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We investigate theoretically the dynamics of a colloidal particle, trapped by optical tweezers, which
gradually approaches an attractive surface with a constant velocity until it escapes the trap and
jumps to the surface. We find that the height of the energy barrier in such a colloid-surface system
follows the scaling �E� �z0�t�−const�3/2 when the trap approaches the surface, z0�t� being the trap
surface distance. Using this scaling we derive equations for the probability density function of the
jump lengths, for the velocity dependence of its mean and most probable values, and for the
variance. These can be used to extract the parameters of the particle-surface interaction from
experimental data. © 2006 American Institute of Physics. �DOI: 10.1063/1.2395935�

Thermally activated escape from a trapped state in the
presence of a time-evolving barrier plays a central role in
diverse systems at the nano- and microscales that at first
sight may seem unrelated, but which on closer scrutiny are
found to display common features. The latter are shared by
numerous systems in physics, chemistry, and biology as ex-
emplified by frictional phenomena at the nanoscale,1–4 single
molecular pulling �unbinding� experiments,5–8 protein
unfolding,9 cell adhesion and detachment,10 plastic behavior
of glassy materials,11 and dynamics of colloids at
surfaces.12,13

In general time-dependent potential barriers can occur
either by an external mechanical load or by time-dependent
fields. The most frequently used ways to influence the barri-
ers temporally are a slow ramping of a control parameter or
a periodic modulation. The rate of the imposed modulation
�loading� provides a time scale that can be used to probe and
modify the internal dynamics of the system under study. The
observed dynamics is determined by the interplay between
the rate of thermally assisted escape from the trapped state in
the absence of the external perturbation and the external
loading rate.

In the present paper we consider the dynamics of a col-
loidal particle trapped by optical tweezers while approaching
an attractive surface until the particle escapes the trap and
jumps to the surface. Experimentally, one can measure the
probability distribution function �PDF� of the jump lengths
for a given approach velocity towards the surface and there-
fore obtain the velocity dependence of this distribution. Such
colloid-surface experiments have been carried out,12,13 sug-
gesting that they provide information on the particle-surface
interaction. It should be noted that the dynamical process
studied in these experiments is complementary to the widely
discussed single molecular unbinding experiments.5–9 In the
latter case one focuses on a transition from a bound adhesion
state to a “free” state located at the minimum of a harmonic
potential created by an atomic force microscope or laser

tweezers which are pulled away from the adhesion complex.
In order to analyze colloid-surface measurements one has to
establish relationships between the equilibrium properties of
the system and the jump lengths measured under nonequilib-
rium conditions.

In analogy to the reverse process of unbinding6 we dem-
onstrate here that in the colloid-surface system the time-
dependent height of the barrier follows, to a very good ap-
proximation, the scaling relation �E� �z0�t�−const�3/2 when
the trap approaches the surface. This scaling is the leading
�and dominating� behavior common to driven small-scale
systems.14 Using the scaling relation we derive equations for
the PDF of jump lengths, for the velocity dependence of its
mean and most probable values, and for the variance. These
expressions do not include fitting parameters but allow us to
extract characteristics of the particle-surface interaction from
the experimental data. The analytical equations are in good
agreement with the results of numerical simulations using a
Langevin equation.

THE MODEL

The total potential experienced by a particle, trapped by
the tweezers, which approaches the surface �see Fig. 1� can
be written in the form

U�z,t� = U0�z� +
K

2
�z − z0�t��2. �1�

The first term in Eq. �1� describes the particle-surface
distance-dependent interaction. Here we assume that this in-
teraction is of van der Waals nature

U0�z� = −
AR

6z
, �2�

where A is the Hamaker constant, R is the radius of the
particle, and z+R is the distance between the center of the
particle and the surface. The second term in Eq. �1� is the
harmonic potential due to the optical trap, which is located at
the distance z0�t�+R from the surface and has a stiffness K.a�Electronic mail: urbakh@post.tau.ac.il
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In the experiments discussed here12,13 the trap approaches the
surface with the constant velocity V so that

z0�t� = Z0 − Vt , �3�

where Z0 is the starting position of the trap. The length of the
particle jump to the surface is defined as the value of z0 at the
time of the jump.

The dynamical response of the particle can be described
by the overdamped Langevin equation

�pż�t� = −
�U�z,t�

�z
+ ��t� . �4�

Here �p is the friction coefficient, which, for a spherical
particle embedded in a fluid and approaching a surface, can
be estimated as15

�p = 6�R��1 +
9

8

R

z + R
� , �5�

where � is a fluid viscosity. The effect of thermal fluctua-
tions is given by a random force, which is �-correlated
���t���0��=2�pkBT��t�, where kB is the Boltzmann constant
and T is the temperature.

