
Statistical Learning, Fall 2024-5

Class notes 5

Principal component analysis (PCA) and PCA regression

Recall the PCA problem: X is now considered a collection of n points in Rp, and we are looking
for directions v ∈ Rp with large spread of the data. Finding the first principal component:

v1 = arg max
∥v∥2=1

∥Xv∥22.

The second principal component is an orthogonal direction with the most spread:

v2 = arg max
∥v∥2=1,v⊥v1

∥Xv∥22.

and so on.
Finding the principal components is closely related to the SVD we discussed above: Recall

X = UDV T , with d1 ≥ d2 ≥ ... ≥ dp ≥ 0. Since the columns of V are an orthonormal basis of Rp,
for any vector v with ∥v∥2 = 1, write it as:

v =

p∑
j=1

ajVj ,
∑
j

a2j = ∥v∥2 = 1 (Vj are the columns of V ).

Then we can see:

∥Xv∥2 = vTV DUTUDV T v = (

p∑
j=1

ajV
T
j V )D2(V T

p∑
j=1

ajVj) =

 p∑
j=1

aje
T
j

D2

 p∑
j=1

ajej

 =

p∑
j=1

a2jd
2
j ≤ d21,

however we get equality if a1 = 1 or v = V1. Conclusion: v1 = V1 the first column of V . Similarly
v2 = V2 and so on.

This is a very important approach for dimensionality reduction and finding “interesting” di-
rection in high dimensional space (p is large) given data X. In our context we can use it for
regularization by choosing only the first k principal components to do the regression on: Take the
first k principal components (columns of V ) and define:

Z = XV1..k = U1..kD1..k,1..k,
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and now perform the regression of Y on Z instead of X.

In fact, when writing in terms of the SVD, we can relate all three approaches (LS, ridge, PCA
regression) through similar operations:

ŶLS = X(XTX)−1XTY = UUTY

Ŷridge(λ) = X(XTX+ λI)−1XTY = Udiag

(
d2j

d2j + λ

)
UTY

ŶPCA(k) = Z(ZTZ)−1ZTY = U1..kU
T
1..kY.

Lasso

The lasso formulations:

β̂pen(λ) = argmin
β

RSS(β) + λ
∑
j

|βj | , β̂con(s) = arg min
β:
∑

j |βj |≤s
RSS(β).

Unlike ridge it does not have an algebraic solution (for example, the penalized Lagrange version
is not differentiable). A key observation is that this is now a quadratic programming (QP) problem,
with quadratic objective and linear constraints. This can be seen from the constrained version,
which can equivalently be written as:

min RSS(β+ − β−)

s.t.

p∑
j=1

β+
j + β−

j ≤ s

β−
j , β

+
j ≥ 0 ∀j,

(the problems are equivalent since in the optimal solution, it is guaranteed that either β+
j = 0 ⇒

βj = −β−
j or β−

j = 0 ⇒ βj = β+
j .)

Since QP is a standard problem in convex optimization, standard solvers can be used for Lasso (and
in fact the original paper by Tibshirani(1996) proposes a special QP variant that fits the structure
of this problem).

However, in the early 2000’s several groups realized that the problem can be solved with linear
algebra tools, by following the set of solutions to the penalized problems β̂pen(λ), 0 ≤ λ < ∞. We
will not discuss this approach, best known by the name Least Angle Regression (LARS), but it is
interesting both for computation and statistical interpretation.

A key property of Lasso solutions is sparsity. This has several expressions:

� In the high dimensional regime p > n, Lasso solutions always have at most n non-zero
coefficients: ∥β̂(λ)∥0 ≤ n. This is in contrast to Ridge regression, where all coefficients are
always non-zero.

� In the low dimensional regime p < n, it is still true that for λ >> 0 heavy Lasso regularization,
we will have ∥β̂(λ)∥0 << p, many zero coefficients (again, in contrast to Ridge and other
methods).
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� The area of Compressed Sensing, which was extremely widely studied around 2005-2010,
shows that under some assumptions:

– The true model is linear E(Y |X) = Xtβ, and it is sparse ∥β∥0 = k << p.

– The explanatory variables (columns of X) have low correlation between them.

– The amount of data we have is n = O(k log p) (which is still << p when the model is
very sparse).

then using Lasso we can find with high probability the true sparsity pattern (that is, β̂(λ)j ̸=
0 ⇔ βj ̸= 0). However, due to the strong assumptions this intriguing area is not necessarily
relevant to our settings of interest.

To demonstrate and explain sparsity, we can take two relatively simply views. The first is
geometrical and relies on the constrained version, showing that the constraint region

∑
j |βj | ≤ s

is “diamond shaped” with corners “sticking out”. Although we can only draw it in low dimension,
we can for example show that in high dimension almost all the volume of the cube is close to the
corners. Hence the constrained solution is likely to fall on a corner of this space, which is a point
where some of the coefficients are zero.

A more rigorous view can be taken by an algebraic analysis of a simplified version of Lasso,
where we assume the matrix X is orthogonal, i.e., XTX = Ip. Then we can write for the penalized
version:

PRSS(β) = RSS(β) + λ
∑
j

|βj | = YTY− 2YTXβ + βT (XTX)β + λ
∑
j

|βj | =

=
∑
j

(
β2
j + λβj · sign(βj)− 2XT

j Y
)
+ YTY,

Now, if we assume βj > 0 we can differentiate and compare to zero:

∂PRSS(β)

∂βj
2βj + λ− 2XT

j = 0 ⇒ βj = XT
j Y− λ

2
.

Thus, if XT
j Y > λ/2 we conclude that we indeed get a positive solution:

β̂(λ)j = XT
j Y− λ

2
.

Since this is a quadratic function, we know this will yield a minimum.

Similarly, if XT
j Y < −λ/2 a similar calculation will yield:

β̂(λ)j = XT
j Y+

λ

2
.

With a little more work we can confirm that the optimal solution is:

β̂(λ)j =


XT
j Y− λ

2 if XT
j Y > λ/2

0 if − λ/2 ≤ XT
j Y ≤ λ/2

XT
j Y+ λ

2 if XT
j Y < −λ/2

.
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This is called the soft thresholding solution, and it shows that when λ is big, most of the coefficients
β̂(λ)j are zero.

We note that the LARS solution without assuming XTX = I is a generalization of similar ideas,
with substantially more complex algebra, and leads to similar conclusion that when λ is big, most
coefficients are zero.

Summarizing Lasso important properties:

� Statistical: sparsity, compressed sensing

� Computational: convex problem (QP), efficient specialized methods like LARS

Extensions

There are many other regularization methods for linear regression, many of which extend Ridge
and Lasso in interesting ways, two of the most important ones:

� Elastic net (Zou and Hastie 2005) combines the ridge and lasso penalties:

β̂(λ) = argmin
β

RSS(β) + λ1∥β∥1 + λ2∥β∥22.

Geometrically, this is a “diamond” with curved sides, and they argue that it mitigates the
over-sparsity that Lasso tends to have with highly correlated variables. The popularity of
this method stems from the very good predictive modeling results it gives, often better than
both Lasso and Ridge.

� Group lasso (Yuan and Lin 2006): assume our coefficients are divided into k groups G1, ...,Gk,
where we assume that within each group the coefficients are similarly important, or should
appear together, but we want sparsity between groups, then the following formulation assures
that:

β̂(λ) = argmin
β

RSS(β) + λ
k∑

l=1

∥βGl
∥2,

this can be thought of as having Ridge penalty within groups and Lasso between groups.
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