
Artstein-Avidan, S., and Y. Ostrover (2008) “A Brunn–Minkowski Inequality for Symplectic Capacities of Convex
Domains,”
International Mathematics Research Notices, Vol. 2008, Article ID rnn044, 31 pages.
doi:10.1093/imrn/rnn044

A Brunn–Minkowski Inequality for Symplectic Capacities
of Convex Domains

Shiri Artstein-Avidan1 and Yaron Ostrover2

1School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978,
Israel and 2Department of Mathematics, MIT, Cambridge, MA 02139, USA

Correspondence to be sent to: ostrover@math.mit.edu

In this work, we prove a Brunn–Minkowski-type inequality in the context of symplectic

geometry and discuss some of its applications.

1 Introduction and Results

In this note we examine the classical Brunn–Minkowski inequality in the context of

symplectic geometry. Instead of considering volume, as in the original inequality, the

quantity we are interested in is a symplectic capacity, given by the minimal symplectic

area of a closed characteristic on the boundary of a convex domain. To explain the

setting, the main results, and their significance, we start with an introduction.

1.1 The Brunn–Minkowski inequality

Denote byKn the class of convex bodies in R
n, that is, compact convex sets with nonempty

interior. The Brunn–Minkowski inequality, in its classical formulation, states that if K
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and T are in Kn, then

(Vol(K + T ))
1
n ≥ (Vol(K))

1
n + (Vol(T ))

1
n ,

where Vol denotes the n-dimensional volume (i.e the Lebesgue measure) and the

Minkowski sum of two bodies is defined by

K + T = {x + y : x ∈ K, y ∈ T}.

Moreover, equality holds if and only if K and T are homothetic, or in other words,

coincide up to translation and dilation.

The Brunn–Minkowski inequality is a fundamental result in convex geometry and

has innumerable applications, the most famous of which is probably a simple proof of the

isoperimetric inequality. We recall that in fact it is known that the Brunn–Minkowski

inequality holds for any two measurable sets (while the equality condition requires

convexity, or some special form of nondegeneracy). The inequality is connected with

many other important inequalities, such as the isoperimetric inequality, the Sobolev

and the Log–Sobolev inequalities, and the Prékopa–Leindler inequality. Moreover, the

Brunn–Minkowski inequality has diverse applications in analysis, geometry, probability

theory, information theory, combinatorics, physics and more. We refer the reader to [14]

for a detailed survey on this topic.

Once the importance of the Brunn–Minkowski inequality was realized, much

effort was invested in looking for analogous inequalities in other areas of mathematics.

Recently, inequalities of Brunn–Minkowski type were proved for various well-known

functionals other than volume. Two examples of these functionals, which are related

with calculus of variation and with elliptic partial differential equations, are the first

eigenvalue of the Laplace operator [6] and the electrostatic capacity [5]. In this note we

concentrate on a symplectic analogue of the inequality. To explain it, we turn now to the

framework of symplectic geometry.

1.2 Symplectic capacities

Consider the 2n-dimensional Euclidean space R
2n with the standard linear coordi-

nates (x1, y1, . . . , xn, yn). One equips this space with the standard symplectic structure

ωst = ∑n
j=1 dxj ∧ dyj, and with the standard inner product gst = 〈·, ·〉. Note that under the

identification between R
2n and C

n, these two structures are the real and the imaginary
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parts of the standard Hermitian inner product in C
n, and ωst (v, Jv) = 〈v, v〉, where J is

the standard complex structure on R
2n. Recall that a symplectomorphism of R

2n is a

diffeomorphism which preserves the symplectic structure i.e. ψ ∈ Diff(R2n) such that

ψ∗ωst = ωst . In what follows, we denote by Symp(R2n) the group of all the symplectomor-

phisms of R
2n.

Symplectic capacities are symplectic invariants which, roughly speaking, mea-

sure the symplectic size of subsets of R
2n. More precisely, we present the following

definition.

Definition 1.1. A symplectic capacity on (R2n, ωst ) associates to each subset U ⊂ R
2n a

number c(U ) ∈ [0, ∞] such that the following three properties hold:

(P1) c(U ) ≤ c(V ) for U ⊆ V (monotonicity);

(P2) c
(
ψ (U )

) = |α| c(U ) for ψ ∈ Diff(R2n) such that ψ∗ωst = α ωst (conformality);

(P3) c(B2n(r)) = c(B2(r) × C
n−1) = πr2 (nontriviality and normalization), �

where B2k(r) is the open 2k-dimensional Euclidean ball of radius r. Note that the third

property disqualifies any volume-related invariant, while the first two properties imply

that for two sets U , V ⊂ R
2n, a necessary condition for the existence of a symplectomor-

phism ψ such that ψ (U1) = U2 is that c(U1) = c(U2) for each symplectic capacity c.

A priori, it is unclear that symplectic capacities exist. The first example of a

symplectic capacity is due to Gromov [15]. His celebrated nonsqueezing theorem states

that for R > r, the ball B2n(R) does not admit a symplectic embedding into the symplectic

cylinder Z2n(r) := B2(r) × C
n−1. This theorem led to the following definitions.

Definition 1.2. The symplectic radius of a nonempty set U ⊂ R
2n is

cB (U ) := sup{πr2 | There exists ψ ∈ Symp(R2n) with ψ (B2n(r)) ⊂ U }.

The cylindrical capacity of U is

cZ (U ) := inf{πr2 | There exists ψ ∈ Symp(R2n) with ψ (U ) ⊂ Z2n(r)}.
�

Note that both the symplectic radius and the cylindrical capacity satisfy the

axioms of Definition 1.1 by the nonsqueezing theorem. Moreover, it follows from
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Definition 1.1 that for every symplectic capacity c and every open set U ⊂ R
2n, we have

cB (U ) ≤ c(U ) ≤ cZ (U ).

The above axiomatic definition of symplectic capacities is originally due to Eke-

land and Hofer [11]. Nowadays,, a variety of symplectic capacities are known to exist. For

detailed discussions on symplectic capacities and their properties, we refer the reader

to [7], [16], [18], [19], [20], and [27].

In this note we mainly concentrate on two important examples of symplectic

capacities that arose from the study of periodic solutions of Hamiltonian systems. These

are the Ekeland–Hofer capacity cE H introduced in [11], [12] and the Hofer–Zehnder capac-

ity cH Z introduced in [17]. These invariants have several applications, among them are

a new proof of Gromov’s nonsqueezing theorem, and a proof of the existence of closed

characteristics on or near an energy surface (see e.g [18]). They also have an important

role when studying the Hofer geometry on the group of Hamiltonian diffeomorphisms

(see e.g [18]). Moreover, it is known that on the class of convex bodies in R
2n, these two

capacities coincide, and can be represented by the minimal symplectic area of a closed

characteristic on the boundary of the convex domain. Since in this note we are con-

cerned only with convex sets, we omit the general definitions of these two capacities,

and give a definition which coincides with the standard ones on the class of convex

domains. This is done in Theorem 1.3. Next we turn to some background on Hamiltonian

dynamics.

