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Abstract

Phylogenetic reconstruction methods seek to find the tree topology that best describes the
evolutionary history of a set of DNA or protein sequences. Maximum likelihood (ML) based
models were shown to be superior to distance and parsimony methods. However, applications
of ML models are severely limited in the number of sequences they can handle because of
computational limitations. A speedup for calculating the replacement probabilities between any
two amino acid states is presented. An empirical 29-fold speedup is achieved. The speedup is
based on the Chebyshev polynomial series. In theory, the likelihood scores of the tree are only
approximated, but in practice the likelihood values computed are essentially identical to those
estimated by exact computation. (©) 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Maximum likelihood (ML) models based on amino acid sequences are frequently
used in evolutionary studies. Computer programs, such as MOLPHY (Adachi and
Hasegawa, 1995) PUZZLE (Strimmer and von Haeseler, 1996) and PAML (Yang,
1997), implement these models but are limited in the number of taxa they can handle
because of computational limitations. A major component of the ML computational
effort involves the estimation of branch lengths—the average number of character
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Fig. 1. Unrooted phylogenetic tree for 3 taxa. Letters denote amino acids: A, alanine; C, cysteine;
M, methionine. Branch lengths correspond to an average number of amino acid replacements per amino
acid site.

changes between two adjacent nodes of the tree. Previously published methods for
reducing the computation costs were mainly concerned with nucleotide sequences, and
were focused on achieving faster convergence of the maximum likelihood function
(Olsen et al., 1994; Rogers and Swofford, 1998). However, stochastic processes for
nucleotide sequences are based on 4 x 4 substitution matrices. When amino acid se-
quences are concerned, the computations involve 20 x 20 replacement matrices (between
any two amino acids), which substantially increase the computation time.

We implement an approximation method for the calculation of the probability that an
amino acid will be replaced by another along a branch of a given length. This numerical
approximation saves considerable computation time while at the same time it yields
likelihood values that are essentially identical to those estimated by the exact method.
The detailed procedures used to evaluate a likelihood of a given phylogenetic tree are
given for example in (Adachi and Hasegawa, 1995). For example, the likelihood (L)
of the tree in Fig. 1 is

L= [mx plk— A|t) x p(k = C|tr) x plk— M|8)],
keAA

where k is any of the 20 possible amino acid states (AA), m; is the frequency of
amino acid k, and p(i — j|t) is the probability that amino acid i will change into
amino acid j along a branch of length z.

The formula for p(i — j|¢) is derived from the theory of stochastic processes. We
assume that X; is the state of a time-continuous, time homogeneous Markov chain
with state space equal to the 20 amino acid states 1,2,...,20 and that the transition
probabilities are constant.

pi— jlt)= p(Xis = j| Xy =1).

From the Chapman—Kolmogorov relation
20

pli—jls+0=" pli—k|s)x plk—j|0)
k=1
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an explicit expression for p(i — j|¢) can be derived (e.g., Karlin and Taylor, 1975):
P(t)=¢?,
where P(¢) is a 20 x 20 replacement matrix such as

plim jlt)y=[P(®)];;
and Q is the rate matrix.
To calculate the matrix exponent, the eigenvectors and eigenvalues of Q are calcu-
lated:

20
pli—jl0)=>" UgUg;'e™,
k=1

where U is the 20 x 20 matrix of the right-hand eigenvectors of Q, and A is the
corresponding eigenvalue vector.

It should be noted that it is assumed that the following reversibility condition holds:

mx pli = jlt)y=m; x p(jril1).
It is easy to show that this condition is sufficient for U to be a real matrix. Furthermore,
from this assumption it can be shown that the likelihood of the tree is independent of
the position of the root. It is this property that makes the dynamic program computation
feasible (Felsenstein, 1981).

From the above equations it is obvious that the total time needed to compute amino
acid likelihood functions strongly depends on the time required for the computation
of the p(i — j|t¢) values. Thus, reducing the time of likelihood evaluation for each
of the many trees that need to be examined in phylogenetic studies is of considerable
practical value.

2. Motivation for using the Chebyshev polynomials

Our goal is to develop an approximation to the function f(¢)=P;(¢)=[P(?)];; in a
fixed interval [0,7y]. This problem is approached by using polynomials approximation.
Thus, we look for a polynomial that in the interval [0, #] has the property that among
all other polynomial approximations with the same degree has the minimum maximum
error. The polynomial with such a property is called the minimax polynomial, and
is generally very difficult to find (e.g., Ralston, 1965). The Chebyshev approximating
polynomial is almost identical and is very easy to compute.

