
Statistical Learning, Fall 2024

Class notes 4

Extensions of linear models and nearest neighbors in “modern”
methods

The parametric model ŷ = xtβ̂ seems quite limited, but we should note that it does not need to be
linear in the original p coordinates of x. For example, we can add all squares and products of the
original coordinates, to get h(x) ∈ Rp2 , and the model ŷ = h(x)tβ̂ is now much richer, but since
h is a fixed transformation, it is a still linear in terms of estimating the parameters β̂. In general,
we can do a transformation x ∈ Rp → h(x) ∈ Rq with q >> p (even q = ∞) to get linear models
that are actually very rich. We will describe several modern methods (like boosting and kernel
machines) in this context.

Taking it further, the coordinates of h (which are functions themselves) can have learnable
parameters, for example: hk(x) =

1
1+exp(xtβ̂k)

. This can now describe a neural network, in this case

with sigmoid link.

We will also discuss modern methods in the context of non-parametric nearest-neighbor think-
ing, like thinking of trees (and random forests) as learning flexible neighborhoods/metrics. We may
also discuss kernel methods as bridging some of the gap between the parametric and non-parametric
thinking.

Refresher on “classical” statistical methods and their connection
to our setup

A typical statistical modeling approach often starts from assuming a probabilistic model that fits
the data, with unknown parameters, and then using approaches like maximum likelihood estimation
(MLE) to estimate the parameters from data. For example, we may assume that y = xtβ + ϵ , ϵ ∼
N(0, σ2). If we assume that and want to estimate β using MLE from a training set T = (X,Y), we
can write the log-likelihood (strictly speaking, this applies when we also assume Fixed-X, i.e. that
X is not random, though it is almost accurate without this assumption as well):

ℓ(β;Y) = n log

(
1√
2π

)
− 1

2σ2

n∑
i=1

(Yi − xtiβ)
2 = const1− const2×RSS(β),

hence regardless of the unknown σ2, the MLE is not surprisingly the least squares estimator. If
instead of assuming ϵ ∼ N we assumed ϵ ∼ Exp(λ) it is easy to show we would end up with
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absolute regression as the MLE for β. Further, generalized linear models (GLM), like logistic re-
gression for classification problems (which we will talk about) can also be interpreted in this fashion.

However, it is important to emphasize that the assumptions underlying the MLE approach (like
true linear model or normality of errors) are ones we generally seek to avoid, and so when possible
we prefer to treat the modeling approaches like least squares primarily as a black-box, whose prop-
erties we want to analyze in different settings — including but not limited to the ones that make
them the MLE.

Another important point on classical results from a regression course, relates to the statistical
inference that linear models and GLM offer, in particular the t-statistics for testing H0j : βj = 0,
and ANOVA for selecting between models. These are hugely useful, but we must remember they
are tightly tied to the probabilistic framework above, in particular they are valid if we assume:

1. Fixed-X

2. True linear model

3. ϵ ∼ N(0, σ2) normal i.i.d errors

In that respect we should enjoy the usefulness of these inferential tools, while remembering their
limitations in an assumption-free situation.

Regularization: in general and in linear regression

One way to think about fitting a predictive model: We have a large class of candidate models F ,
and we want to choose a good one based on the training sample T , typically by minimizing some
loss function:

f̂ = argmin
f∈F

L(f ;T ).

Least squares regression follows this recipe exactly, with F being the family of all linear functions,
and L the RSS on the training data.

However, even in least squares regression, if p is very big, in particular p > n, we may be able
to find a perfect fit, which brings RSS to 0 (why is p > n the relevant situation?). In cases where
F is a bigger family — for example, all twice differentiable functions on Rp — it is guaranteed that
many members of F will bring the RSS on T to 0. Then it makes sense to add another criterion to
choose between these functions, intuitively prefer “nice” (say, smooth) functions in F over others.
Assume we have a measure of niceness J(f). We can write the resulting problem as a constrained
optimization problem:

f̂ = arg min
f∈F :L(f ;T )=0

J(f) (1)

A concrete example of this recipe is smoothing splines interpolationmodels: assume one dimensional
data x ∈ [0, 1], F is the family of all twice differentiable functions, and we choose J(f) to be a
natural smoothness criterion:

J(f) =

∫ 1

0
(f ′′(x))2dx.
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So in problem (1) we are looking for the function that interpolates the data with the minimum lack
of smoothness. This has a well known solution in the interpolating cubic spline. (The details are
not critical here, only the general idea.)

