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Abstract
A microscopic model is proposed for the motility of a bead driven by the
polymerization of actin filaments. The model exhibits a rich spectrum
of behaviours similar to those observed in biomimetic experiments, which
include spontaneous symmetry-breaking, various regimes of the bead’s motion
and correlations between the structure of the actin tail which propels the
bead and the bead dynamics. The dependences of the dynamical properties
(such as symmetry-breaking time, regimes of motion, mean velocity, and tail
asymmetry) on the physical parameters (the bead radius and viscosity) agree
well with the experimental observations. We find that most experimental
observations can be reproduced taking into account only one type of filaments
interacting with the bead: the detached filaments that push the bead. Our
calculations suggest that the analysis of mean characteristics only (velocities,
symmetry-breaking times, etc) does not always provide meaningful information
about the mechanism of motility. The aim should be to obtain the
corresponding distributions, which might be extremely broad and therefore not
well represented by their mean only. Our findings suggest a simple coarse-
grained description, which captures the main features obtained within the
microscopic model.

1. Introduction

Biological movements display highly complex phenomena involving biochemical and
biophysical processes [1]. Many of these movements are known to be driven by the
polymerization of actin filaments, but their complete description is still missing. Significant
progress in clarifying the molecular basis of actin-driven cell motility has been made by using
biomimetic in vitro systems such as polystyrene beads (microspheres) coated with proteins
that initiate actin polymerization [2–6].

The movement trajectories of polystyrene beads have been shown to be similar to those of
bacterial pathogens such as Listeria monocytogenes, which have been used as model systems
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for studies of actin-based motility [7, 8]. Beads are therefore helpful in getting some insight into
the physical nature of actin-based motility. The major advantage of biomimetic systems is that
they allow for quantitative measurements in which both biochemical and physical parameters
can be controlled. Biomimetic systems have been used in order to investigate the actin tail
formation, characterize the mechanism of symmetry breaking in cellular motion and explore
the dynamical regimes of actin-based propulsion. The latter is further investigated by varying
the surface concentration of the proteins which initiate actin polymerization, the size of the
bead and the viscosity of the surrounding media [6].

Theoretical models are crucial for extracting biophysical information from experiments
and then for understanding the mechanisms of force generation and motility that originate
from actin polymerization. Experiments with biomimetic systems can in turn provide the
possibility to test, and introduce improvements, into the various models. Recently, several
theoretical models have been proposed which address the motility phenomena for cells and
biomimetic systems on different scales. One class of models describes the phenomena on
a microscopic level by considering the polymerization of a single filament, or a group of
filaments, and their interaction with objects which represent Listeria or beads [9–12]. Another
group of models explores a continuum approach considering the actin filament tails as an
elastic gel [13–16]. In this case the coupling between polymerization and motion occurs due
to the stress which is developed between the actin gel and the moving object. In spite of the
recently growing theoretical efforts, both numerical and analytical, some questions are yet to
be resolved in order to obtain a consistent picture of actin driven motility [6].

In this paper we propose a microscopic model that exhibits spontaneous symmetry-
breaking and different regimes of bead motion. Using this model we study the effects of
the experimentally controllable parameters, such as the radius of the bead and the viscosity
of the surrounding medium, on the bead motility. Our findings lead to a coarse-grained
continuous description, which captures the main features of the microscopic model and offers
a complimentary description of the motility phenomena.

2. Microscopic approach

2.1. Model

The model we introduce assumes in accordance with experimental observations the presence
of two populations of filaments: (1) attached filaments that pull the bead, and (2) detached
filaments that polymerize and generate a pushing force. The filaments grow in the vicinity
of a spherical bead which is propelled by the formation of a filament tail, see figure 1. The
dynamics of the both filaments and the bead are treated via the Langevin description.