The Chebyshev polynomials approximate a function f(¢) in terms of interpolation:
the polynomial p(¢) would have the same values as f(¢) in several points [xo,...,X;]
while in the other points in [0,%], e(t) = |f(¢) — p(¢)| should be minimum. The
Taylor approximation, for example, approximates the function in a specific point xq. The
problem of using Taylor series to approximate a function in an interval, is that e(¢) for
the Taylor polynomial is extremely nonuniform—very small near xj, but growing very
rapidly near the end points. It would seem more reasonable to use as approximation
functions, whose behavior over an interval would be in some sense uniform. The
Chebyshev polynomials have ideal properties for these aims.
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3. The Chebyshev polynomials

Let x = cosa, thus, a = arccosx. Defining 7,(x) = cos(rnarccosx) we obtain the
Chebyshev polynomials. Explicitly, To(x)=1; Ti(x)=x; To(x)=2x>—1. It follows that
Tpi1(x) =2 x T,(x) — T,—1(x), and the leading coefficient is 2n — 1 for n > 0 and 1
for n =0. For a more general description see (Clenshaw, 1962). When we interpolate
a function f(x) at the points (xo,...,x,) the remainder term has the form

(x —x0)(x —x1) -+ (x — x) f" ()
(m+1)! '

This is a special case of the Taylor polynomial when xo =x; =---=x,,. We search for
the best choice of xo,...,x, for this interpolation. This is equivalent to asking which
X0, - - s X Will minimize (x —x¢)(x —x1) - - - (x —x,,). That this expression is invariant to
the choice of f(x) is what makes the Chebyshev polynomial approximation general. It
can be shown (e.g., Ralston, 1965) that choosing xo, ..., x,, to be the m root of T, 1(x)
has the desired property.

Instead of writing the interpolation polynomial as > " a;x’ we write it as Z —0
¢;T;(X). In this application Chebyshev coefficients are stored in the form of c;. Usmg
this form usually results in less number of coefficients (and hence, less memory and
more speed).

4. Finding the Chebyshev coefficients

Using the orthogonality of the Chebyshev polynomials, it can be shown that the
formula for c; is defined by

Zf (cos ) cosﬂ

Clenshaw (1962). These Chebyshev polynomials are used to interpolate the function
Pyi;(t). In practice, the cj-s are computed for n» = 60 and a truncated polynomial is
used with the desired number of coefficients. Each function from the set {P;;(¢)} is
interpolated separately, resulting in 400 different polynomials. Furthermore, each P;;(t)
function is analytic, i.e., these functions have continuous derivatives of order m for all
m. For these functions the ¢; converge at least as rapidly as a geometric progression

(Clenshaw, 1962).

5. Computer implementation

The Chebyshev polynomials approximate the replacement functions in an interval. In
which interval should the approximation be valid? Practical values for the ¢ are in the
range [0, 1]. However, not all sites evolve at the same rate, and models that assume
among site rate variation are considered to be superior (Yang, 1994). In these models,
evolution of a site with rate » is equivalent to evolution along a tree in which all branch
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lengths are multiplied by r (Yang, 1994). Thus, even larger range might be appropriate.
On the other hand—the bigger the range—the more coefficients are needed in order
to achieve the same approximation. Thus, a more efficient approach is to approximate
the replacement probabilities in a smaller interval, and when ¢ is outside this interval,
to invoke a call to the nonapproximated version of the p(i — j|¢) function. The
optimum interval might change from one dataset to another, but we found out that a
default interval of [0, 1] is generally close to the optimal.

A possible problem with the Chebyshev approximation is that approximated proba-
bility p(i — j|t) values might not be in the interval [0, 1]. Hence, the approximated
probability values are checked, and if the values are outside the [0,1] interval the
nonapproximate version of the p(i — j|¢) function is called.

This fast implementation of the Chebyshev approximation was combined in a pro-
gram for evaluating the likelihood of trees, and finding the ML branch length estimation
assuming the rates are gamma distributed among sites (Yang, 1994). Finding the ML
branch lengths is computationally expensive, and is an essential step in exact and
heuristic searches for the ML tree. Our computation is based on any one of the three
widely used substitution matrices: DAY (Dayhoff, 1978), JTT (Jones et al., 1992) and
REV24 (Adachi and Hasegawa, 1995). This approximation was also applied in a pro-
gram for inferring the ML-ancestral amino acid sequences, the amino acid sequences
in the internal nodes of the phylogenetic tree (Pupko et al., 2000).