More generally, we can relax the interpolation requirement that L(f ;T ) = 0 with a trade-off
between loss and smoothness, and write in penalized form:

f̂ (pen)(λ) = argmin
f∈F

L(f ;T ) + λJ(f),

or equivalently, in constrained form:

f̂ con(s) = arg min
f∈F :J(f)≤s

L(f ;T ).

These two formulations are equivalent in the sense that under pretty general conditions, ∀λ ≥
0, ∃s ≥ 0 : f̂ (pen)(λ) = f̂ (con)(s).

For the penalized formulation, as λ → 0 we converge to the interpolating solution above, and as
λ → ∞ we converge to the best solution with J(f) = 0. For the smoothing spline problem, where
L(f ;T ) is squared loss, and J(f) =

∫ 1
0 (f

′′(x))2dx, all the optimal solutions f̂(λ) are cubic splines,
with changing degree of smoothness (see this example). In this case, linear functions have J(f) = 0
(why?), and hence as λ → ∞, the solution f̂(λ) converges to the least squares solution.

Intuitively the role of regularization is to decrease variance by considering a subset of the class
F (this is clearer in the constrained formulation), or preferring some functions to others. In the
case of linear regression we will make this explicit and analyze it mathematically in various ways.

Regularized linear regression

As we have shown, the variance of the least squares regression estimator is ≈ σ2p/n. this may be
small when p is small but can be substantial in high-dimensional settings. This is the situation
where it makes sense to regularize linear regression. Penalties used are most often the norms of the
coefficient vector:

β̂pen(λ) = argmin
β

RSS(β) + λ∥β∥qq , β̂con(s) = arg min
β:∥β∥qq≤s

RSS(β).

The commonly used values of q are 1 (lasso) and 2 (ridge), with q = 0 a special case of variable
selection.

We can think of this geometrically as projecting the least squares solution on the constrained
set, with a metric that depends on X (drawing on the board). We can also see from the geometry
why not only the ℓ0 penalty but also the lasso penalty, tend to assign non-zero coefficients to only
some of the variables. This additional variable selection can be useful both for improving prediction
and for interpretation.

Additional notes:
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� Typically in linear regression with x ∈ Rp we have p+1 variables, including the intercept β̂0. It
is common practice not to include the intercept in the penalty, and have it non-penalized. This
can complicate notations, so we do not separate it explicitly in our mathematical formulation
(furthermore, if we assume that the columns are centered

∑
i xij = 0∀j, we can prove that

the intercept can be fitted separately).

� If we rescale the columns of X, then the least squares model is not affected, as we discussed
in class. However, having different columns with different scale is problematic for penalty
approaches, and so it is typical to standardize columns of X before applying regularization.
However, like in k-NN, it may be a choice that depends on various considerations (like the
“natural scale” of the variables).

Variable/subset selection

We can think of this approach as applying an ℓ0 penalty or simply as constraining the number of
non-zero coefficients in the model:

β̂(k) = arg min
|{j:βj !=0}|≤k

RSS(β).

Note that we have a total of
(
p
k

)
such subsets, and so the complexity of solving this problem can

become very high when p, k are not small.

There are various heuristics for solving this approximately:

� Forward selection

� Backward elimination

� Forward-backward approaches which both add and remove variables

However it is generally not considered a favorable modern approach, compared to ridge and (espe-
cially) lasso. Specifically, ridge and lasso are convex formulations, and hence can be solved efficiently
even in high dimension.

Ridge regression

Penalized ridge regression:
β̂(λ) = argmin

β
||Y− Xβ∥22 + λ∥β∥22.

Note that this is a quadratic function of the vector β, so we know we can solve it by differentiating
and comparing to zero, giving the well known ridge regression solution:

−2Xt(Y −Xβ̂(λ)) + 2λβ̂(λ) = 0 ⇒ β̂(λ) = (XtX+ λIp)
−1XtY.