In the absence of thermal fluctuations, the particle jumps
to the surface when the trap approaches the point z0�t�=z0

c,
for which the potential barrier separating the trap and the
surface vanishes �see Fig. 1�. In this case the jump occurs at
the inflection point z=zc, where the minimum and the maxi-
mum of the potential U�z , t� merge and

d2U�z,t�
dz2 =

dU�z,t�
dz

= 0. �6�

For the particle-surface potential given by Eq. �2� the posi-
tions zc and z0

c read

zc = �AR

3K
�1/3

, z0
c = �9AR

8K
�1/3

. �7�

Using experimentally estimated values12,13 of A=1.6
�10−20 J, K=0.01 pN/nm, and R=535 nm, we get z0

c

	100 nm and zc	65 nm.
In the presence of fluctuations the jump to the surface

may occur for the trap-surface separations which are larger
than z0

c. Since the thermal fluctuations introduce stochasticity
into the problem, we are faced with a distribution of jump
lengths. The probability W�t� that the particle persists in the
trap can be approximately calculated through the following
kinetic equation:

dW�t�
dt

= − r�t�W�t� , �8�

where the time-dependent escape rate r�t� is given according
to Kramers16 by

r�t� =
	1�t�	2�t�

2��
exp�− �E�t�/kBT� . �9�

Here �E�t� is the instantaneous barrier height and 	1,2�t�
= 
�
�2U�z , t� /�z2

z=z
 are the absolute values of curvatures
of U�z , t� evaluated at the local minimum and maximum of
the potential, z=z− and z=z+, respectively. Using the Kram-
ers equation we assume for simplicity that the friction coef-
ficient �p is independent of z and its value is obtained ac-
cording to Eq. �5� for z=zc.

Equation �9� can be rewritten in terms of the trap posi-
tion z0�t�

dW�z0�
dz0

= V−1r�z0�W�z0� . �10�

Then, the experimentally measured PDF for the jump lengths
can be written as

P�z0� =
dW�z0�

dz0
. �11�

Because of the exponential dependence of the escape rate on
�E�t�, we focus on the behavior of r�z0� close to the critical
value of the trap position z0�t�=z0

c, for which the barrier dis-
appears completely. In order to evaluate the survival prob-
ability W�z0� analytically, we expand the combined potential
energy U�z ,z0� around the inflection point z=zc to the cubic
order �time dependence enters through z0�t��,

U 	 U0�zc� +
K

2
�z0 − zc�2 − K�z0 − z0

c��z − zc�

+
U0��zc�

6
�z − zc�3. �12�

The extrema of this truncated potential are given by the ex-
pression

z+,− = zc 
 �2K�z0 − z0
c�/U0��zc� . �13�

Then, the instantaneous barrier height �E=U�z+ ,z0�
−U�z− ,z0� and the curvatures 	1,2 are

FIG. 1. The interaction potential U�z ,z0� used in Eq. �1� for two trap-surface
separations at two different time instants. The dashed curve corresponds to a
large trap-surface separation z0=192 nm where a pronounced barrier is ob-
served, and the solid curve gives the potential at the critical point z0=z0

c

=98 nm at which the barrier vanishes. Inset shows the positions of the local
minima and maxima of the potential U�z ,z0� as functions of z0. Parameter
values: A=1.6�10−20 J, R=535 nm, and K=10−5 N/m.
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�E =
4�2K3/2

3�U0��zc��1/2 �z0 − z0
c�3/2

= �25/2/35/3��AR�1/6K5/6�z0 − z0
c�3/2, �14�

	1,2 = �2KU0��zc��1/4�z0 − z0
c�1/4

= 21/431/3K7/12�AR�−1/12�z0 − z0
c�1/4. �15�

Figure 2 shows that the scaling relation �14� accurately de-
scribes the z0 dependence of the barrier height throughout the
entire range of the trap-surface separations where the prob-
ability of jumps is nonvanishing ��E /kBT�10�.

It should be noted that permissible values of the trap-
surface separation z0 in Eqs. �13�–�15� are limited from be-
low by the value of the critical separation z0

c at which the
barrier disappears. Equation �9� incorrectly describes the be-
havior of the preexponential factor at z0	z0

c, predicting that
r�z0

c�=0 rather than r�z0
c��r�z0�z0

c�. However, as we will
show below, this does not effect an agreement between the
results of the analytical approach based on Kramers’ theory
and the numerical calculations using the Langevin equation
�4�.

RESULTS AND DISCUSSION

The solution of the kinetic equation �10� with �E and
	1,2 given by Eqs. �14� and �15� leads to the final expression
for the PDF P�z0�,

P�z0� =
3

2

V*

V
f�z0 − z0

c�1/2 exp�− f�z0 − z0
c�3/2

−
V*

V
exp�− f�z0 − z0

c�3/2� , �16�

where

f = �25/2/35/6�K5/6�AR�1/6/kBT , �17�

V* = �3/2�4�K/�AR��1/3kBT/���p� .