At each time step of the calculation the filaments are nucleated uniformly (on average) in
a ring of radius R0 + �R around the bead with probability pg�t , where R0 is the radius of
the bead. We denote a point of nucleation by rs

i , where the index i is a filament number. We
assumed that one of the ends of the filament, rs

i , is attached to the cross-linked actin network
and as a result it does not move, while the other end of the filament (barbed end) pushes or
pulls the bead. Filaments which touch the bead are attached to it with probability pa�t , while
the other filaments are treated as detached. The elongation of filaments can be described by
the following Langevin equation:

δri =
[

qi Ṙ +
1

γ
(1 − qi) (f(ri − R) + ξi (t)) θ (|ri − R| − R0)

]
�t . (1)

The vectors R and ri define the positions of the bead and of the end of the i th filament on
its side close to the bead (barbed end), respectively. The parameter qi characterizes the state
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Figure 1. Distribution of filaments around a bead: (a) at the moment of the symmetry-breaking
event and (b) during a directed motion of the bead. Black and grey points show the ends of the
filaments close to the bead and to the nucleation points, respectively.

of an individual filament: qi = 1 for the attached filaments and qi = 0 for the detached ones.
We assume that an attached filament is stretched with a velocity which is equal to the velocity
of the bead, Ṙ, while a detached filament polymerizes in the direction towards the centre of
the bead. The Heaviside step function, θ(z), takes into account that filaments cannot penetrate
into the bead. The function f(ri − R) = ri −R

|ri −R| f (|ri − R|)θ(|ri − R| − R0) determines the
rate of polymerization, and as an example an exponential decay of f with a distance from the
bead,

f (|ri − R|) = A |ri − R| exp
(− |ri − R|2 /λ2) (2)

is assumed. Here A is the amplitude of the rate and λ is the characteristic width of the region
around the bead where the polymerization occurs. The ratio f (ri − R)/γ , where γ is a
dissipation constant, gives the velocity of polymerization. The effect of thermal fluctuations
on the polymerization process is given by a random force ξi (t), which is δ correlated in time
〈ξi (t)ξ j (0)〉 = 2kBTγ δ(t)δi j .

Each of the attached filaments is detached with probability p0
d exp(Kli a/kBT ), where p0

d
is the spontaneous probability of detachment in a stress free state, K is the elasticity constant
of a filament, li is the filament elongation after attachment, li = |ra

i − ri |, ra
i is the point of

attachment, and a is a characteristic width of the adhesion potential [17]. Each of the existing
filaments is removed with probability pr�t . Notice that filament elongation is renewed every
time after nucleation. Moreover, the instantaneous lengths and pushing and pulling forces
are different for different filaments, and the number of working filaments also changes in
time. Thus, the behaviour is not given by a mean field description which corresponds to a
homogeneous picture.

The detached filaments push the bead with the force F (i)
1 (ri − R) = ri −R

|ri −R| F1(|ri − R|).
Here we also assume an exponential decay with the distance from the bead,

F1 (|ri − R|) = A1 |ri − R| exp
(− |ri − R|2 /λ2) (3)

with amplitude A1 and the characteristic length λ. The attached filaments pull the bead back
with the elastic force F (i)

2 = − ri −rs
|ri −rs | K |ra

i − ri |, where K is the stiffness of the filament and

the vector ri −rs
|ri −rs | defines the direction of the force along the filament.

On a macroscopic scale, focusing on the bead, the motion is governed by the following
overdamped Langevin equation:

η̃Ṙ + F + ξ(t) = 0 (4)
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Figure 2. The time dependences of the bead velocity (absolute value of the velocity), the cloud
asymmetry and angular distribution of actin filaments for three regimes of the bead motion: (a)
steady motion of small beads, (b) hopping motion of the intermediate size beads, and (c) localized
fluctuations of large beads. Light regions in the angular distributions correspond to maxima of the
probability distribution function. Distances, velocity and time are presented in units of λ, f (R0)/γ

and λγ/ f (R0), respectively. Parameter values: A1/A = 0.5, K/A = 0.05, 6πηλ/γ = 1,
Kλa/(kB T ) = 0.25, pg = 3, pa = 0.5, p0

d = 0.5; (a) −R0/λ = 1, (b) −R0/λ = 2, (c)
−R0/λ = 3.

where

F =
∑
i=1

[
qi F (i)

2 + (1 − qi ) F (i)
1

]
(5)

is the force due to the interaction between the filaments and the bead, the dissipation constant η̃
is related to a viscosity of surrounding medium through the Stokes equation, η̃ = 6π R0η, and
ξ(t) is a δ-correlated random force acting on the bead, 〈ξ(t)ξ(0)〉 = 2kBT ηδ(t). Equation (5)
provides the total force experienced by the bead due to the dynamics of the filaments.

