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In certain topological effects the accumulation of a quantum phase shift is accompanied by a local
observable effect. We show that such effects manifest a complementarity between nonlocal and local
attributes of the topology, which is reminiscent but different from the usual wave-particle complementar-
ity. This complementarity is not a consequence of noncommutativity, rather it is due to the noncanonical
nature of the observables. We suggest that a local�nonlocal complementarity is a general feature of
topological effects that are “dual” to the Aharonov-Bohm effect.

PACS numbers: 03.65.Bz
In the Aharonov-Bohm (AB) effect [1,2] a charge moves
around a magnetic flux filament in a region with vanishing
electromagnetic fields. The charge experiences no elec-
tromagnetic forces, yet it accumulates a topological quan-
tum phase shift. Topological effects which are “dual” to
the AB effect have been discovered for neutral particles.
Aharonov and Casher [3–5] have shown that particles car-
rying a magnetic moment and moving around a straight
wire with uniform charge density will experience no force
but acquire a phase shift analogous to the AB phase [6–9].
More recently, it has been shown by He and McKellar
[10] and by Wilkens [11] that a neutral particle carrying
an electric dipole also exhibits similar dual topological ef-
fects [12,13]. Nevertheless, unlike the AB effect, in these
dual cases the local fields along the trajectory of the par-
ticle do not vanish. Consequently, as was pointed out by
Peshkin and Lipkin [14,15], the accumulation of the atten-
dant quantum phase shift may be accompanied by a local
observable effect.

In this Letter we suggest that such dual topological ef-
fects manifest a complementarity between the nonlocal and
the local attributes of the topology, which is reminiscent
but yet different from the usual wave-particle complemen-
tarity; by measuring a local observable we disturb the non-
local phase information on the topology. However, the
complementarity suggested here is not a consequence of
noncommutativity; rather it is due to the noncanonical na-
ture of the corresponding observables [16].

To illustrate this complementarity let us begin with
the Aharonov-Casher (AC) effect [3]. In the AC effect the
magnetic moment m interacts with the electric field �E, the
vector potential-like term, �m 3 �E, which induces a phase

fAC �
1
h̄

I
�m 3 �E ? �dl �

ml

h̄
nAC . (1)

Here m is the projection of �m in the direction of the line, l

is the charge per unit length, and nAC is the winding num-
ber of the magnetic moment’s trajectory around the line.

We note that several similarities exist between the AC
and AB effects. Since in both cases the force vanishes,
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they are “force-free” effects [6]. Moreover, in both cases
a “vector-potential” coupling gives rise to a topological
phase; indeed for a closed trajectory, the AC phase and the
AB phase are insensitive to the details of the path and are
determined from the winding number alone.

However this similarity breaks down in one important
aspect [7]. Since in the AB effect the particle couples to
a gauge field, the locally accumulated phase is not gauge
invariant. Only the phase accumulated in an interference
experiment, on a closed loop, is a gauge invariant quan-
tity. Therefore, the AB effect is sometimes described as
being nonlocal. On the other hand, since in the present
case the magnetic moment clearly couples directly to the
field strengths �E, the locally accumulated phase is a gauge
invariant and meaningful observable.

This naturally raises the question of the nonlocality of
such effects [17–19]. In particular, Peshkin and Lipkin
[15] have noted that a magnetic field is present in the local
reference frame of the magnetic moment. Consequently,
the magnetic moment vector precesses around the direc-
tion of the magnetic field by an angle that turns out to
be proportional to the phase shift. Since the accumula-
tion of the quantum phase shift is accompanied by a local
precession, and since the latter is locally observable, they
concluded that the AC is inherently local.

It was, however, implicitly assumed that the accumu-
lated phase and the precession are two attributes of the
effect, which are simultaneously meaningful. Indeed the
autocorrelation operator suggested in [15] commutes with
the phase operator (that we define below). This appar-
ently implies that we can locally measure the rotation of
the magnetic moment without disturbing the accumulated
phase. Nevertheless, the precession and the accumulated
phase are noncanonical variables [16], and for noncanoni-
cal variables commutativity does not imply mutual observ-
ability. In fact, we will show that by observing the local
precession we necessarily induce an uncertainty in the ac-
cumulated phase, in a similar way as for ordinary canonical
conjugate variables.