For the parameters relevant to the experimental conditions13

we have f =0.0215 nm−3/2 and V*=3458 nm/s.
Figure 3 shows the agreement between numerical calcu-

lations of the PDF for the jump lengths using Langevin Eq.
�4� and the analytical form in Eq. �16� which were found for
a given driving velocity V=20 nm/s, and for two values of
the Hamaker constant, A=1.6�10−20 J and A=2.5�10−20 J.
We note the non-Gaussian nature of the distribution and its
pronounced asymmetry. We also see that the PDFs are highly
sensitive to the value of the Hamaker constant. Thus, fitting
the experimental data to Eq. �16�, one can determine the
parameters of the particle-surface interaction. Equation �16�
predicts the dependence of P�z0� on experimentally acces-
sible parameters such as the driving velocity, stiffness of the
trap, and temperature. Measuring the PDF P�z0� for different
velocities one can determine not only parameters of the
particle-surface potential but also the friction coefficient for
the particle approaching the surface. Studies of particle fric-
tion coefficients and its dependence on the properties of the
solid-fluid interface have attracted a lot of attention
recently.17

Expression �16� differs essentially from the earlier pro-
posed PDF for the jump lengths which has been derived
under the assumption of a linear dependence of the barrier
height on the trap position.13 One can see from Fig. 2 that the
linear mapping of the activation energy suggested in Ref. 13
does not work in the relevant range of particle-surface sepa-
rations. It should also be noted that in contrast to our equa-
tion, the PDF in Ref. 13 includes phenomenological param-
eters which cannot be expressed in terms of the particle-
surface interaction potential.

FIG. 2. The height of the potential barrier, �E, as a function of the trap-
surface separation z0. The solid curve presents the result of exact calcula-
tions according to Eq. �1�, and the dashed curve shows the scaling behavior
given by Eq. �14�. Parameter values are the same as those in Fig. 1.

FIG. 3. PDF of the jump lengths calculated for two values of the Hamaker
constant, A=1.6�10−20 J �dashed curve and diamonds� and 2.5�10−20 J
�solid curve and asterisks�. Symbols present results of numerical simulations
according to the Langevin equation �4� and curves show analytical predic-
tion given by Eq. �16�. �=0.01 P, V=20 nm/s, and other parameter values
similar to those in Fig. 1.
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The PDF in Eq. �16� leads to the following equation for
the most probable jump length z0

* as a function of the driving
velocity V

V = V* f�z0
* − z0

c�3/2 exp�− f�z0
* − z0

c�3/2�
f�z0

* − z0
c�3/2 − 1/3

. �18�

In the limit of low driving velocities VV*, where
f�z0

*−z0
c�3/2�1/3, the above equation reduces to

z0
* = z0

c + f−2/3�ln� V

V*��2/3

. �19�

The scaling behavior predicted by Eq. �19� is similar to that
proposed previously in the context of friction studies using
an atomic force microscopy3,4 �AFM� and of single-molecule
unbinding experiments.6–8 It was demonstrated that for a
reliable analysis of these experiments one should invoke a
nonlinear dependence of the mean frictional and rupture
forces on the logarithm of the pulling velocity, �F�
� 
ln V
2/3. The use of the phenomenological theory5 assum-
ing the linear logarithmic dependence of the forces on the
velocity, �F�� 
ln V
, gives parameters of the interaction po-
tentials which can be off by more than an order of
magnitude.8

In Fig. 4 we compare the analytical results in Eqs. �18�
and �19� with the Langevin dynamics simulations. The scal-
ing relation �19� is accurate over a wide range of driving
velocities, V�150 nm/s. It should be noted that the linear
logarithmic fit of the phenomenological model13 is also quite
good, but it does not allow us to determine the parameters of
the particle-surface interaction from the experimental data.

Using the PDF �16� one can also get the following
asymptotic expressions for the mean jump length and vari-
ance which are valid for VV*

�z0� 	 z0
* +

2

3
�f−2/3�ln� V

V*��1/3

, �20�

�z0

2 	
2�2

27
f−4/3�ln� V

V*��−2/3

, �21�

where �=0.577¯ is the Euler-Mascheroni constant. Equa-
tion �21� predicts a decrease of the variance with a decrease
in driving velocity.

In summary, we demonstrated that in a colloid-surface
system the height of the energy barrier follows the scaling
relation �E� �z0�t�−const�3/2 when the trap approaches the
surface. Using the scaling relation we derived equations for
the PDF of jump lengths, and the velocity dependence of its
mean and most probable values, and the variance. These re-
lations can be used to extract the parameters of the particle-
surface interaction from the experimental data. They can also
be relevant to the manipulation of single molecules by scan-
ning probes using the “pick-up-and-put-down” approach.18

The results obtained here suggest a possible modification
of existing force measurements on a single molecule which
can be useful to get additional information on the molecular
scale energy landscape. Rather than breaking of a bond one
has to measure the distribution of the instrument �AFM can-
tilever or optical tweezers� positions at which the adhesion
bond is created when the instrument approaches the adhesion
complex. Such an experiment can be analyzed using Eqs.
�16�–�21�. When the trapped state has internal conforma-
tions, the driving velocity can determine at which conforma-
tion the particle jumps to the adhesion complex.
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