3. Results of simulations

Our simulations show that the above model exhibits three different types of bead motion,
depending on the bead radius: (a) small beads move steadily with an almost constant velocity,
(b) larger beads move in a hopping manner, and (c) a further increase of the bead radius leads
to localized fluctuations of the bead within the actin cloud. In the transition region between
steady and hopping motions the movement of the bead becomes erratic (jerky). The transitions
from the steady motion of the bead to the hopping one and then to the trapped state with the
increase of the bead radius have been recently observed experimentally [4]. These regimes
of motion can be distinguished in figure 2 where the calculated time dependences of the bead
velocity (absolute value of the velocity), of the cloud asymmetry and of the angular distribution
of actin filaments are presented. The asymmetry is defined as the distance between the centre
mass of the cloud and the centre of the bead, and an angular distribution of actin filaments is
obtained by calculating the fraction of filaments around the bead which have a given direction
(angle) with respect to a chosen frame, as shown in figure 3. The latter figure also presents
an instantaneous angular density distribution of filaments in the hopping regime. In all figures
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Figure 3. (a) Snapshot of a distribution of actin filaments from the time sequence shown in
figure 2(b). (b) Filament density distribution as a function of angle for the frame shown in figure 3(a).
Parameter values as in figure 2(b).
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Figure 4. A typical bead trajectory in the hopping regime. The inset shows a part of the trajectory
on an enlarged scale. Parameter values are as in figure 2(b).

corresponding to the microscopic model distances, time and velocity are presented in units of
λ, λγ/ f (R0), and f (R0)/γ , respectively.

Regimes of motion. Figure 2(a) demonstrates that small beads, R0/λ < 1.8, never stop and
that variations in the cloud asymmetry and of the angular distribution correspond to changes
in the direction of the bead motion. In this case we find no correlation between all three
characteristics (the bead velocity, the asymmetry and the angular distribution of the cloud).

In the hopping regime (figure 2(b)), which we find for the intermediate range of bead radii,
1.8 < R0/λ < 2.5, the bead performs jumps separated by time intervals during which it is
trapped within a highly symmetric actin cloud. A typical bead trajectory in the hopping regime
is shown in figure 4. In contrast to the steady motion case, here there are strong correlations
among the bead velocity, cloud asymmetry and its angular distribution. Following an escape
from a symmetric cloud (point A in figure 5) the bead starts to move with a high velocity
(point B). Figure 5 clearly shows that an increase in velocity correlates with an increase in
asymmetry of the actin cloud (point C). The continuum description presented below, in the next
section, shows qualitatively that the directional motion of the bead generates an asymmetry
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Figure 5. Time dependences of the bead velocity, the total number (Ntot , grey line) of filaments
and the number of attached (N2, black line) filaments, and the cloud asymmetry in the hopping
regime of the bead motion. The figure presents a segment of the time series shown in figure 2(b).
Parameter values are as in figure 2(b).

Figure 6. Probability distribution of the sticking times in the hopping regime. Parameter values as
in figure 2(b).

in the cloud, and that this asymmetry grows with an increase of the velocity. Our simulations
demonstrate that the escape of the bead from a symmetric cloud occurs due to stochastic
fluctuations in the local density of filaments around the bead. Figure 1(a) shows a filament
distribution at the moment of a spontaneous symmetry-breaking. A strong asymmetry builds
up only later as a result of directional motion (figure 1(b)). All of the velocity spikes in figure 5
correlate with a large asymmetry. After an interval of directed motion with a given velocity,
the bead is trapped as a result of a stochastic build-up of an almost symmetric cloud (point D).
A probability distribution of sticking times (time intervals of trapping events) in the hopping
regime is shown in figure 6. A sticking time is defined as a time interval during which the
absolute value of the bead velocity is smaller than 10−2 f (R0)/γ . The latter is smaller than