6. An empirical example

As a sample data 71 lysozyme ¢ amino acid sequences were collected from a
genebank. The sequences were aligned using ClustalW (Thompson et al., 1974). All
positions containing gaps were removed. Lysozyme ¢ sequences were chosen since
it has been postulated that some amino acid replacements in the evolutionary history
of these sequences provide evidence for positive selection in the lineages leading to
foregut-fermentering taxa (Stewart and Wilson, 1987; Zhang and Kumar, 1997).

A phylogenetic tree was constructed using the Molphy software (Adachi and
Hasegawa, 1995). To estimate the speedup factor we compared 100 repeats of the
likelihood evaluations. Likelihood evaluations were done with the JTT replacement
matrix, and assuming among-site rate variation with the gamma rate parameter equal
to 0.9335 (ML estimation of the rate parameter).

7. Results

The p(i — j|t) function is used in many likelihood-based computations, e.g., finding
the most likely tree topology and branch length (Adachi and Hasegawa, 1995; Strimmer
and von Haeseler, 1996; Yang, 1997) ML estimation of ancestral sequences (Yang,
1997; Pupko et al.,, 2000) and ML-based test for positive selection (Pupko et al.,
2001). When evaluating the performance of the polynomial approximation one has to
evaluate both the degree of approximation and the speedup factor achieved. As shown
in the example in Table 1, the differences between the exact log-likelihood value and
the approximated values for approximations with more than six coefficients are trivial
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Table 1

Percent deviation from exact log-likelihood values as a function of the number of Chebyshev coefficients. To
estimate the speedup factor we compared the computation time of 100 repeats of the likelihood evaluations.
Data for likelihood evaluations consist of 71 lysozyme ¢ sequences collected from a genebank. Likelihood
evaluations were done with the JTT replacement matrix (Jones et al., 1992) assuming among-site rate
variation (see text). Running times were computed on a 600 MHz Pentium machine with 256 MB RAM

Number of coefficients Log likelihood Percent deviation Speedup factor
2 —3.685560E + 03 4.62E — 01 49.00
3 —3.668440E + 03 —4.46E — 03 45.00
4 —3.668556E + 03 —1.29E — 03 42.00
5 —3.668601E + 03 —6.71E — 05 39.00
6 —3.668603E + 03 —1.53E — 06 33.00
7 —3.668603E + 03 7.19E — 08 31.00
8 —3.668603E + 03 1.26E — 08 29.00
9 —3.668603E + 03 1.08E — 09 28.00
10 —3.668603E + 03 6.22E — 11 25.00
11 —3.668603E + 03 2.83E — 12 25.00
12 —3.668603E + 03 1.49E — 13 24.00
13 —3.668603E + 03 6.20E — 14 23.00
14 —3.668603E + 03 7.44E — 14 22.00
15 —3.668603E + 03 9.92E — 14 20.00
No. —3.668603E + 03 0 1

as far as trees with log likelihoods of —3.668E+-03 or more are concerned. For practical
purposes, we recommend using eight coefficients, which results in a 29-fold speedup
in this case.

The degree of speedup depends on the portion of the computation, which is based
on p(i — j|t) estimations. In some cases memory is interchangeable with speed: it
might be more efficient to store a 20 x 20 matrix [P(¢)];; for each branch length of
the given tree prior to computing the tree likelihood, thus, avoiding repeated calls for
the p(i — j|t) function with the same arguments. However, when memory is scare,
or when different rates are assigned to each position, this is inapplicable.

This speedup factor can be combined with previously published approximation meth-
ods, such as the five speedup factor method for inference of branch lengths suggested
by Rogers and Swofford (1998). This method is based on using parsimonious recon-
struction of ancestral sequences at the internal nodes of the tree.

The speedup obtained with this method, while substantial (Table 1), may only en-
able a slight increase in the number of sequences that can be dealt with in exhaustive
maximum likelihood searches (Felsenstein, 1988). However, for purposes other than
exhaustive searches, e.g., likelihood comparisons among alternative trees, heuristic ML
searches or ancestral amino acid sequence reconstructions, the Chebyshev approxima-
tion may spell the difference between “can do” and “can’t”.

8. Uncited References
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