1.3 Hamiltonian dynamics on convex domains

Let U be a bounded, connected, open set in R
2n with smooth boundary containing the

origin. A non-negative function F : R
2n → R is said to be a defining function for U if ∂U =

F −1(1), U = F −1([0, 1]), and 1 is a regular value of F . Next, let F be a defining function for

U , and denote by XF = J∇F the corresponding Hamiltonian vector field defined by iXF ω =
−d F . Note that XF is always tangent to ∂U , since d F (x) · XF (x) = −ω(XF (x), XF (x)) = 0 for

all x ∈ ∂U , and hence it defines a nonvanishing vector field on ∂U . It is well known

(see e.g [18]) that the orbits of this vector field, that is, the solutions of the classical

Hamiltonian equation ẋ = XF (x), do not depend, up to parametrization, on the choice of

the Hamiltonian function F representing ∂U . Indeed, if H is another defining function

for ∂U , that is,

∂U = {x ; H (x) = 1} = {x ; F (x) = 1} with d H , d F �= 0 on ∂U ,
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then d F (x) = λ(x)d H (x) at every point x ∈ ∂U , with λ(x) �= 0, and therefore XF = λXH on

∂U where λ �= 0. Thus the two vector fields have, up to reparametrization, the same

solutions on ∂U .

The images of the periodic solutions of the above-mentioned Hamiltonian equa-

tion are called the “closed characteristics” of ∂U (where periodic means T-periodic for

some positive T ). The breakthrough in the global existence of closed characteristics was

achieved by Weinstein [29] and Rabinowitz [24] who established the existence of a closed

characteristic on every convex (and in fact also on every star-shaped) hypersurface in

R
2n.

We recall the following definition. The action of a T-periodic solution l(t ) is

defined by (see e.g. [18], p. 7)

A(l) =
∫

l
λ = 1

2

∫ T

0
〈−Jl̇(t ), l(t )〉dt , (1.3.1)

where λ = ∑n
1 xidyi is the Liouville 1-form whose differential is dλ = ω. This action of a

periodic orbit l(t ) is the symplectic area of a disc spanned by the loop l(t ).

In particular, it is a symplectic invariant, i.e. A(ψ (l)) = A(l) for any ψ ∈ Symp(R2n).

We next introduce the Ekeland–Hofer and the Hofer–Zehnder capacities, denoted

by cE H and cH Z , respectively. As stated above, instead of presenting the general definitions

of these two capacities, we present a definition sufficient for our purpose which coincides

with the standard ones on the class of convex domains. This definition follows from the

theorem below, which is a combination of results from [11] and [18].

Theorem 1.3. Let K ⊂ R
2n be a convex bounded domain with smooth boundary ∂K.

Then there exists at least one closed characteristic γ ∗ ⊂ ∂K satisfying

cE H (K) = cH Z (K) = A(γ ∗) = min{|A(l)| : l is a closed characteristic on ∂K}.

�

Such a closed characteristic, which minimizes the action (note that there might

be more than one), is called throughout this text a “capacity carrier” for K. In addition,

we refer to the coinciding Ekeland–Hofer and Hofer–Zehnder capacities on the class

of convex domains as the Ekeland–Hofer–Zehnder capacity, and denote it from here

onwards, when there is no possibility for confusion with a general capacity, by c.
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1.4 Main results

A natural question following from the discussion above is whether a Brunn–Minkowski-

type inequality holds for the symplectic size of sets, which is given by their symplectic

capacities. In this paper, we restrict ourselves to the class of convex domains and to

the Ekeland–Hofer–Zehnder capacity. However, we do not exclude the possibility that

the Brunn–Minkowski inequality holds for other symplectic capacities or other, more

general classes of bodies in R
2n. For example, in dimension 2, any symplectic capacity

agrees with the volume for a large class of sets in R
2 (see [26]), and hence the Brunn–

Minkowski inequality holds for this class. Also, it is not difficult to verify that for the

linearized ball capacity (for a definition, see [2], [3]) the Brunn–Minkowski inequality

holds.

The main result in this paper is the following: Denote by K2n the class of compact

convex bodies in R
2n which has nonempty interior.

Theorem 1.4. Let c be the Ekeland–Hofer–Zehnder capacity. Then for any n, and any

K, T ∈ K2n, one has

c(K + T )
1
2 ≥ c(K)

1
2 + c(T )

1
2 . (1.4.2)

Moreover, equality holds if and only if K and T have a pair of homothetic capacity

carriers. �

In fact, Theorem 1.4 is a special case of a slightly more general result which we

now describe. For a convex body K, denote by ‖x‖K := inf{r : x/r ∈ K} the corresponding

gauge function. Moreover, we uniquely associate with K its support function hK given

by

hK (u) = sup{〈x, u〉 : x ∈ K}, for all u ∈ R
2n.

Note that this is none other than the gauge function of the polar body

K◦ = {x ∈ R
2n : 〈x, y〉 ≤ 1, for every y ∈ K},

or, in the centrally symmetric case, simply the dual norm hK (u) = ‖u‖∗
K = ‖u‖K◦ .

In [13], Firey introduced a new operation for convex bodies called the “p-sum”,

which depends on a parameter p ≥ 1 and extends the classical Minkowski sum. For two
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convex bodies K, T ∈ R
2n, both containing the origin, the p-sum of K and T denoted

K +p T is defined via its support function in the following way:

hK+pT (u) = (
hp

K (u) + hp
T (u)

) 1
p , u ∈ R

2n. (1.4.3)

The convexity of hK+pT follows easily from Minkowski’s inequality. The case p = 1 corre-

sponds to the classical Minkowski sum. (For example, the 2-sum of two general ellipsoids

is again an ellipsoid, contrary to the usual Minkowski sum.) Thus, Theorem 1.4 is a spe-

cial case of the following.

Theorem 1.5. Let c be the Ekeland–Hofer–Zehnder capacity. Then for any n, any p ≥ 1,

and any K, T ∈ K2n, one has

c(K +p T )
p
2 ≥ c(K)

p
2 + c(T )

p
2 . (1.4.4)

Moreover, equality holds if and only if K and T have a pair of homothetic capacity

carriers. �

An interesting corollary of Theorem 1.4 is a symplectic analogue of the classical

isoperimetric inequality comparing volume and surface area which we now present.

For a curve γ : [0, T ] → R
2n and a convex body K containing 0 in its interior, we denote

by lengthK (γ ) = ∫ T
0 ‖γ̇ (t )‖Kdt the length of γ with respect to the body K. The following

corollary is proven in Section 4.

Corollary 1.6. For any K, T ∈ K2n, and c as above,

4c(K)c(T ) ≤ (lengthJT◦ (γ ))2, (1.4.5)

where γ is any capacity carrier of K. �

In Section 4, we explain why Corollary 1.6 can be thought of as a consequence of

an isoperimetric-type inequality for capacities. Note that in the special case where T is

the Euclidean unit ball, equation (1.4.5 ) becomes

4πc(K) ≤ (length(γ ))2,
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where γ is any capacity carrier for K and where length stands for the standard Euclidean

length. This last consequence is known, and can be deduced from the standard isoperi-

metric inequality in R
2n combined with the well-known fact that the symplectic area is

always less than or equal to the Euclidean area.

Another special case of Corollary 1.6 that can be useful is the following: let K be

a symplectic ellipsoid E = ∑n
i=1

x2
i +y2

i

r2
i

, where 1 = r1 ≤ r2, . . . ≤ rn. Equation (1.4.5 ) implies

that for any T ∈ K2n,

4πc(T ) ≤ (lengthJT◦ (S1))2,

where S1 is the capacity carrier of E given by x2
1 + y2

1 = 1. Moreover, since the same is

true for any symplectic image of E , we get that

4πc(T ) ≤ inf
ϕ∈Symp(R2n)

(lengthJT◦ (ϕ(S1)))2. (1.4.6)

This estimate is sometimes strictly better than other available estimates, such as volume

radius (see [28], [3], [2]).