Actin-based motility: cooperative symmetry-breaking and phases of motion S3935

Figure 7. Velocity–velocity correlation function in the hopping regime calculated in the presence
of both detached and attached filaments. Parameter values as in figure 2(b).

the maximal velocity in the trapping regime shown in figure 2(c). For small beads which
move with higher velocities (see figure 2) a velocity induced asymmetry is strong enough
to prevent the formation of symmetric clouds which lead to trapping. It should be noted
that the calculated time dependences of the bead velocity, of the cloud asymmetry and of the
angular distribution of actin filaments presented in figures 2 and 5 agree qualitatively with the
experimental results [2, 4].

Bead dynamics and the nature of filament–bead interactions. The present simulations have
been done under the assumption that there are two populations of filaments: attached, which
pull the beads, and detached, which push it. Here we assumed that the number of attached
filaments is smaller than the number of detached ones. However, it is the presence of the
attached filaments which essentially influences the bead motility. We find that the total number
of working filaments only slightly changes during the motion of the bead when the bead velocity
strongly fluctuates (see figure 5). However, one can see from figure 5 that there is a correlation
between the bead velocity and the number of attached filaments; namely, the peaks of the
velocity are followed by the minima of the number of attached filaments. The motion of the
bead in the hopping regime resembles the stick–slip behaviour observed in friction [18] where
adhesive bonds break and reform. In a similar way to stick–slip motion, which originates from
a collective rupture of the adhesion bonds [19], here hopping motion of the bead is connected
to a collective rupture of attached filaments.

Analysis of the bead motility in the hopping regime shows that the bead motion in this
regime is a stochastic process made of ‘free’ motions and trapping events. The bead dynamics
is characterized by two timescales: a long timescale, tl, corresponding to large jumps (time
intervals between maxima of velocity in figure 5), and a shorter timescale, tsh, corresponding to
velocity fluctuations (short-range stepping of the bead). In order to isolate the short timescale
we have calculated the Fourier transform of the velocity correlation function G(ω) = |V (ω)|2,
where V (ω) = ∫ ∞

0 dtV (t) exp(iωt); see figure 7. The observed maxima of G(ω) = |V (ω)|2 at
ω = ±2 × 10−2 correspond to the short-range stepping for which tsh = 50. Using the velocity
correlation function for the evaluation of the long timescale requires simulations of very long
bead trajectories which are beyond the scope of this work. This timescale is estimated to be



S3936 A E Filippov et al

Figure 8. Time dependences of the bead velocity and the cloud asymmetry in the hopping regime
calculated in the case when only detached, pushing, filaments exist in the system. Parameter values
are as in figure 2(b), except A1/A = 0.15.

tl = 1000 directly from the time series of velocity presented in figure 2. Knowing the values of
tl and tsh we can estimate the length scales of the short-range steps, Lsh, and of the large jumps,
L l; namely, Lsh ≈ 20λ and Ll ≈ 400λ. Thus, our simulations suggest a situation of two well
separated time and length scales which have been observed in actin-driven systems [4, 20]. It
should be noted that in these experiments the ratio of the two length scales was 1000 while
in our simulations this ratio equals 20. In order to observe in simulations two length scales
which differ by three orders of magnitude one has to perform time-consuming large-scale
simulations. This was not the aim of our work. The main idea of this study was to analyse a
minimal model that leads to experimentally observed behaviours. Within this model we found
two types of length scales which correspond to two different processes: collective detachment–
reattachment of filaments, and creation of an almost symmetric actin cloud around the bead
(this cloud includes two types of filaments) that leads to trapping of the bead. For the values
of the parameters chosen here the ratio of the two lengths is 20; however, for other values of
parameters it could be 1000 (which, as mentioned, would require much longer simulations).