Let us first show that the above complementarity is
required for consistency of the AB effect with ordinary
© 2000 The American Physical Society
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wave-particle complementarity [20]. Consider the usual
AB interference experiment of charged particles around
a solenoid enclosing a magnetic flux. We wish, how-
ever, to regard the effect of the charge on the internal de-
grees of freedom of the fluxon. For simplicity let space
be only two dimensional; hence the solenoid is replaced
by a magnetic moment �m pointing in the “up” direction.
The magnetic moment generates an AB vector potential;
hence the charge acquires the usual AB phase shift that can
be observed in an interference experiment. On the other
hand, consider now the effect of the charged particle on
the magnetic moment. In the rest frame of the magnetic
moment, the moving charge generates the magnetic field
�B � �y 3 �E, where �y is the velocity of the charge and �E is
its electric field. As noted above, this magnetic field causes
a precession of the magnetic moment �m. By evaluating the
angle of precession dw when the charge q is moving along
either the upper or lower side of the magnetic moment we
find dw ~ fAC (see below). Therefore, by measuring dw

we can determine on which side of the fluxon the particle
moved. Clearly, that contradicts the wave-particle comple-
mentarity principle, unless the measurement of precession
destroyed the coherence of the two trajectories.

We shall next examine this process in more detail to
see how in actuality this loss of coherence happens. The
nonrelativistic Hamiltonian in three dimensions [3,8,9]

H �
� �P 1 �m 3 �E�2

2m
2

m2E2

2m
(2)

describes a spin-half neutral particle carrying magnetic
moment �m � m �s, which moves in an electric field �E. In
the AC effect, the electric field is generated by a straight
wire with uniform charge density l. If the particle moves
in the plane orthogonal to the wire, and the momentum
in the direction of the wire vanishes, one finds [9] that H
effectively reduces to a two-dimensional Hamiltonian. Us-
ing polar coordinates ���r�x, y�, u�x, y���� where the charged
wire is located at r � 0, and points in the z direction, we
get

H �
p2

r

2m
1

�pu 1 jsz�2

2mr2 , (3)

where j � lm�2p .
The Heisenberg equations of motion for the spin

�sx � 2
2j

h̄mr2 pusy ,

�sy �
2j

h̄mr2 pusx , (4)

�sz � 0 .

describe a precession of the spin around the z axis. When
the magnetic moment moves between time t0 to time t
along a path joining points with angular coordinates u�t0�
and u�t�, we find that (up to the trivial phase 2j

h̄m

Rt
t0

dt0

r2 ),
the precession is generated by the unitary operator
U�t, t0� � e
2i 2j

h̄

Rt

t0
sz

�u�t0� dt0
. (5)

Indeed, this precession is induced by the magnetic field,
Bz � � �y 3 �E�z � 2j �u, experienced by the spin in its rest
frame. If sz is constant, the angle of precession w is hence
w � 2jsz�u�t� 2 u�t0���h̄.

Consider now the wave function c of the magnetic mo-
ment. For the above trajectory, it changes according to

c ! U�t, t0�c � e2idfACc , (6)

where

dfAC�t, t0� �
j

h̄

Z t

t0

sz
�u�dt0� dt0. (7)

In the AC effect, c is an eigenstate of sz . If sz � 1,
dfAC�t, t0� � j�u�t� 2 u�t0���h̄. We will henceforth re-
fer to dfAC�t, t0� in (7) as the “phase operator.” In general
it describes the phase accumulated along a definite trajec-
tory for arbitrary sz .

