
Statistical Learning, Fall 2024-5

Class notes 7

Logistic regression

We recall the general idea of generalized linear models (GLMs), that replace the standard linearity
assumptions with:

g(E(Y |X)) = XTβ,

with g properly selected invertible function so that g−1 : R → L, where L is the set of legal val-
ues for E(Y |X), for example for 2-class classification where Y |X ∼ Ber(g−1(XTβ)), we will want
L = (0, 1).

GLMs have extensive theory related to exponential families, and practical applications in meth-
ods like Poisson regression (dealing with count data) and logistic regression. For our purpose we
will concentrate on 2-class classification and logistic regression:

logit(X) = log
Pr(Y = 1|X)

1− Pr(Y = 1|X)
= XTβ ⇒ Pr(Y = 1|X) = E(Y |X) = logit−1(XTβ) =

exp(XTβ)

1 + exp(XTβ)
.

Unlike in our discussion of linear models and least squares regression, GLMs are closely tied
to probabilistic assumptions — for example, for logistic regression it is that the logit is really
linear in the covariates. Given the assumptions, GLMs are fitted to data by maximizing the (log)-
likelihood of the parameters β. We note that for properly defined GLMs, including Poisson and
logistic regression, the likelihood is convex in β so standard second-order methods like Newton-
Raphson are guaranteed to converge to the optimum (in traditional statistics, variants of this are
called Fisher scoring and are described as iteratively reweighted least squares). The maximum
log-likelihood problem for logistic regression (with Yi ∈ {0, 1}) can reformulated as:

β̂ = argmax
β

n∑
i=1

I(Yi = 1)(XT
i β)− log(1 + exp(XT

i β)).

As noted, logistic regression requires strong assumptions about the true model. If we are willing
to make these assumptions, we get some major additional benefits:

1. Statistical inference mechanism, similar to this we have for least squares linear regression (for
GLMs it relies on asymptotic approximations rather than exact finite sample theory), which
offers:

� Inference on importance of predictors (Wald tests instead of t-tests in OLS)
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� Generalized ANOVA and F-tests for model selection

� Resulting approaches for variable and model selection like forward-stepwise

2. Non-probabilistic interpretation of XT β̂ as a “scorecard” which weights the different proper-
ties of the observation in making a prediction decision.

We also note that the decision boundary Ŷi = I
{
P̂ r(Y = 1|X) > 0.5

}
is linear in logistic

regression:
P̂ r(Y = 1|X) > 0.5 ⇔ logit−1(XT β̂) > 0.5 ⇔ XT β̂ > 0.

Logistic regression for K > 2 (also called multinomial regression)

Recall we now have Y ∈ G = {g1, . . . , gK}. The standard generalization assumes:

log
Pr(Y = g1|X)

Pr(Y = gK |X)
= XTβ1

...

log
Pr(Y = gK−1|X)

Pr(Y = gK |X)
= XTβK−1

We can easily transform this to probabilities for the classes by multiplying and summing up:

Pr(Y = gk|X) = exp
(
XTβk

)
Pr(Y = gK |X), k < K

⇒ Pr(Y = gk|X) =
exp

(
XTβk

)
1 +

∑
l<K exp (XTβl)

, P r(Y = gK |X) =
1

1 +
∑

l<K exp (XTβl)
.

where the transformation uses the identity Pr(Y = gK |X) = exp
(
XT 0

)
Pr(Y = gK |X) and the

fact that the probabilities sum to 1.

Notes:

1. Fitting this model to data is done by maximizing the likelihood as before (we already have
the probabilities written explicitly).

2. This can be interpreted as associating a vector βk with each class, and prefering class k to l
if:

Pr(Y = k|X) > Pr(Y = l|X) ⇔ XTβk > XTβl.

3. The choice of K as the “reference class” in the denominator and βK = 0 seems arbitrary,
but the solution is invariant to this choice in the sense that the predicted probabilities of
the maximum likelihood solution P̂ r(Y = k|X) are unaffected by this choice (the coefficient
vectors β̂k are affected of course). Proof of this: HW3
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Linear discriminant analysis (LDA) and extensions

Recall generative methods rely on decomposing:

Pr(Y = gk|X) =
Pr(X|Y = gk)Pr(Y = gk)

Pr(X)
:=

fk(X)πk∑K
l=1 fl(X)πl

,

where we use fk to denote the conditional distribution of X for class k and πk for the marginal
probability of class k. Thus, a generative model requires:

� Modeling assumptions and a model form for fk

� Knowledge or estimate of the marginals πk

The key assumption of LDA is that the predictor vector X ∈ Rp is normally distributed for
each class, with a common covariance matrix:

X|Y = gk ∼ N(µk,Σ).