Next we state another corollary of Theorem 1.4, which improves a result previ-

ously proved in [2] by other methods. Define the “mean width” of a centrally symmetric

convex body K to be

M∗(K) :=
∫

S2n−1
max
y∈K

〈x, y〉σ (dx),

where σ is the rotationally invariant probability measure on the unit sphere S2n−1. In

other words, we integrate over all unit directions x half of the distance between two

parallel hyperplanes touching K and perpendicular to the vector x. Mean width is an

important parameter in asymptotic geometric analysis, and is the geometric version of

a central probabilistic parameter; see e.g. [23]. We show the following in Section 4.

Corollary 1.7. For every centrally symmetric convex body K ⊂ K2n, one has

c(K) ≤ π (M∗(K))2.

Moreover, equality holds if and only if K is a Euclidean ball. �
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In fact, as the proof will demonstrate, this corollary follows from standard ar-

guments once we have a Brunn–Minkowski-type inequality. The same is true for the

following result.

Corollary 1.8. For any two symmetric convex bodies K, T ⊂ K2n, one has for every x ∈
R

2n that

c(K ∩ (x + T )) ≤ c(K ∩ T ).

More generally, for any K, T ∈ calK2n, any x, y ∈ R
2n, and any 0 ≤ λ ≤ 1, we have that

λc1/2(K ∩ (x + T )) + (1 − λ)c1/2(K ∩ (y + T )) ≤ c1/2(K ∩ (λx + (1 − λ)y + T )).

�

We wish to remark that this note can be considered as a continuation of the line

of work which was presented in [3] and [2], in which we used methods and intuition

coming from the field of asymptotic geometric analysis to obtain results in symplectic

geometry.

Structure of the paper. The paper is organized as follows. In Section 2, we introduce

the main ingredient in the proof of our main theorem. In Section 3, we prove the Brunn–

Minkowski inequality for the Ekeland–Hofer–Zehnder capacity c and characterize the

equality case. In Section 4, we prove the above-mentioned applications of the inequality,

and in the last section we prove a technical lemma.

2 The Main Ingredient

In this section we introduce the main ingredient in the proof of Theorem 1.5.

We note that there is no loss of generality in assuming, from here onwards, that in

addition to being compact and with nonempty interior, all convex bodies considered also

have a smooth boundary and contain the origin in the interior. Indeed, affine translations

in R
2n are symplectomorphisms, which accounts for the assumption that the origin is

in the interior. Secondly, once we know the Brunn–Minkowski inequality for smooth

convex domains, the general case follows by standard approximation arguments, since

symplectic capacities are continuous on the class of convex bodies with respect to the

Hausdorff distance (see e.g. [21], p. 376).



10 S. Artstein-Avidan and Y. Ostrover

The main ingredient in the proof of Theorem 1.5 is the following proposition

which is another characterization of the Ekeland–Hofer–Zehnder capacity, valid for

smooth convex sets. Let W1,p(S1, R2n) be the Banach space of absolutely continuous 2π-

periodic functions whose derivatives belong to L p(S1, R2n).

Proposition 2.1. Let c be the Ekeland–Hofer–Zehnder capacity. For any convex body

K ⊂ R
2n with smooth boundary, and any two parameters p1 > 1, p2 ≥ 1,

c(K)
p2
2 = π p2 min

z∈Ep1

1

2π

∫ 2π

0
hp2

K (ż(t ))dt , (2.1)

where

Ep1 =
{

z ∈ W1,p1 (S1, R2n) :
∫ 2π

0
z(t )dt = 0,

1

2

∫ 2π

0
〈Jz(t ), ż(t )〉dt = 1

}
.

�

In the case where p1 = p2 = 2, a proof of the above proposition can be found in [18]

and [22]. There the authors use the idea of dual action principle by Clarke [8] in order to

prove the existence of a closed characteristic for convex surfaces, a result originally due

to Rabinowitz [24] and Weinstein [29]. For further discussions on Clarke’s dual action

principle, and in particular its use for the proof of existence of closed characteristics,

see e.g. [4], [9], [10] and the references within.

It turns out that the special case p1 = p2 > 1 implies the more general case of

possibly different p1 > 1, p2 ≥ 1. That is, we claim that the following proposition formally

implies Proposition 2.1.

Proposition 2.2. For any convex body K ⊂ R
2n with smooth boundary, and p > 1,

c(K)
p
2 = π p min

z∈Ep

1

2π

∫ 2π

0
hp

K (ż(t ))dt. (2.2)

�

Proof of the implication Proposition 2.2 ⇒ Proposition 2.1. Note that for 1 < p2 ≤ p1,

one has Ep1 ⊂ Ep2 . Moreover, from Hölder’s inequality it follows that

(
1

2π

∫ 2π

0
hp2

K (ż(t ))dt
) 1

p2

≤
(

1

2π

∫ 2π

0
hp1

K (ż(t ))dt
) 1

p1

.
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Therefore, from Proposition 2.2 it follows that for 1 < p2 ≤ p1,

c(K)
1
2 = π min

z∈Ep1

(
1

2π

∫ 2π

0
hp1

K (ż(t ))dt
) 1

p1

≥ π min
z∈Ep1

(
1

2π

∫ 2π

0
hp2

K (ż(t ))dt
) 1

p2

≥ π min
z∈Ep2

(
1

2π

∫ 2π

0
hp2

K (ż(t ))dt
) 1

p2

= c(K)
1
2 .

In particular, we have equality throughout. Similarly,

c(K)
1
2 = π min

z∈Ep1

(
1

2π

∫ 2π

0
hp1

K (ż(t ))dt
) 1

p1

≥ π min
z∈Ep2

(
1

2π

∫ 2π

0
hp1

K (ż(t ))dt
) 1

p1

≥ π min
z∈Ep2

(
1

2π

∫ 2π

0
hp2

K (ż(t ))dt
) 1

p2

= c(K)
1
2 .

Thus we conclude that for any 1 < p1, p2,

c(K)
1
2 = π min

z∈Ep1

(
1

2π

∫ 2π

0
hp2

K (ż(t ))dt
) 1

p2

. (2.3)

To complete the proof, we need only to explain the case of p2 = 1. On the one

hand, Hölder’s inequality implies that

c(K)
1
2 = π min

z∈Ep1

(
1

2π

∫ 2π

0
hp1

K (ż(t ))dt
) 1

p1

≥ π min
z∈Ep1

1

2π

∫ 2π

0
hK (ż(t ))dt.

On the other hand, using the fact that lim(min) ≤ min(lim), we can let 1 < p2 → 1

in equation (2.3). By Lebesgue’s dominated convergence theorem, we can also insert the

limit into the integral and get that

c(K)
1
2 ≤ π min

z∈Ep1

1

2π

∫ 2π

0
hK (ż(t ))dt ,

which completes the proof of Proposition 2.1 in the case of p2 = 1. �
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Before turning to the proof of Proposition 2.2, which will be our main objective

throughout the rest of this section, let us point out an important consequence of the

above argument which will be helpful for us later (especially in the proof of the equality

case for the Brunn–Minkowski inequality).

Fix p1 > 1 and let z̃ be any path in Ep1 for which the minimum is attained in

equation (2.3). Letting 1 ≤ p2 < p1 we get that

c(K)
1
2 = π

(
1

2π

∫ 2π

0
hp1

K ( ˙̃z(t ))dt
) 1

p1

≥ π

(
1

2π

∫ 2π

0
hp2

K ( ˙̃z(t ))dt
) 1

p2

≥ π min
z∈Ep1

(
1

2π

∫ 2π

0
hp2

K (ż(t ))dt
) 1

p2

= c(K)
1
2 .

