
given SUSY gauge theory fluxon configurations contri-
bute with nonvanishing weight to the functional integral.
A more detailed investigation will be presented elsewhere.
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APPENDIX A: THE SUSY OSCILLATOR
The SUSY harmonic oscillator is defined by choosing

w'(q)=q (A1)
|

L+ |l—v|+m+k)

Define the states

X,[00)=0, [10)=x][00), |01)=X}|00),
' (A2)
|11)=xx!|00) .
In this basis H becomes
Hy, 0 0 0l
0 H 0 0|0
H=\o o0 m, 100" (A3)
0 0 1 Hl1
where
2
Hy=L|_a2 —a,+””” (Ad)
2 r?

The eigenfunction and eigenvalues of H, are found by
solving the Schrédinger equation

N
lew | 7'= X (=)kFm

k,m =0

The case N=0 is particularly simple and we find

lewo| T'=1/TU+ |1 —v]). (A11)
We thus have
. 172
W= || (A12)
mv(l—wv)
and thus,
. 172
(o] Qa | ‘/fw):V/iXo M1 —visinmy ] (A13)

The spectrum is determined by noting that the linear com-
binations ( |00) ¥ | 11)) diagonalize H and cause a shift
by ¥1 in the “boson” energies. We have

1<0: €= =v+ |I| +2N +1,

ey =€’ —2=v+ |1 | +2N,
(A14)

I>1: el =e=] —v+2N +1,

ey =€) —2=1—v+2N .

(km )T+ |1 —v| +KTA+ |1 —v| +m)

Hyiy (ry=(on + Dy (r) , (A5)
and we readily find

(P =uye "%, (A6)

oy=|l—v|+2N, N=0,1,2,..., (A7)

N P2+ 11—

uv=ew 2 ) R I—v+0 MY
The constants ¢;y are determined by

1=lc,Nl?‘fowdrre"zlu,N|2y (A9)
which leads to

(A10)

T

The SUSY generators Q, connect (for v=0) the states,
say, |(—),I=0,N) to the states |(01),/=1,N —1), and
annihilate the states |(— ),/ =0,N =0). These supermul-
tiplets are now split by an amount Ae=2v. Note also that
the ground state energy is now

€o=min(elg ,€i5”)

=min(v,1—v)>0. (A15)
Thus, the ground state is manifestly nonsupersyrnmemc
but still nondegenerate (except for v==). It is of interest
to compute explicitly the Witten index® for this system.

The index is defined through

A(v)=stre ~PEW = tr[e —PH( )], (A16)

where F is O (1) for bosonic (fermionic) states. Clearly A
is a B-independent integer [= N,(e=0)—N (e=0)] if su-
persymmetry is conserved. For the spectrum defined in
Eq. (A14) we easily find

coshB(+ —v
AV)=——7—. (A17)
B
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Thus, in the presence of a nontrivial fluxon the index is
not an integer.

APPENDIX B: THE GROUND-STATE ENERGY
FOR GENERAL POTENTIALS

The variational principle which leads to the
Schrédinger equation is the same for the cases v=0 and
v+£0, namely,

WIH [9)=3(1Q¥IP+]1Q541 (B1)
where Q, is the differential operator
Q. =X, +iXle 0w’ . (B2)

The violation of SUSY and the nonzero ground-state ener-
gy in the presence of a topologically nontrivial flux is due
to the change in the domain of H. In particular, we shall
show that although there exist zero-energy normalizable
states for v5£0, they are not in the spectrum.

The equation Hy¥'=0 leads [in the basis defined by Eq.
(A2)] to

52—11/’00—10'(4)1&11:0 , (B3)

a ’
5;¢11—w T(qT)‘//oo=0 .

Define

Yoo=w'U, Yy=w'V (B4)
and change variables to w:

oU 14

——V=0, —-U=0, B5

w' ow B3
hence,

8,0,tU —U=0=0,0,tV -V . (B6)

Assume that w(q) (which is analytic) behaves at g— « as

wl(g) ~ qV. (B7)

q— o

The requirement that U and V be single valued in the
presence of the fluxon translates into

U(e?Ny)=e ~2""U (w) , (B8)
and thus leads to
N—1

Uw)= 3 N6y (p), (B9)
n=0

where u, satisfies the Bessel equation [ | w | =(1/v2)p].
The requirement that u be normalizable at p— o leads to

u,(p)=H'") v _, (ip) . (B10)

Clearly Eq. (B6) leads to similar results for ¥. The nor-
malizability of (u,,v,) at p—O0 then restricts n to
O<v<1)

l<n<N. (B11)

Note that H' = —e™H"") so that n/N —v may be re-
stricted to positive values. Equation (B5), however, shows
that a given u, generates a solution V, 5 whose index
lies outside the range allowed by (B11). Thus, all the
zero-energy solutions of the Schrddinger equation do not
belong to the spectrum. We remark that for v=0 a care-
ful examination of the relevant inequalities proves the ex-
istence of N-independent zero-energy states.

Finally, it is worth remarking that in the case w=0
with a regular magnetic field (the case considered in Sec.
IID), there exist [v—1] zero-energy states’ ([v—1] is the
closest integer to v). These states become non-
normalizable at the origin when the singular limit is taken
and disappear from the spectrum.
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