In order to clarify the relationships between the observed bead dynamics and the nature
of filament–bead interactions, we have performed another set of simulations which is similar
to the simulations described above but does not include attachment between filaments and
the bead surface. Thus, all filaments are assumed to push the bead. Most of the results
obtained in this new scenario are qualitatively similar to those discussed above for two types
of populations of filaments. Namely, we have also observed here three regimes of bead motion
depending on the bead size. Variations of the bead velocity, cloud asymmetry and angular
distribution of actin filaments as functions of time look like those presented in figure 2. For
instance, figure 8 shows the corresponding results obtained in the hopping regime for the
case when only detached, pushing filaments exist in the system. However, calculations of
the velocity correlation function as shown in figure 9 demonstrate the absence of the short-
timescale behaviour which corresponds to short-range stepping in the case of two populations
of filaments (see figure 7). In the presence of the attached filaments these steps were related to
unbinding and rebinding between the filaments and bead surface, and this process manifested
itself through the characteristic frequency observed in G(ω).

During the timescale covered by our calculations beads of large radii, R0/λ > 2.5, do not
escape from the actin cloud and do not produce a ‘comet’ tail. In this regime the beads perform
local random movements characterized by a very small asymmetry of the cloud and an almost
uniform angular distribution of filaments (see figure 2(c)). A dependence of time-averaged
bead velocity on its radius is shown in figure 10.
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Figure 9. Velocity–velocity correlation function in the hopping regime calculated in the presence
of the detached filaments only. Parameter values are as in figure 8.

Figure 10. Mean bead velocity as a function of the bead radius. The range of radii for which the
hopping motion has been observed is marked by the dash–dot lines. Parameter values as in figure 2.

4. Continuum coarse-grained approach

4.1. Model

The results of the simulations discussed above suggest a coarse-grained description which
captures the main features obtained within the microscopic model. We introduce a continuum
approach in which the filament subsystem is given in terms of two fields with densities w1(r)

and w2(r). These correspond to the barbed ends of the detached and attached filament
populations respectively. Namely, the ensemble of discrete points that represented the barbed
ends of the filaments within the microscopic model is replaced by smeared density distributions.
The dynamics of the fields w1(r) and w2(r) can be described by the kinetic equations in the
appendix. Here, in order to illustrate the continuum approach, we consider the case where
only one field w1(r), corresponding to the detached filament, is present in the system. The
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dynamical equation for w1(r) reads

dw1

dt
= D1�w1(r) + Q(R − r) (1 + ξ(r, t)) − µw1(r). (6)

Here the function Q presents a nucleation of the detached filaments around the bead
(below we assume that Q is a constant, Q0, in the ring of width �R0), the random function ξ is
δ correlated and represents the effect of noise on the nucleation; the coefficient µ accounts for
a degradation of the filament population, and the coefficient D1 defines the diffusion rate due
to the Brownian motion of the filaments. Including the noise contribution in the nucleation
term is essential for the observation of the spontaneous symmetry-breaking phenomenon and
of the nonstationary regimes of bead motion.

The motion of the bead is described by the macroscopic equation, equation (4), where the
effect of the filaments on the bead is given by the integral force

F =
∫

dr′ F1
(
R − r′) w1

(
r′), (7)

and the force kernel F1 has the same form as in equation (5).
The analysis of equations (6) and (7) shows that there is a direct relationship between the

bead velocity and the spatial asymmetry of the density w1. For a bead moving with constant
velocity V the macroscopic equation (4) reduces to a relation between the velocity and the
density w1

V = 1

η

∫
dr′ F1

(
R − r′)w1

(
r′) . (8)

It should be noted that the kernel F1, which is the gradient of the potential, is an asymmetric
function along every line passing through the centre of the bead. As a result, the isotropic part
of the filament density w1 does not influence the bead velocity. In turn, for a given constant
velocity the density w1 can be found from equation (6), which after the substitutions

r̃ = r − R, w̃1
(
r̃, V

) = w1 exp
(
Vr̃/D1

)
, µ̃ = µ + V 2/4D1,

Q̃
(
r̃, V

) = Q exp
(
Vr̃/D1

)
,

transforms into the equation for a steady distribution w̃1

D1�w̃1(r̃) + Q̃(r̃) − µ̃w̃1(r̃) = 0. (9)

Here, for a bead moving with a constant velocity, we neglect the randomness of the
nucleation process. The validity of this assumption is supported by numerical results presented
in appendix. The formal solution of the above equation can be written in the form

w̃1(r̃) =
∫

dq
exp

(−iqr̃
)