In particular, there is equality in the first inequality so that the L p1 and L p2 norms

of the function hK ( ˙̃z(t )) coincide. This clearly implies that this function is constant in t .

Another fact which easily follows from the line of inequalities above is that the minimum

is attained on the same paths z for all p2 ≥ 1 (in particular, on a function which belongs

to
⋂

p>1 Ep).

Thus, we have shown that Proposition 2.2 implies the following.

Corollary 2.3. Fix p1 > 1 and p2 ≥ 1. Any path z̃ which minimizes
∫ 2π

0 hp2
K (ż(t ))dt over Ep1

satisfies that the function hK (ż(t )) is the constant function c(K)/π , and in particular all

the L p norms of the function hK (ż(t )) coincide. �

After the proof of Proposition 2.2, we will give a geometrical explanation for this

fact; see Remark 2.7.

We now turn to the proof of Proposition 2.2. We follow closely the arguments,

valid for p = 2, in [18] and [22]. Fix p > 1 and consider the functional

Ip(z) =
∫ 2π

0
hp

K (ż(t ))dt

defined on the space Ep, which was defined in the statement of Proposition 2.1. A key

ingredient in the proof is Lemma 2.5, which we will prove in Section 5, and which gives

a one-to-one correspondence between the so-called “critical points” of the functional Ip
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and closed characteristics on ∂K. Before stating the lemma, we must define what we

mean by a critical point of Ip, since Ep is not closed under all perturbations.

Definition 2.4. An element z ∈ Ep is called a critical point of Ip if the following holds:

For every ξ ∈ W1,p(S1, R2n) satisfying
∫ 2π

0 ξ (t )dt = 0 and
∫ 2π

0 〈ξ (t ), Jż(t )〉dt = 0, one has

∫ 2π

0

〈∇hp
K (ż(t )), ξ̇ (t )

〉 = 0.

�

To understand why this definition is natural, first notice that the above condition∫ 2π

0 〈ξ (t ), Jż(t )〉dt = 0 implies that
∫ 〈ξ̇ (t ), Jz(t )〉dt = 0 by integration by parts. Next, con-

sider the element zε = z + εξ . It belongs to W1,p(S1, R2n) and satisfies the normalization

condition
∫ 2π

0 zε(t )dt = 0, but its action is not normalized to be 1, thus it is not necessarily

in Ep. However, its action is close to 1 with difference being of order o(ε2). Indeed,

|A(zε)| = 1

2

∫ 2π

0
〈Jzε(t ), żε(t )〉dt = 1 + ε2

2

∫ 2π

0
〈Jξ (t ), ξ̇ (t )〉dt.

Denote by z′
ε the normalized path

z′
ε = zε

1 + ε2

2

∫ 〈Jξ (t ), ξ̇ (t )〉dt
.

Note that now z′
ε ∈ Ep. For a critical point, it is natural to require that the difference

between Ip(z) and Ip(z′
ε) will be of order o(ε). Taking the first-order approximation, we

have

Ip(z′
ε) =

∫ 2π

0
hp

K (ż′
ε)(t ))dt =

∫ 2π

0
hp

K (ż(t ))dt + ε

∫ 2π

0
〈∇hp

K (ż(t )), ξ̇ (t )〉 + o(ε),

and for the second term on the right-hand side to disappear, we need exactly the condition

in the definition of a critical point above. In particular, we emphasize that the minimum

of Ip over Ep is attained at a critical point according to our definition, a fact which will

be important in the proof. With the definition in hand, we may formulate the following
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lemma, which for p = 2 appears in [18], pp. 26–30. For the sake of completeness, we

include its proof for general p > 1 in Section 5.

Lemma 2.5. Let K ⊂ R
2n be a convex body with smooth boundary, and fix p > 1. Each

critical point of the functional Ip(z) satisfies the Euler equation

∇hp
K (ż) = p

2
λJ z + α, where λ = Ip(z), (2.4)

for some fixed vector α (which may be different for different critical points), and vice

versa: each point z satisfying equation (2.4) is a critical point of Ip. Moreover, the func-

tional Ip(z) achieves its minimum i.e. there is z̃ ∈ Ep such that

Ip(z̃) = inf
z∈Ep

I (z) =
∫ 2π

0
hp

K ( ˙̃z(t ))dt = λ̃ �= 0,

and in particular, z̃ satisfies equation (2.4). �

Proof of Proposition 2.2. The idea is as follows: we define an invertible mapping F
between critical points z of Ip(z) and closed characteristics l on the boundary of K.

Moreover, we will show that the action of l = F (z) is a simple monotone increasing

function of Ip(z). In particular, the critical point z for which the minimum of Ip(z) is

attained is mapped to the closed characteristic minimizing the action. Since the minimal

action of a closed characteristic is exactly the Ekeland–Hofer–Zehnder capacity, the result

will follow.

To define the mapping F , let z : S1 → R2n be a critical point of Ip. In particular,

from Lemma 2.5 we have that

∇hp
K (ż) = p

2
λJ z + α, (2.5)

for some vector α and λ = Ip(z). We will use the Legendre transform in order to define an

affine linear image of z which is a closed characteristic on the boundary ∂K of K, which

we will then define as F (z). Recall that the Legendre transform is defined as follows: For

f : R
n → R, one defines

L f (y) = sup
x∈Rn

[〈y, x〉 − f (x)], ∀y ∈ R
n.
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It is not hard to check that

(
L

(
hp

K

))
(v) = p1−q

q
hq

K◦ (v),

where p−1 + q−1 = 1 and K◦ is, as before, the polar body of K. Note that hq
K◦ is a defining

function of K (that is, K is its 1-level set) which is homogeneous of degree q. After

applying the Legendre transform and using the fact that v = ∇hp
K (u) is inverted point-

wise by u = ∇Lhp
K (v), equation (2.4) becomes

ż = p1−q

q
∇hq

K◦

( p

2
λJ z̃ + α

)
= ∇hq

K◦

(
q

1
1−q

2
λJ z + αq

1
1−q

p

)
.

Next, let

l = κ

(
q

1
1−q

2
λJ z + αq

1
1−q

p

)
, (2.6)

where κ is a positive normalization constant which we will readily choose. Differentiat-

ing equation (2.6), we see that l satisfies the following Hamiltonian equation:

l̇ = κ

2
q

1
1−q λ J∇hq

K◦ (l/κ) = κ2−q

2
q

1
1−q λJ∇hq

K◦ (l). (2.7)

Note that l is a periodic trajectory of the Hamiltonian equation corresponding to the

Hamiltonian function hq
K◦ . Since we ask l ∈ ∂K, we need to choose κ such that l will lie in

the energy level hq
K◦ = 1. For this purpose, note that since hq

K◦ is homogeneous of degree

q, we obtain from Euler’s formula that

1

2π

∫ 2π

0
hq

K◦ (l(t ))dt = 1

2πq

∫ 2π

0
〈∇hq

K◦ (l(t )), l(t )〉dt = −κq−2q
1

q−1

πλq

∫ 2π

0
〈Jl̇(t ), l(t )〉dt

= q
1

1−q κq

4πqλ

∫ 2π

0

〈
λż(t ), λJz(t ) + 2α

p

〉
dt = κqλq

q
1−q

2π
,

which is equal to 1 if we choose κ = (2π/λ)
1
q q

1
q−1 . Therefore, for this value of κ we have

that

l =
(

2π

λ

) 1
q
(

λ

2
Jz + α

p

)
(2.8)
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is a closed trajectory of the Hamiltonian equation corresponding to the Hamiltonian hq
K◦

on ∂K. We denote this l by F (z). (To be completely formal, to agree with the way closed

characteristics were defined, we let F (z) be the image of l in R
2n.) Below we will show

that this mapping is invertible, and compute F−1.