Hence, fitting an LDA model to data requires estimating the common covariance matrix Σ and the
class centers µ1, . . . , µK .

Before discussing estimation, we can start by analyzing LDA decision boundaries between classes
and proving that they are linear:

fk(X) =
1

(2π)p/2|Σ|1/2
exp

(
−1

2
(X − µk)

TΣ−1(X − µk)

)
Pr(Y = gk|X) > Pr(Y = gl|X) ⇔ fk(X)πk > fl(X)πl

⇔ −0.5(X − µk)
TΣ−1(X − µk) + log(πk) > −0.5(X − µl)

TΣ−1(X − µl) + log(πl)

⇔
[
−0.5µT

kΣ
−1µk + 0.5µT

l Σ
−1µl + log(πk)− log(πl)

]
+XTΣ−1(µk − µl) > 0.

A different perspective shows LDA classifies according to the minimal Mahalanobis distance
from class centers (assume πk = πl for simplicity):

Pr(Y = gk|X) > Pr(Y = gl|X) ⇔ (X − µk)
TΣ−1(X − µk) < (X − µl)

TΣ−1(X − µl).

(Drawing on the board).

If we want to fit LDA to data, we need to estimate the parameters: µ1, . . . , µK , Σ, π1, . . . , πK .
This is naturally done by “maximum likelihood” from the data:

π̂k =

∑n
i=1 I {Yi = gk}

n
, µ̂k =

∑
I{Yi=gk}Xi∑n

i=1 I {Yi = gk}

Σ̂ =
1

n−K

K∑
k=1

∑
I{Yi=gk}

(Xi − µ̂k)(Xi − µ̂k)
T (Unbiased estimate).

An interesting property: if K = 2, π1 = π2 = 0.5, then the optimal decision boundary between
classes is the same for LDA and least squares regression (with (0,1) coding).
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Quadratic and regularized discriminant analysis (QDA, RDA)

For QDA we make a sneakily important change in the assumed model, which is now:

X|Y = gk ∼ N(µk,Σk),

allowing a different covariance matrix for each class. The effect is that the decision boundaries
between classes are no longer linear:

Pr(Y = gk|X) > Pr(Y = gl|X) ⇔ fk(X)πk > fl(X)πl

⇔ −0.5(X − µk)
TΣ−1

k (X − µk) + log(πk)− 0.5 log(|Σk|)
> −0.5(X − µl)

TΣ−1
l (X − µl) + log(πl)− 0.5 log(|Σl|)

⇔ −0.5XT (Σ−1
k − Σ−1

l )X +XT
(
Σ−1
k µk − Σ−1

l µl

)
+ a(l, k) > 0,

so we now get a quadratic decision function to separate classes l, k.

When estimating from data, we now need to estimate the K covariance matrices:

Σ̂k =
1

nk − 1

∑
I{Yi=gk}

(Xi − µ̂k)(Xi − µ̂k)
T (Unbiased estimate).

Note, that we can define two ways to get quadratic decision boundaries:

� Run LDA with an expanded basis of size p2: x1, . . . , xp, x
2
1, . . . , x

2
p, x1x2, . . . , xp−1xp.

� Run QDA in the original p-dimensional space.

Are the two methods the same? Not at all, but they both yield quadratic decision boundaries.
The first option does not really make sense with the probabilistic assumptions, since if xj is Gaus-
sian, x2j or xjxk are not Gaussian by definition!

A problem with QDA is that it substantially increases the number of parameters: from K+K×
p+O(p2) of LDA to K +K × p+O(K × p2) of QDA, and of course adds flexibility. This justifies
trying to regularize and obtain methods that trade-off bias and variance. One such proposal is
RDA (Friedman, 1989):

Σ̂k(α) = αΣ̂k + (1− α)Σ̂,

which combines the global estimate of covariance with the class-specific ones. This offers interesting
tradeoffs between bias and variance or between linearity and non-linearity.

Naive Bayes assumption

This method was developed in completely different settings, but probabilistically we can describe
it in the following generative way:

fk(X) = fk1(X1)× fk2(X2)× . . .× fkp(Xp),
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that is, we assume the coordinates of X are conditionally independent given the class k. In the
context of discriminant analysis methods, we can offer a Naive-Bayes like analogy by assuming that
Σk is diagonal:

X|Y = gk ∼ N
(
µk, diag(σ

2
k1, . . . , σ

2
kp)

)
,

this is a simplified variant of QDA, with fewer parameters and stronger (independence) assumptions.