We can see that the ridge solution is a slightly modified version of the least squares solution with
the additional “ridge” on the diagonal inside the inverse. Note also that if p > n then XtX is non
invertible (rank n at most), but XtX+ λIp is guaranteed to be of full rank and invertible.

We are going to prove some interesting statistical results on ridge regression, including:
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1. If the linear model is correct then, some ridge regression is always useful, that is the derivative
of the prediction error at λ = 0 is negative (see HW2).

2. Compared to the least squares solution, the ridge regression solution with λ > 0 has lower
prediction variance and higher prediction bias.

Singular Value Decomposition (SVD) representation of ridge regression

Recall the SVD: for Xn×p with n > p and rank p, we can always write it as:

X = Un×pDp×pV
T
p×p,

where:

� Un×p has orthonormal columns

� Dp×p is diagonal with non-negative entries d1 ≥ ... ≥ dp ≥ 0 (the singular values, strictly
positive if X is rank p)

� Vp×p is an orthogonal matrix (meaning it has orthonormal rows and columns, V V T = V TV =
I)

Note: The SVD above is the “economical” version. An alternative SVD is

X = Un×nDn×nV
T
n×p,

where for example D has only p non-zero elements. However when p > n, this representation is
actually the economical one...

Now we can use this to simplify(?) the writing of various expressions that are important for
analyzing ridge regression:

� XTX = V DUTUDV T = V D2V T

�

(
XTX

)−1
= V D−2V T since V D−2V TV D2V T = V D−2D2V T = V V T = I (where D−2 =

diag
(
d−2
j

)
)

�

(
XTX+ λIp

)−1
=
(
V D2V T + λV IV T

)−1
=
(
V
(
D2 + λI

)
V T
)−1

=
(
V
(
D2 + λI

)−1
V T
)
.

� X (X+ λI)−1XT = UD2
(
D2 + λI

)−1
UT .

Now we can use the SVD to analyze the variance of (Fixed-X) ridge regression:∑n
i=1 V ar (ŷi(λ)) = tr(Cov(Ŷ (λ))) = tr

(
Cov

(
X (X+ λI)−1XTY

))
=

= σ2tr
(
UD2

(
D2 + λI

)−1
UTU

(
D2 + λI

)−1
D2UT

)
=

= σ2tr
(
UTUD4

(
D2 + λI

)−2
)
= σ2

p∑
i=1

d4j(
d2j + λ

)2 .
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We see that this is a decreasing function of λ, with the value we already know at λ = 0:

σ2
p∑

i=1

d4j(
d2j + 0

)2 = pσ2.

Similarly, we can assert that the squared bias is an increasing function of λ (the proof is not as
elegant). Note that:

EŶ = E
[
X (X+ λI)−1XTY

]
= UD2

(
D2 + λI

)−1
UTEY.

Therefore:∑
i

(E(yi)− E(ŷi(λ)))2 =
(
EY− EŶ (λ)

)T (
EY− EŶ (λ)

)
=

= EYTU

I − 2diag

(
d2j

d2j + λ

)
+ diag

 d4j(
d2j + λ

)2

UTEY := (EYTU)M(λ)(UTEY).

Now to prove that this is an increasing function of λ we can differentiate it, equivalent to differen-
tiating the inner matrix M(λ), to get on the diagonal:

∂

∂λ

1− 2
d2j

d2j + λ
+

d4j(
d2j + λ

)2
 = 2

1

d2j + λ

 d2j
d2j + λ

−

(
d2j

d2j + λ

)2
 > 0.

So we get that ∂M(λ)
∂λ is a positive definite matrix, which is the center of a quadratic form in the

full derivative, and therefore the squared bias is an increasing function of λ.

Guaranteed error reduction from adding ridge

In the HW, you are asked to prove the following (which should be straight forward using the above
formulas):
Assume:

� Fixed-X setting

� True linear model EY = Xβ.

Then the prediction error of ridge as a function of λ has a negative derivative at λ = 0, and therefore
adding a little ridge regularization is guaranteed to improve prediction!

6