Q̃(q, V)

D1q2 + µ̃
. (10)

For a given set of parameters the coupled equations (8) and (10) define self-consistently
the unique bead velocity and the structure of the filament cloud. Figure 11 shows an example
for a density profile w1 in the case of a nonzero bead velocity which has been numerically
calculated using equation (10) for a one-dimensional model. The asymmetry of the profile
grows self-consistently with the increase of velocity. A grey-scale map of a 2D filament
density distribution around the moving bead is shown in figure 12. This figure clearly shows a
propulsive structure of the actin tail, which has been observed in biomimetic measurements [4].
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Figure 11. An example of a density profile w1 for a nonzero bead velocity (bold line) which
has been numerically calculated within a one-dimensional continuum model using equation (9).
The thin line shows the density profile corresponding to zero bead velocity, and the dashed line
represents a velocity induced contribution, (V/µ) dQ/dr , to w1 for a nonzero velocity. Coordinates
and density are presented in units of λ and Q0/µ, respectively. Parameter values: the amplitude
of the noise in the nucleation channel, σ = 1.25, D1/(U0λ

2) = 0.1, R0/λ = 0.43, �R0 = 0.5λ.

Figure 12. A grey-scale map of a 2D filament density distribution around the moving bead
calculated within the continuum approach. Parameter values: σ = 1.25, D1/(U0λ

2) = 0.1,
R0/λ = 0.43, �R0 = 0.5λ, 6πηλµ/A1 = 7, kBT/(A1 R3

0) = 10−2.

4.2. Results of calculations

The qualitative conclusions of the coarse-grained model are similar to that obtained within the
microscopic approach discussed above. The continuum model also exhibits the phenomenon
of spontaneous symmetry-breaking and three different regimes of motion depending on the
size of the bead, as in the case of the microscopic description. We will not repeat here a
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Figure 13. Probability distribution function histograms of symmetry-breaking times calculated
for three bead radii, R0/λ: 0.35—black, 0.60—white, and 0.70—grey. Calculations have been
performed according to equations (A.1)–(A.3). Time is presented in units of 1/µ. Parameter
values are as in figure 12, except D2 = D1, β = 0.5, µ21 = µ, K = A1, and µ12(R − r) =
2µ exp(7|R − r|/λ).

detailed discussion of these behaviours, which have already been presented in the previous
section, and will focus on two phenomena that have not been discussed within the microscopic
model: symmetry-breaking, and how it varies with the radius of the bead, and the viscosity
dependence of the bead velocity. Both problems have been investigated experimentally, but
the data and their theoretical interpretations are still controversial [3–6, 21].

4.2.1. Spontaneous symmetry-breaking. Both the microscopic and continuum models show
that no intrinsic asymmetry is required for directed motion. In our model spontaneous
symmetry-breaking is caused mainly by the stochastic nature of the nucleation and
polymerization that lead to a favourable (spontaneous) asymmetric fluctuation in the spatial
distribution of filament density. The effect of the bead Brownian motion on the symmetry-
breaking is less important. This instantaneous asymmetry of the density distribution results
in a net force that pushes the bead out of the actin cloud. This is followed by a stabilization
of the asymmetry by the directed velocity (see equation (10)). Thus, in spite of spherical
symmetry of the system, the model exhibits a spontaneous symmetry-breaking followed by a
stable directed motion with an almost constant velocity for a broad range of parameters. For
small bead radii and low viscosities the time intervals of the directed motion can be very long.
Figure 13 shows the probability distribution functions (pdfs) for symmetry-breaking times,
Tsb, calculated for three bead radii. With an increase in the bead radius not only does the
mean value of Tsb increase but also the width of the time distribution. Therefore, measuring
only the mean value, Tsb, can be misleading. It is the whole pdf of Tsb that contributes to the
understanding the mechanism of motility.