Next we derive the relation between A(l) and λ = Ip(z). Using Euler’s formula

again, and the above value of κ we conclude that

A(l) = 1

2

∫ 2π

0
〈−Jl̇(t ), l(t )〉dt = κ2

8
q

2
1−q λ2

∫ 2π

0

〈
ż(t ), Jz(t ) + 2α

λp

〉
dt = 4− 1

p (π )
2
q λ

2
p .

Equivalently,

A
p
2 (l) = 1/2(π )

p
q λ. (2.9)

In order to show that the map F (we should actually write Fp as it depends on p, but we

omit this index so as not to overload notation) is indeed one-to-one and onto, we now

define F−1. Starting now with a closed characteristic  on ∂K, it is not difficult to check

that we may assume using a standard reparametrization argument that it is the image

of a loop l with l : [0, 2π ] → R
2n and l̇ = d J∇hq

K◦ (l), for some constant d. Next we define

F−1(l) = J−1

(
(πdq)−1/2

(
l − 1

2π

∫ 2π

0
l(t )dt

))
.

We will show that this map is mapping closed characteristics to critical points. Set

z = F−1(l). It is easy to check that
∫ 2π

0 z(t )dt = 0. The fact that z ∈ W1,p(S1, R2n) follows

from the boundedness of l (as Image(l) ∈ ∂K is bounded) and the following argument:

since ż = C1 · ∇hq
K◦ (l) for some constant C1 and, ∇hq

K◦ , being homogenous of degree q − 1,

satisfy |∇hq
K◦ (x)| ≤ C2|x|q−1 for some constant C2, we conclude that for some constants C3

and C4,

∫ 2π

0
|ż(t )|pdt = C3

∫ 2π

0

∣∣∇hq
K◦ (l(t ))

∣∣ q
q−1 dt ≤ C4

∫ 2π

0
|l(t )|qdt < ∞.

Moreover,

A(z) = 1

2

∫ 2π

0
〈ż(t ), Jz(t )〉dt = 1

2
(πdq)−1

∫ 2π

0
〈J−1l̇(t ), l(t )〉dt

= 1

2
(πdq)−1

∫ 2π

0

〈
d∇hq

K◦ (l(t )), l(t )
〉
dt = 1

2π

∫ 2π

0
hq

K◦ (l(t )) = 1,
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where the next to last inequality follows from Euler’s formula. Finally, note that

ż = (πdq)−
1
2 J−1l̇ = (πdq)−

1
2 d∇hq

K◦ (l) = (πdq)−
1
2 d∇hq

K◦

(
(πdq)

1
2 Jz +

∫ 2π

0
l(t )dt

)
.

Using the Legendre transform as before, we get that

∇hp
K (ż) = αJz + β,

where α and β are constants (depending on d and q). Moreover,

Ip(z) =
∫ 2π

0
hp

K (ż(t ))dt = 1

p

∫ 2π

0

〈∇hp
K (ż(t )), ż(t )

〉
dt = α

p

∫ 2π

0
〈Jz(t ), ż(t )〉dt = 2α

p
.

From Lemma 2.5, it now follows that z is a critical point of Ip, and hence the map F−1 is

well defined. It is not difficult to show that for every critical point, F−1F (z) = z and that

for every closed characteristic, FF−1(l) = l, and we omit this computation.

This one-to-one correspondence, and the monotone relation between A(F (z)) and

Ip(z), implies that the for z̃, a critical point for which the minimum of I (z) is attained, its

“dual” l̃ = F (z̃) has minimal action among all closed characteristics l. This fact together

with Theorem 1.3 (which we consider, for the purpose of this note, as the definition of

Ekeland–Hofer–Zehnder capacity of convex domains) implies that

c(K)
p
2 = A

p
2 (l̃) = (1/2)p(2π )

p
q λ = π p 1

2π

∫ 2π

0
hp

K ( ˙̃z(t ))dt. (2.10)

The proof of the proposition is now complete. �

Remark 2.6. In the proof we have shown the following fact, which we will use later in

the note once again: For every p, there exists an invertible mapping F (= Fp), mapping

critical points of I (which by Lemma 2.5 are exactly the loops satisfying equation (2.4))

to closed characteristics on ∂K, and moreover, satisfying

A
p
2 (F (z)) = (1/2)p(2π )

p
q Ip(z). (2.11)

�

Remark 2.7. The fact exhibited in Corollary 2.3, which might seem surprising at first,

can be geometrically explained (for the case p > 1) after the above construction has been
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made. Indeed, recall that (fixing some p > 1) for every path z ∈ Ep which is a critical point

of Ip, there corresponds a path l ∈ ∂K, l = Fp(z), which is a linear image of z. Moreover

by the above formulae, putting all the constants together and naming them A1, A2, A3,

we have (using that hK◦ (l) = 1)

ż = A1 J−1l̇ = A2∇hq
K◦ (l) = A3∇hK◦ (l).

Thus, we have hK (ż) = A3hK (∇hK◦ (l)). However, a simple fact from convexity theory (see

[25], Corollary 1.7.3., p. 40) is that for a convex body T and a vector 0 �= u ∈ R
n, the

gradient of the dual norm in a certain direction is exactly the support of the body in this

direction. More formally,

∇hT (u) = {x ∈ T : hT (u) = 〈x, u〉},

which in our case, by smoothness, is simply one point (on the boundary of T , of course).

Thus, in particular, hK (∇hK◦ (u)) = hK◦ (u) and we see that

hK (ż) = A3hK◦ (l) = A3

is constant and does not depend on t , as claimed in Corollary 2.3 and proven there by

other means. �

3 Proof of the Main result

In this section we use Proposition 2.1 to prove our main theorem.

Proof Proof of Theorem 1.5. Fix p1 > 1. It follows from equation (1.4.3 ) that for every

z ∈ Ep1 and p ≥ 1,

1

2π

∫ 2π

0
hp

K+pT (ż(t ))dt = 1

2π

∫ 2π

0
hp

K (ż(t ))dt + 1

2π

∫ 2π

0
hp

T (ż(t ))dt. (3.1)

By multiplying both sides of the above equation by π p, taking the minimum over all

z ∈ Ep1 , and applying Proposition 2.1 above, we conclude that for every p ≥ 1

c(K +p T )
p
2 ≥ c(K)

p
2 + c(T )

p
2 . (3.2)
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In particular, for p = 1 we get the Brunn–Minkowski inequality for the Ekeland–Hofer–

Zehnder capacity.

We turn now to prove the equality case. We start by proving that if K and T have

homothetic capacity carriers, then equality holds in equation (3.2) for every p ≥ 1.

Let K ⊂ ∂K be a capacity carrier for K. As in the proof of Proposition 2.2,

we can choose a parameterized curve representing K via K = Image lK , where l̇K =
dK J∇h2

K◦ (lK ) and lK (0) = lK (2π ). Moreover, it follows from the proof of Proposition 2.2

(say, in the case p = 2) that for every such lK there is corresponding minimizer zk ∈ E2 of

the functional I2,

zK := F−1(lK ) = J−1

(
(2πdK )−1/2

(
lK − 1

2π

∫ 2π

0
lK (t )dt

))
,

such that

c(K)
1
2 = π min

z∈E2

(
1

2π

∫ 2π

0
h2

K (ż(t ))dt
) 1

2

= π

(
1

2π

∫ 2π

0
h2

K (żK (t ))dt
) 1

2

.