LDA vs logistic regression

Both methods make strong probabilistic assumptions and lead to linear decision boundaries, but
they are not the same. Generative methods by nature make stronger assumptions and are more
powerful when the assumptions are justified (need fewer data to reach the same quality results). In
the book it is illustrated that when LDA assumptions hold, LDA requires 30% less training data
than logistic regression to reach the same quality of prediction!

Support vector classification (SVC)

The final “linear” method we discuss is based on a different, non-probabilistic approach. Recall, a
hyper-plane L in Rp is defined by a linear constraint:

L =
{
x ∈ Rp : xTβ + β0 = 0

}
,

with corresponding properties:

1. If x1, x2 ∈ L then:

β⊥(x1 − x2) : βt(x1 − x2) = xT1 β + β0 − (xT2 β + β0) = 0.

2. Signed distance of a point x from the hyper-plane L: If β0 = 0 and ∥β∥2 = 1 then it’s easy
to see that the (signed) Euclidean distance is d(x, L) = xTβ, generalization for general β, β0:

d(x, L) =
1

∥β∥2
(xTβ + β0).

Now, assume we are given a training set T = (X,Y) for a 2-class classification problem, and
assume for simplicity we encode Yi ∈ {±1}. We define a hyperplane L as separating for this data
if:

Yi = 1 ⇔ d(Xi, L) > 0 , Yi = −1 ⇔ d(Xi, L) < 0.

When the dimension p is low, such a hyperplane may not exist at all. When p is high, it is likely
to exist, and then there will be many (a continuum) of such solutions.

The idea in SVC is to select the hyperplane which “best” separates the data, as defined by the
minimal distance of any point to the hyperplane:

max
β,β0

min
i

Yi ·
1

∥β∥2
(XTβ + β0).
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This problem can be formulated as equivalent optimization problems:

maxM s.t. ∥β∥2 = 1 , Yi · (XTβ + β0) ≥ M ∀i
min ∥β∥22 s.t. Yi · (XTβ + β0) ≥ 1 ∀i,

that last formulation is the standard SVC problem as described in the literature. It leads to a
linear model, where new observations are classified based on the sign of d(x0, L(β, β0)).

The term “support vector” relates to the nature of the solution to this problem:

� The optimal coefficient vector β̂ has the form β̂ =
∑n

i=1 α̂iYiXi.

� α̂i = 0 for all except the support vectors which attain equality in the constraint:

α̂i > 0 ⇒ (XT
i β̂ + β̂0) = 1 , α̂i = 0 ⇐ (XT

i β̂ + β̂0) > 1.

Since the number of support vectors is typically small, very efficient algorithms for SVC with big
data (large n, large p) have been designed based on searching these support vectors, and this is
some of the claim to fame of support vector methods.

What we have described so far is the “hard-margin” SVC, an extension is the soft-margin SVC,
which allows violations of the constraint:

min ∥β∥22 s.t. Yi · (XTβ + β0) ≥ 1− ξi ∀i,

ξi ≥ 0 ∀i ,

n∑
i=1

ξi ≤ C.

The interesting property of this problem is that with some simple manipulations and given the
(Lagrange) equivalence between constrained and penalized optimization, an equivalent formulation
gives a ridge-penalized problem with a nice (Hinge) loss function:

(β̂, β̂0) = argmin
n∑

i=1

(
1− Yi(X

T
i β + β0)

)
+
+ λ∥β∥22.

We can see the close similarity to logistic regression with ridge penalty:

(β̂, β̂0) = argmin
n∑

i=1

1

1 + exp
[
−Yi(XT

i β + β0)
] + λ∥β∥22.

In fact, if we draw the loss functions for both problems we can see they are quite similar (in
particular become parallel as the “margin” Yi(X

T
i β + β0) becomes big).

Classification methods: summary

Ways of generating linear decision boundaries:

1. Logistic regression: maximize log likelihood with logit link, generalization to k-class

2. SVC: similar discriminative method derived from a geometric/computational perspective
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3. Generative method: LDA (naturally applies to K > 2 classes)

Extensions and generalizations:

1. Regularized logistic regression or soft-margin SVC: add regularization to control estimation
error

2. QDA and RDA: add flexibility and quadratic decision boundaries

3. Naive Bayes: different simplifying assumptions (independence given class), non-linear decision
boundary but heavily regularized (few parameters)
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