4.2.2. Velocity–viscosity relations. Figure 14 shows a time averaged bead velocity, 〈|V |〉,
and the fraction of time that the bead spends in a slippage state as a function of the viscosity.
The term ‘slippage’ we borrow from the stick–slip phenomenon, which resembles the bead’s
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Figure 14. Time averaged bead velocity, and fraction of time that the bead spends in a slippage
state as a function of viscosity of the surrounding medium. The velocity is presented in units of
λµ. Parameters are as in figure 13, except R0/λ = 0.43 and η0 = A1/(πλµ).

motion. We note that the mean velocity in the hopping regime, 2η/η0 < 4, has been calculated
considering only time intervals during which the bead moves, ignoring the local sticking times.
The inset to figure 14 presents the viscosity dependence of 〈|V |〉 plotted on a log–log scale.

In the regime of steady motion, η/η0 < 2, the curve 〈|V |〉 versus η/η0 displays two
distinct behaviours at small and large viscosities correspondingly. At small viscosities the mean
velocity is almost independent of η/η0, while for larger η/η0 there is a significant decrease in
〈|V |〉. This behaviour can be explained taking into account that for small η/η0 the external
resistive force due to a viscous friction is smaller than the internal resistive force due to pulling
attached filaments [5]. In this interval of η/η0, we obtain that 〈|V |〉 only slightly decreases
with η/η0. This behaviour is in agreement with observations [5] that find almost no slowing
down of beads when the viscosity is increased 4000-fold. For higher values of η/η0, when the
resistance is dominated by viscous force, the mean velocity decreases essentially with η.

In the hopping regime 〈|V |〉 again decreases slowly with the viscosity. The latter can be
explained by the fact the velocity with which a bead leaves a trapped state is determined by the
height of the barrier created by the symmetric actin cloud and does not depend on viscosity.
As a result the mean bead velocity during slippage intervals only slightly depends on η/η0,
but the time fraction of the slippage intervals decreases sharply with η/η0 (see figure 14(b)).

A biphasic behaviour of 〈|V |〉 versus η/η0 with a significant reduction of 〈|V |〉 for small
values of η/η0, and a slower decrease of 〈|V |〉 for higher values of η/η0, has been observed
in [21], which seems to contradict the very weak dependence of 〈|V |〉 on η/η0 found in [5].
Within our approach this marked difference might correspond to different regimes of motion.
In order to understand the nature of the observed phenomena one has to analyse the time series
of the velocity, since the behaviour of the mean value of velocity does not always provide
meaningful information on the mechanisms of force generation and motility.
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5. Conclusions

We have proposed a microscopic model for the bead motility driven by the polymerization
of actin filaments. The model includes two types of filaments (detached and attached) that
grow in the vicinity of a spherical bead which is propelled by the formation of a filament tail.
Our findings suggest a simple coarse-grained description which captures the main features
obtained for the microscopic model. Both the microscopic and continuum models show that
intrinsic asymmetry is not required for a directional motion defined between switching events.
In spite of the spherical symmetry of the system the model exhibits a spontaneous symmetry-
breaking followed by a stable directed motion for a broad rage of parameters. In our models
a spontaneous symmetry breaking is caused mainly by the stochastic nature of the nucleation
and polymerization that lead to a favourable asymmetric fluctuation in the spatial distribution
of the filament density. The effect of the bead Brownian motion on a symmetry-breaking is
negligible here.

The models exhibit a rich spectrum of behaviours which have been observed in biomimetic
experiments [2–6, 21], such as spontaneous symmetry-breaking, various regimes of the bead
motion and correlations between the structure of the actin tail and the bead dynamics. The
obtained dependences of the system dynamical properties (the symmetry-breaking time,
regimes of motion, mean velocity, tail asymmetry, and others) on the physical parameters
(the bead radius and viscosity) agree well with the experimental observations.

We found that most experimental observations can be reproduced taking into account only
one type of filaments interacting with the bead—the detached filaments that push the bead.
However, in the absence of attached filaments the system does not exhibit fine structure in
the fluctuations of the velocity, which correspond to short steps. Our calculations suggest
that measurements of the velocity correlation function could provide important information
on the mechanism of motility. In particular, the presence of high-frequency peaks in G(ω)

indicates the role of the attached filament in bead dynamics. Unfortunately, an absence of
the high-frequency peaks in G(ω) cannot serve as an unambiguous proof for the absence of
attached filaments.