Let us next examine what is the effect on a system when
the spin precession is measured. The rotation implies that
the spin at t0 is related to the spin at some latter time t.
Particularly we have the identity

Cw�t, t0� � Uy�t, t0� �s�t0�U�t, t0� 2 �s�t� � 0 , (8)

which follows from the equation of motion of the spin. By
observing that Cw�t, t0� indeed vanishes we can verify that
the spin rotates. One might think that since

�Cw�t, t0�, dfAC�t, t0�� � 0 , (9)

we should actually be able to observe simultaneously both
the precession operator Cw�t, t0� and the phase operator
dfAC�t, t0�.

However, the above commutativity is a dynamical result,
i.e., it is valid only by virtue of equations of motion (4).
To define Cw�t, t0� and fAC�t, t0� one has to specify the
Hamiltonian (2). For such noncanonical variables [16],
commutativity does not imply mutual observability.

To observe Cw�t, t0�, we have to couple to the system
twice, first at time t0 and then at a later time t. Since the
coupling of the system to a measuring device at time t0
changes the Hamiltonian (2) (because we must add to the
Hamiltonian new terms describing the interaction of the
system with a measuring device), the spin component sz

will no longer be constant, and the accumulated phase (7)
will change by an uncertain amount.

Let us examine in more detail the uncertainty produced
in dfAC�t, t0� when Cw�t, t0� is measured. To this end,
we couple at t � t0 to si and at some later time t to the
rotated spin UysiU. To be able to observe a precession of
a single spin, we must be sure that the spin has rotated by
a sufficiently large angle, say w � p�2. Choosing i � x,
we get for this case

Cp�2�t, t0� � sy�t� 2 sx�t0� � 0 . (10)

Because Cp�2�t, t0� is of order unity it must be observed
with precision
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DCp�2�t, t0� ø 1 . (11)

Hence sx�t0� is effectively measured with precision
Dsx ø 1. During the time interval �t, t0�, sz then be-
comes uncertain by Dsz � 1. The consequent uncertainty
in the AC phase

DfAC�t, t0� �
j

h̄
�u�t� 2 u�t0��Dsz � p�4 (12)

is hence sufficiently large to erase the phase information.
This achieves our goal of showing that by measuring the
precession we destroy the coherence.

More generally, we will be able to infer that Cw�t, t0� �
0 only statistically. Consider, for example, the limiting
case that the spin has precessed by only a small angle
w ø 1. Let jx� be the eigenstate of sx , and denote the
rotated eigenstate by jw�. Hence j	w j x�j 
 1 2 w2. To
verify the precession, one has to repeat the experiment over
a sample of N � 1

w2 spins, all initially in the same jx�
state, and measure separately for each spin the operator
Ci

w�t, t0�. The total phase accumulated by the N spins,
f

N
AC �

PN
i�1 f

i
AC, will become uncertain by

DfN
AC �

j

h̄
�u�t� 2 u�t0��

NX
i�1

Dsi
z � w

p
N�2 � 1�2 ,

(13)

where the relation, f � 2j�u�t� 2 u�t0���h̄, was used,
and we have assumed that the uncertainties Dsi

z � 1, for
each spin, are independent. Therefore, if we verify that
the N spins precess, the total accumulated phase becomes
uncertain. This verifies our claim also for this case.

Next consider a special case where the spinor nature
has a special role. Suppose that the spin rotates around
the ẑ axis, by either w � 1p or w � 2p . In both cases,
of either a clockwise or a counterclockwise rotation, sx

changes to 2sx and

Cp � sx�t� 1 sx�t0� � 0 . (14)

In space-time these two alternatives correspond to a mag-
netic moment moving along either a clockwise or a coun-
terclockwise path around the charged wire with u�t� 2

u�t0� � 6h̄p�2j. Since both paths give rise to the same
rotation of the spin, they cannot be distinguished by mea-
suring Cp �t, t0�. Therefore, in this particular case, consis-
tency with ordinary wave-particle complementarity does
not require that coherence must be lost. So it may appear
that this provides a counterexample to our claim.