Moreover, combining this with Proposition 2.1 and Corollary 2.3 we conclude that for

every p ≥ 1,

c(K)
p
2 = π p min

z∈E2

1

2π

∫ 2π

0
hp

K (ż(t ))dt = π p 1

2π

∫ 2π

0
hp

K (żK (t ))dt.

Similarly, let T be a capacity carrier for T , set lT the corresponding parameterized curve

which represents T , and let zT = F−1(lT ) ∈ E2 be the corresponding critical point of I2

which satisfies

c(T )
p
2 = π p min

z∈E2

1

2π

∫ 2π

0
hp

T (ż(t ))dt = π p 1

2π

∫ 2π

0
hp

T (żT (t ))dt.

Note that in order to have equality in equation (3.2), it is enough to show that zK = zT .

To this end we observe that since K and T are homothetic, there exist two constants α

and β such that lT = αlK + β. This implies that zT = ( dK
dT

)1/2αzK and that A(lT ) = α2A(lK ).

Moreover, since K and T are capacity carriers of K and T , respectively, it follows that
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A(lK ) = c(K) and A(lT ) = c(T ). Hence, we conclude that α = ( c(T )
c(K) )

1/2. On the other hand,

c(K) = A(lK ) = 1

2π

∫ 2π

0
〈lK (t ), JlK (t )〉dt = 1

2π

∫ 2π

0

〈
lK (t ), dK∇h2

K◦ (lK (t ))
〉
dt

= 2dK

2π

∫ 2π

0
h2

K◦ (lK (t ))dt = 2dK ,

and similarly c(T ) = 2dT . This implies that zK = zT , and hence we have an equality

in equation (3.2) for every p ≥ 1 as required.

Next, we assume that equality holds in equation (3.2) for some p ≥ 1 and we prove

that K and T have homothetic capacity carriers.

Let p1 > 1 and p ≥ 1. Note that equality in equation (3.2) implies that

min
z∈Ep1

∫ 2π

0
hp

K+pT (ż(t ))dt = min
z∈Ep1

∫ 2π

0
hp

K (ż(t ))dt + min
z∈Ep1

∫ 2π

0
hp

T (ż(t ))dt.

This in turn implies that there exists z̃ ∈ Ep1 such that

min
z∈Ep1

∫ 2π

0
hp

K (ż(t ))dt =
∫ 2π

0
hp

K ( ˙̃z(t ))dt and min
z∈Ep1

∫ 2π

0
hp

T (ż(t ))dt =
∫ 2π

0
hp

T ( ˙̃z(t ))dt.

Combining this fact with Proposition 2.1, we conclude that

min
z∈Ep1

(∫ 2π

0
hp1

K (ż(t ))dt
) 1

p1

= min
z∈Ep1

(∫ 2π

0
hp

K (ż(t ))dt
) 1

p

=
(∫ 2π

0
hp

K ( ˙̃z(t ))
) 1

p

.

In other words, z̃ ∈ Ep1 is a critical point of the functional I K
p1

= ∫ 2π

0 hp1
K (ż(t ))dt defined

on the space Ep1 , where p1 > 1. It follows from the proof of Proposition 2.2 together

with equations (2.8) and (2.9), that for such z̃ there is a corresponding l̃K that satisfies

l̃K =
(

2π

λK

) 1
q1

(
λ

2
Jz̃ + αK

p1

)
= c(K)

1
2 Jz̃ + AK ,

where AK is a constant which depends on K, p1, and q−1
1 + p−1

1 = 1. Similarly, since z̃ is

also a critical point of I T
p1

, we have that l̃T = c(T )
1
2 Jz̃ + AT . We conclude that l̃T = αl̃K + β,

where α = c(T )
1
2 /c(K)

1
2 . This implies that K and T have homothetic capacity carriers and

the proof of Theorem 1.5 is now complete. �
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4 Corollaries of the Main Theorem

In this section, we prove Corollaries 1.6, 1.7, and 1.8. We start with the proof of Corol-

lary 1.6. As in the case of the classical isoperimetric inequality, which connects the

surface area of a body and its volume, the Brunn–Minkowski inequality is useful in

obtaining a lower bound for the derivative of the volume-type function. This follows

directly from Theorem 1.4 and the following computation: for any convex bodies K and

T in R
2n and any ε > 0,

c(K + εT )
1
2 − c(K)

1
2

ε
≥ c(K)

1
2 + εc(T )

1
2 − c(K)

1
2

ε
= c(T )

1
2 . (4.1)

The limit on the left-hand side as ε → 0+ can be thought of as a “directional derivative”

of c1/2 in the “direction” T . Note that this argument holds for any symplectic capacity for

which one is able to show that the Brunn–Minkowski inequality holds. However, to get a

meaningful result, one must find a geometric interpretation for the so-called derivative

which one arrives at. To be more precise, let us define for a convex body T the functional

dT (K) by

dT (K) = lim
ε→0+

c(K + εT ) − c(K)

ε
.

Inequality (4.1) implies the following easy corollary.

Corollary 4.1. For every convex body K ⊂ R
2n, one has

dT (K) = 2c(K)
1
2

d

dε
c(K + εT )

1
2 |ε=0+ ≥ 2c(K)

1
2 c(T )

1
2 .

�

The only part which requires justification is the existence of the limit. Let us

show that c1/2(K + εT ) has derivative at ε = 0+ (which is, since c(K) �= 0, the same as

showing that c(K + εT ) has a derivative): Let s < t , note that

c(K + tT )
1
2 − c(K)

1
2

t
≤ c(K + sT )

1
2 − c(K)

1
2

s

is equivalent to

(s/t )
(
c(K + tT )

1
2
) + (1 − s/t )c(K)

1
2 ≤ c(K + sT )

1
2 ,
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which follows from the Brunn–Minkowski inequality. Hence, the expression in the limit

is a decreasing function of ε > 0, and converges to its supremum as ε → 0+, provided it

is bounded. Showing that it is bounded is simple, since T ⊂ RK for some R > 0 (which

can be huge, and may depend on the dimension) and thus

c(K + tT )
1
2 − c(K)

1
2

t
≤ c(K + t RK)

1
2 − c(K)

1
2

t
= R.

This completes the proof of Corollary 4.1. �
One way to use Corollary 4.1 is to find a geometric interpretation of the derivative

of the capacity, d. Roughly speaking, if c is a symplectic “volume”, d should be a kind

of symplectic “surface area”. Instead, what we do below is to bound d from above by an

expression with a clear geometric meaning: minimal length of loops in a certain norm

(as in the statement of Corollary 1.6), and then Corollary 4.1 gives a lower bound in terms

of capacity of this expression.

We fix ε > 0, p1 > 1, and p2 = 1, and denote by z̃ ∈ Ep1 any path on which the

minimum in equation (2.1) is attained for c(K)
1
2 . We compute

c(K + εT )
1
2 = π min

z∈Ep1

1

2π

∫ 2π

0
hK+εT (ż(t ))dt

= π min
z∈Ep1

1

2π

∫ 2π

0
hK (ż(t ))dt + εhT (ż(t ))dt

≤ π
1

2π

∫ 2π

0
hK ( ˙̃z(t ))dt + εhT ( ˙̃z(t ))dt

= c(K)
1
2 + ε

2

∫ 2π

0
hT ( ˙̃z(t ))dt.

Rearranging (for fixed ε > 0 and p > 1), and applying equation (1.4.2 ), one gets that for

any such z̃

c(T )
1
2 ≤ c(K + εT )

1
2 − c(K)

1
2

ε
≤ 1

2

∫ 2π

0
hT ( ˙̃z(t ))dt.