In addition, the analysis of mean characteristics only (velocities, symmetry breaking times
etc) does not always provide meaningful information about the mechanism of motility. The
aim should be obtaining the whole distributions, which might be extremely broad.

In general, the observed motion of the bead can be described and analysed in the framework
of a random walk process whose details are related to the distributions obtained in the
microscopic model. Namely, viewing the motion of the bead as a random walk, one can
obtain these distributions from analysing the trajectory, provided it is long enough. From the
trajectory the distribution of persistent lengths (which give some idea of directionality) can be
obtained, as well as the distribution of sticking times (local fluctuations). More complicated
is the angular aspect, where angular correlations can be defined that provide information on
directional changes. This random walk approach we believe can correlate the observed motion
and the underlying microscopic quantities [22].

Appendix

Within a continuum approach the dynamics of the field densities w1(r) and w2(r), which
correspond to the detached and attached filament populations respectively, can be described
by the following kinetic equations:

dw1

dt
= D1�w1(r) + [(1 − β)Q(R − r)(1 + ξ(r, t)) − µw1(r)

− µ12(R − r)w1(r) + µ21w2(r)] (A.1)
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Figure A.1. (a) Instantaneous density profiles for detached (black) and attached (grey) filaments,
(b) the corresponding spatial distributions of the force density acting on the bead, (c) typical bead
trajectory, and (d) time series of the bead velocity for a regime of steady motion (with a few turning
points) calculated for a one-dimensional continuum system. Parameters are as in figure 13, except
R0/λ = 0.43.

dw2

dt
= D2�w2(r) + [β Q(R − r)(1 + ξ(r, t)) − µw2(r) − µ21w2(r) + µ12(R − r)w1(r)].

(A.2)

Here the functions (1 − β)Q and β Q present a nucleation of detached and attached filaments
in a ring around the bead, respectively; the δ-correlated random function ξ(r, t) simulates
the role of noise in the nucleation process; the coefficients µ, µ12 and µ21 account for a
degradation of the filament populations (relaxation) and for the mutual transitions between
the two populations. As in the microscopic model, we assume an exponential increase of the
detachment rate µ12 with a distance from the bead. The coefficients D1 and D2 define the
diffusion rates for two types of filaments. Including the noise contribution to the nucleation
term is essential for the observation of the spontaneous symmetry-breaking phenomena and
nonstationary regimes of bead motion.

F =
∫

dr′ (
F1

(
R − r′)w1

(
r′) + F2

(
R − r′)w2

(
r′)) , (A.3)

and the force kernels F1 and F2 have the same form as in equation (5). In the case when only
one field w1 which corresponds to the detached filaments exists in the system, equations (A.1)–
(A.3) reduce to equations (6), (7) in the text.

In figure A.1 we show only a typical bead trajectory, X (t), and a time series of the
bead velocity for the regime of steady motion (with a few turning points) calculated using
equations (4) and (A.1)–(A.3) for a one-dimensional system. Figure A.1(a) also presents
instantaneous density profiles for detached and attached filaments, w1 and w2, and the
corresponding spatial distribution of the force density acting on the bead. The net force
experienced by the bead is an integral of the force density in figure A.1(a). An asymmetry
in the densities w1 and w2 leads to a nonzero net force for the moving bead. The effect of
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Figure A.2. The grey-scale maps show pdfs for the time averaged densities of (a) detached and
(b) attached filaments for a bead moving in the positive direction. The white lines present the
corresponding mean values at each coordinate. Parameters are as in figure A.1.

attached filaments producing a resistive force is reflected by minima in the force density (with
a sign opposite to the contribution of the detached filaments) which is marked by an arrow in
figure A.1(a). The grey-scale maps in figure A.2 show the pdfs for the time averaged densities
of the attached and detached filaments for a bead moving in the positive direction, and the
white lines present the corresponding mean vaues. The calculated mean density w1 is well
described by the approximate solution, equation (10), displayed in figure 11, which has been
derived ignoring the noise contribution to the nucleation process.
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