However, by observing Cp , we are still unable to dis-
tinguish between a nontrivial or a trivial phase in an in-
terference experiment, i.e., we cannot detect a nontrivial
topological effect. To see that, let us compare two cases:
first consider an AC effect where the charged line gener-
ates the phases fAC � p�2 on one path and 2p�2 for
the other. This yields a relative nontrivial p phase. In
the second setup we arrange a special charge distribution
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which generates the same p�2 phase for both paths. The
relative phase in the second case is trivial, however, since
the spin rotates by p , Cp � 0 in both cases, and we can-
not distinguish by performing this measurement between
the cases of a topological and a nontopological effect.

Similar reasoning applies for the case of a magnetic
moment moving through a region with a homogeneous but
time dependent magnetic field B�t�. The corresponding
phase shift

fAC �
1
h̄

Z
�m ? �B�t0� dt0 (15)

was observed by Allman et al. [5]. This effect is some-
times referred to in the literature as the Scalar-AB effect,
because the interaction term �m ? �B in (2) is analogous to
the qV term in the AB Hamiltonian �p 2 qA�2�2m 1

qV , which gives rise to the potential-AB effect. Since with
the inclusion of a magnetic field the AC Hamiltonian is
HAC � � �p 1 �m 3 �E�2�2m 2 �m ? �B, perhaps it is more
natural to identify this phase as a “potential-AC effect.” It
can be readily shown that our arguments for the AC ef-
fect follow, by replacing the particle’s rest-frame magnetic
field, �u�t�, with B�t�.

So far we have shown a complementarity relation in the
cases of the AC and the potential AC (or Scalar-AB) ef-
fects. Nevertheless, the gedanken experiment suggested
earlier indicates that a similar complementarity relation
exists for other dual effects. Such is the topological ef-
fect for electric dipoles [10,11,13], which is manifested
via a vector potential �d 3 �B or a “potential” �d ? �E [11].
It was noted that the effect for electric dipoles can be ob-
tained from the AC setup by a Maxwell duality transfor-
mation [12]. To connect our gedanken experiment with
these cases, we will, however, make use of a different type
of duality [3]

charge $ magnetic moment (16)

which transforms the magnetic filament and the charge in
the AB effect to a charged wire and a magnetic moment
in the AC effect and vice versa. This duality is closely
related to the Galilean invariance of the nonrelativistic
charge-magnetic moment system. The total accumulated
phase depends only on the relative motion of the charge
and the magnetic moment. Hence by a duality transforma-
tion we transform from the rest frame of the magnetic mo-
ment (in the AB effect) to the rest frame of the charge (in
the AC effect). As we already have shown, since the phase
is “common” to the charge and the magnetic moment, the
consistency of the AB effect with ordinary wave-particle
complementarity necessitates a local/nonlocal complemen-
tarity for the “companion” dual effect.

We next note that the potential electric-dipole effect gen-
erated by the �d ? �E term [11] is dual to the nonlocal po-
tential AB effect: let two charged plates of a “capacitor”
initially overlap each other. A potential difference be-
tween the two sides of the capacitor is then formed when
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a charged particle passes close to the capacitor (so that
�E 
 0), by changing temporarily the distance between the
plates. The charge then experiences no force but accumu-
lates the AB phase q

h̄

R
V �t0� dt0.

Consider now the duality transformation

charge $ electric dipole (17)

which replaces the capacitor (viewed as a planar density
of electric dipoles) by a homogeneously charged plate, and
the moving charge by a time dependent electric dipole �d�t�.
In a sense this again corresponds to a transformation from
the capacitor rest frame to that of the charge. Hence the
electric dipole effect is the dual companion of the poten-
tial AB effect. The electric dipole experiences no forces,
yet it acquires the phase fD �

1
h̄

R
�d�t0� ? �E dt0. How-

ever, viewing the dipole as formed by an extended (time
dependent) charge distribution in an external electric field,
it will induce a corresponding time dependent nonvanish-
ing internal stress. The consistency of the potential AB
effect then requires that the local internal effects should be
complementary to the accumulated phase. It would be in-
teresting to understand the details of the complementarity
relation for this case and the related vector-potential dipole
effect.
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