Note that the middle expression is a decreasing function of ε, which as ε → ∞ converges

to the left-hand side, and as ε → 0+ converges to dT (K)/2
√

c(T ).

Next, note that z̃ is a critical point of the functional I K
p1

(z) = ∫ 2π

0 hp1
K (ż(t ))dt defined

on the space Ep1 as well (see Corollary 2.3 and the reasoning before it). Hence, we can use

the transformationF defined in the proof of Proposition 2.2 to map z̃ to the corresponding
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capacity carrier l̃ of K. Moreover from equalities (2.8) and (2.9), it follows that

˙̃l = c(K)
1
2 J ˙̃z.

Thus, the above inequality takes the form

c(T )
1
2 ≤ c(K + εT )

1
2 − c(K)

1
2

ε
≤ 1

2
c(K)−

1
2

∫ 2π

0
hT (J−1 ˙̃l(t ))dt.

Since there is a one-to-one correspondence between critical points z̃ of the func-

tional I K
p1

and closed characteristics l̃ on ∂K, we may in fact write the above inequality

as

c(T )
1
2 ≤ c(K + εT )

1
2 − c(K)

1
2

ε
≤ 1

2
c(K)−

1
2 inf

l̃

∫ 2π

0
hT (J−1 ˙̃l(t ))dt , (4.2)

where the infimum runs over all the loops l which are images under F of z̃ minimizing

equation (2.1) for c(K)
1
2 i.e. all the capacity carriers of K.

Thus we arrive at

4c(K)c(T ) ≤ (lengthJT◦ (l))2,

for any capacity carrier l on ∂K, proving Corollary 1.6. We may also take the limit

in equation (4.2) as ε → 0+ to see the following.

Corollary 4.2. For any n, any K, T ∈ K2n, and any capacity carrier on ∂K, we have that

dT (K) ≤ inf
l̃

∫ 2π

0
hT (J−1 ˙̃l(t ))dt = lengthJT◦ (l).

�

Next we turn to the relation between the capacity and the mean width of a body.

Proof of Corollary 1.7. We denote by U (n) the group of unitary transformations in C
n �

R
2n. Note that c(U K) = c(K) for any unitary operator U ∈ U (n). The Brunn–Minkowski

inequality thus implies that for U1, U2 ∈ U (n),

c(K) ≤ c
(

U1K + U2K

2

)
,
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and by induction also

c(K) ≤ c

(
1

N

N∑
i=1

Ui K

)
.

Further, this is true also if we integrate (with respect to Minkowski addition) along the

unitary group with respect to the uniform Haar measure dµ on this group

c(K) ≤ c
(∫

U Kdµ(U )
)

.

However, it is not hard to see that the integral on the left-hand side is simply a Euclidean

ball of some radius, since it is invariant under rotations U ∈ U (n), and further, it is

easy to determine its radius since M∗(K) = M∗(U K), for U ∈ U (n), and M∗ is an additive

function with respect to Minkowski addition (for more details, see [23]). Thus we have∫
U Kdµ(U ) = M∗(K)B2n

2 , where B2n
2 is the Euclidean unit ball, and the inequality above

translates to

c(K) ≤ c
(
M∗(K)B2n

2

) = π (M∗(K))2. (4.3)

Next, we turn to the characterization of the equality case. Let L denote the family

of all capacity carriers on ∂K. Since we assume equality between the left- and right-hand

side, we get equality throughout the following

c(K) ≤ 1

N2
c(U1K + · · · + UN K) ≤ c

(
M∗B2n

2

)
,

for any N and U1, . . . , UN ∈ U (n).

Applying the same argument as in the proof of Brunn–Minkowski for two sum-

mands (Theorem 1.4), this time to N summands K1, . . . KN for arbitrary N, we get that the

equality conditions becomes the following: there exists N homothetic capacity carriers

li ⊂ ∂Ki. Since in this case Ki = Ui K, we know that capacity carriers on Ki are images by

Ui of capacity carriers on K. Moreover, since K and Ui K have the same capacity and are

centrally symmetric, we see that if li is a capacity carrier of Ui K and is homothetic to a

capacity carrier l j of U j K, then they must actually be identical. We thus conclude that

equality in Corollary 1.7 implies, in fact, that for every N and U1, . . . , UN ∈ U (n), we have
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that

U1L ∩ · · · ∩ UN L �= ∅. (4.4)

For any K satisfying that K �= RB2n
2 for any R > 0, there exists some δ > 0 such that for

every δ-net N on S2n−1, we have that the restriction of ‖ · ‖K on N is not constant. Assume

by contradiction that K satisfies the equality in Corollary 1.7, but is not a Euclidean ball.

Fix δ as above, and fix C such that C −1|x| ≤ ‖x‖K ≤ C |x| for all x. Take U1, . . . , UN to be a

δ-net on U (n) with respect to, say, the operator norm. The finiteness of N follows from

compactness on U (n). Thus for every U ∈ U (n), there is some j such that |U jx − U x| ≤ δ|x|
for all x.

It follows from equation (4.4) that there exists l ∈ U−1
1 L ∩ · · · ∩ U−1

N L. In particular,

Uil ⊂ ∂K, and so {Uil(0)}N
i=1 ⊂ ∂K. Consider the set N = { Uil(0)

|Uil(0)| }N
i=1 ⊂ S2n−1. Note that N is

a δ-net of S2n−1. However, on this set the norm is constant and equals 1/|l(0)| (since

Ui(l(0)) ∈ ∂K so ‖Ui(l(0))‖K = 1). This is a contradiction to the choice of δ, and we conclude

that the norm ‖ · ‖K must have been Euclidean, completing the proof of Corollary 1.7. �

Proof of Corollary 1.8. Let K, T ⊂ K2n be general convex bodies, x, y ∈ R
2n and 0 ≤ λ ≤ 1.

It is easy to verify that

λ(K ∩ (x + T )) + (1 − λ)(K ∩ (y + T )) ⊂ (K ∩ (λx + (1 − λ)y + T )).

Therefore, by monotonicity, we have that

c1/2(λ(K ∩ (x + T )) + (1 − λ)(K ∩ (y + T ))) ≤ c1/2(K ∩ (λx + (1 − λ)y + T )).

The Brunn–Minkowski inequality then implies that

c1/2(λ(K ∩ (x + T ))) + c1/2((1 − λ)(K ∩ (y + T ))) ≤ c1/2(K ∩ (λx + (1 − λ)y + T )),

and using homogeneity of capacity, the proof of the general case is complete,

λc1/2(K ∩ (x + T )) + (1 − λ)c1/2(K ∩ (y + T )) ≤ c1/2(K ∩ (λx + (1 − λ)y + T )).

For the symmetric case, let y = −x and λ = 1/2, we get

(1/2)c1/2(K ∩ (x + T )) + (1/2)c1/2(K ∩ (−x + T )) ≤ c1/2(K ∩ T ).
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The second term on the left-hand side equals to c1/2(−K ∩ (x − T )) (since −Id is a symplec-

tic map), which, by the symmetry assumptions on K and T , is the same as c1/2(K ∩ (x + T )),

the first term, and the inequality

c1/2(K ∩ (x + T )) ≤ c1/2(K ∩ T )

is established. �

5 Proof of Lemma 2.5

The proof is divided into three steps. We follow closely the arguments in [18] and [22].

First step: The functional I is bounded from below on E . Indeed, the function hp
K being

continuous and homogeneous of degree p > 1 satisfies

1

α
|y|p ≤ hp

K (y) ≤ α|y|p,

for some constant α ≥ 1, and thus

I (z) =
∫ 2π

0
hp

K (ż(t ))dt ≥ 1

α
‖ż‖p

p,

where ‖ · ‖p stands for the L p norm on S1. From Hölder’s inequality it follows that for

z ∈ E ,

2 =
∫ 2π

0
〈Jz(t ), ż(t )〉dt ≤ ‖z‖q‖ż‖p, where

1

p
+ 1

q
= 1. (5.1)

Using the Poincaré inequality and the fact that
∫ 2π

0 z(t )dt = 0, we deduce that

‖z‖q ≤ ‖z‖∞ ≤ 2π‖ż‖1 ≤ 2π‖ż‖p, (5.2)

and hence 1√
π

≤ ‖ż‖p, which in turn implies that

I (z) =
∫ 2π

0
hp

K (ż(t ))dt ≥ 1

α
‖ż‖p

p ≥ π
−p
2

α
> 0. (5.3)
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Second step: The functional I attains its minimum on E namely, there exists z̃ ∈ E with

∫ 2π

0
hp

K ( ˙̃z(t ))dt = inf
z∈E

∫ 2π

0
hp

K (ż(t ))dt = λ̃ > 0.

To show this, we pick a minimizing sequence zj ∈ E such that

lim
j→∞

∫ 2π

0
hp

K (ż j(t ))dt = λ̃.

It follows from equations (5.1), (5.2), and (5.3) that there exists some constant C > 0 such

that

1

C
≤ ‖ż j‖p ≤ C .

Moreover, from equation (5.2) it follows that

‖zj‖p ≤ ‖ż j‖p ≤ C . (5.4)

In particular, zj is a bounded sequence in the Banach space W1,p(S1, R2n) and therefore,

a subsequence, also denoted by zj converges weakly in W1,p(S1, R2n) to an element z∗ ∈
W1,p(S1, R2n). Indeed, the closed unit ball of a reflexive Banach space is weakly compact

and the space W1,p(S1, R2n), where p > 1, is known to be reflexive (see e.g. [1]). We will

show below that z∗ ∈ E . First we claim that zj converges uniformly to z∗, that is,

sup
t

|zj(t ) − z∗(t )| → 0. (5.5)

Indeed, the zj are uniformly continuous

|zj(t ) − zj(s)| ≤
∣∣∣∣
∫ t

s
ż j(τ )dτ

∣∣∣∣ ≤ |t − s|1/qC ,

and the claim follows from the Arzelà–Ascoli theorem. Next we claim that z∗ ∈ E . Indeed,

even the weak convergence immediately implies that the mean value of z∗ vanishes.

Moreover,

2 =
∫ 2π

0
〈Jzj(t ), ż j(t )〉dt =

∫ 2π

0
〈J(zj(t ) − z∗(t )), ż j(t )〉dt +

∫ 2π

0
〈Jz∗(t ), ż j(t )〉dt.
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The first term on the right-hand side tends to zero by equation (5.5), Hölder inequality,

and equation (5.4). The second term converges because of the weak convergence to

∫ 2π

0
〈Jz∗(t ), ż∗(t )〉dt.

To see this, one must check that the linear functional f (w) = ∫ 2π

0 〈Jz∗(t ), ẇ(t )〉dt is

bounded on W1,p(S1, R2n). This follows from Hölder’s inequality as z∗ ∈ Lq(S1, R2n) (since

z∗ ∈ W1,p(S1, R2n)). Thus the equation above, taking limit j → ∞ takes the form

∫ 2π

0
〈Jz∗(t ), ż∗(t )〉dt = 2,

which implies that z∗ ∈ E . We now turn to show that z∗ ∈ E is indeed the required mini-

mum. We use the convexity of hp
K and deduce the point-wise estimate

〈∇hp
K (ż j(t )), ż∗(t ) − ż j(t )

〉 ≤ hp
K (ż∗(t )) − hp

K (ż j(t )) ≤ 〈∇hp
K (ż∗(t )), ż∗(t ) − ż j(t )

〉
,

which gives

∫ 2π

0
hp

K (ż∗(t ))dt −
∫ 2π

0
hp

K (ż j(t ))dt ≤
∫ 2π

0

〈∇hp
K (ż∗(t )), ż∗(t ) − ż j(t )

〉
dt. (5.6)

To see that the right-hand side of inequality (5.6) tends to zero, it is enough as before to

check that ∇hp
K (ż∗) belongs to Lq(S1, R2n). Indeed, since ∇hp

K is homogeneous of degree

p− 1, there exists some positive constant K for which |∇hp
K (x)| ≤ K|x|p−1, and hence it

follows from equation (5.4) that

∫ 2π

0

∣∣∇hp
K (ż∗(t ))

∣∣qdt =
∫ 2π

0

∣∣∇hp
K (ż∗(t ))

∣∣ p
p−1 dt ≤ K

p
p−1

∫ 2π

0
|ż∗(t )|pdt < ∞.

Thus the right-hand side of inequality (5.6) tends to zero. Hence

λ̃ ≤
∫ 2π

0
hp

K (ż∗(t ))dt ≤ lim inf
j→∞

∫ 2π

0
hp

K (ż j(t ))dt = λ̃,

and we have proved that z∗ is the minimum of I (z) for z ∈ E .

Third step: First we show that the critical points of I satisfy the required Euler equa-

tion (2.4). Let z be a critical point of I . Hence, according to Definition 2.4, for every
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ξ ∈ W1,p(S1, R2n) such that
∫ 2π

0 ξ (t )dt = 0,
∫ 2π

0 〈Jz(t ), ξ̇ (t )〉dt = 0, we have that

∫ 2π

0

〈∇hp
K (ż(t )), ξ̇ (t )

〉
dt = 0.

Next we choose a special ξ namely, such that ξ̇ is of the form ξ̇ = ∇hp
K (ż) − β Jz − α, where

α is a vector and β is a constant. The vector α is chosen, so that ξ (0) = ξ (2π ) namely

α = 1

2π

∫ 2π

0
∇hp

K (ż(t ))dt.

In order to show that

x(t ) =
∫ t

0
ξ̇ (s)ds ∈ W1,p(S1, R2n),

one uses a simple continuity properties of ξ̇ . We choose β so that the condition

∫ 2π

0
〈Jz(t ), ξ̇ (t )〉dt = 0

is satisfied. With this function ξ we compute

∫ 2π

0
|ξ̇ (t )|2dt =

∫ 2π

0

〈∇hp
K (ż(t )), ξ̇ (t )

〉
dt − β

∫ 2π

0
〈Jz(t ), ξ̇ (t )〉dt −

〈
α,

∫ 2π

0
ξ̇ (t )dt

〉
= 0.

Thus, the critical point z satisfies the Euler equation ∇hp
K (ż) = β Jz + α. Moreover, it

follows from Euler formula that

λ =
∫ 2π

0
hp

K (ż(t ))dt = 1

p

∫ 2π

0

〈∇hp
K (ż(t )), ż(t )

〉
dt = β

p

∫ 2π

0
〈Jz(t ), ż(t )〉dt = 2β

p
,

and hence β = λp
2 .

For the other direction, namely that any loop z satisfying Euler equation (2.4) is

a critical point of I , we simply check that for ξ ∈ W1,p(S1, R2n) with
∫ 2π

0 ξ (t )dt = 0 and∫ 2π

0 〈Jz(t ), ξ̇ (t )〉dt = 0, we have

∫ 2π

0

〈∇hp
K (ż(t )), ξ̇ (t )

〉
dt =

∫ 2π

0

〈
λp

2
Jz(t ) + α, ξ̇ (t )

〉
dt = 0,

as required. This concludes the proof of the lemma.
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