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Class notes 3

Prediction error decomposition

Bias-variance decomposition of squared prediction error for the model Y = E(Y |X) + ϵ , ϵ ∼
(0, σ2) (independent of X) :

E
(
Y − f̂(X)

)2
−σ2 = EX

(
E(Y |X)− E(f̂(X)|X)

)2
+EXVar(f̂(X)|X) = EX(B(X))+EX(V (X)).

We can now apply this to our “model” problems of least squares regression and k-NN. To start
from a simple case, assume for least squares regression that the linear model is true E(Y |X) = XTβ.

For least squares we know β̂ =
[
XTX

]−1XTY, we can therefore write:

f̂(x0) = xT0
[
XTX

]−1XTY = xT0
[
XTX

]−1XT (Xβ + ϵ) = xT0 β + xT0
[
XTX

]−1XT ϵ,

which immediately tells us that E(f̂(X)|X = x0) = xT0 β and therefore EXB(X) = 0 and there is
no bias. Note also that the first term is non-random given X = x0.

To estimate the variance we use the law of total variation (we take a fixed X = x0 to simplify
notation):

Var(f̂(x0)) = Var(xT0
[
XTX

]−1XT ϵ) = Var(A(X)ϵ) = V arXE (A(X)ϵ | X) + EXVar (A(X)ϵ | X) .

Because E(ϵ) = 0 and independence, we have for the first term:

E (A(X)ϵ | X) ≡ 0 ⇒ VarXE (A(X)ϵ | X) = 0.

Analyzing the second term, the inner expression gives:

V (x0) = EXVar (A(X)ϵ | X) = EXA(X)Cov(ϵ)A(X)T = σ2A(X)A(X)T = σ2xT0 E
[
XTX

]−1
x0.

Now integrating over the distribution of X we get:

EX(V (X)) = σ2EX,XX
T
[
XTX

]−1
X.

To calculate this expectation, note that by the law of large numbers: XTX =
∑

iXiX
T
i ≈

nEXXT , and under mild conditions this also means
[
XTX

]−1 ≈ 1
n

[
EXXT

]−1
. Using this we can

write for large n:

EX(V (X)) ≈ σ2

n
EXXT

[
EXXT

]−1
X

(∗)
= σ2Tr(EXXXT

[
EXXT

]−1
)
(∗∗)
=

p · σ2

n
,
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where (∗) uses the circular trace identity Tr(ABC) = Tr(CAB) and (∗∗) uses the fact that we get
the trace of an identity p× p matrix.

Putting everything together, we conclude that for true linear model, the prediction error of
least squares regression is:

E
(
Y − f̂(X)

)2
≈ σ2 + 0 +

p · σ2

n
.

Note the difference from the standard results in linear regression courses, where there is exact equal-
ity, and the variance formula does not depend on assuming linearity. The key for the difference is
the fixed-X assumption taken in those courses, which we will get back to.

For k-NN, we can use the decomposition to derive various results, including the optimality result
in the homework extra-credit problem, which we will get back to. Now we can derive a simpler
but very interesting asymptotic result on 1-NN. Assume f(X) = E(Y |X) is “nicely behaved” (for
example, obeys a Lipschitz condition ∥x1 − x2∥ < δ ⇒ |f(x1) − f(x2)| < Cδ), and that X has a
continuous distribution. For x0 in the support of X denote by i0 the index of its nearest neighbor
in T , then from continuity of the distribution we have:

Xi0
a.s.−→ x0 , as n → ∞,

and therefore:
Ef̂1−NN (x0)

a.s.−→ f(x0) , meaning B(x0) → 0,

with nice behavior this also guarantees EB(X)
n→∞−→ 0, and only the variance component remains.

To quantify the variance component, we can again employ the law of total variation:

Var(f̂(x0)) = VarE
(
f̂(x0) | location of Xi0

)
+EVar

(
f̂(x0) | location of Xi0

)
= Var(f(Xi0))+σ2.

The second term is equal exactly to the variance of the noise σ2 because we are conditioning on
the location of the neighbor, hence it is simply the variance of Y at a given point. The first term
converges to 0 because Xi0 → x0, so for large n, f(Xi0) is approximately fixed at f(x0).

Putting all of this together we conclude that for 1−NN and large enough training size n, we
have:

E
(
Y − f̂(X)

)2
≈ 2σ2,

twice the irreducible error (the minimal possible expected loss). Note that this is a very strong
result and at first sight may seem to contradict the curse of dimensionality, which says that k-NN
methods are problematic in high dimension. Of course, there is no contradiction due to the different
asymptotics being employed (“big” p vs fixed p and n → ∞).

Summarizing the results we proved here, with the result from the homework and the curse of
dimensionality results, we can summarize our findings in the table below.
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p small, n big p big, n not huge
Bias2 Var Bias2 Var

Unbiased linear regresion 0 ≈ p
nσ

2 0 ≈ p
nσ

2

1-NN
COD

→ 0 → σ2 Big Big

k-NN
With k → ∞, k/n → 0 COD
→ 0 → 0 Big May be controllable

Components of error in fixed-X linear regression

To get a more intuitive and geometric view of the topic, we can expose the dirty secret of regression
courses: the fixed-X assumption. This assumption states that we are only interested in predicting
at the same points X as in our training data (for new independent Y values of course). Furthermore,
we assume that the values in X are given in advance and are not random. Writing this formally:

T = Y = f(X) + ϵ , Ynew = f(X) + ϵnew , Prediction error:
1

n
EY,Ynew∥Ynew − Ŷ∥2.

Note that now the “model” is simply a vector Ŷ ∈ Rn of predictions for the specific points in X.

This simplifies many aspects, for example we can calculate the prediction variance of least
squares regression and find out that it is exactly σ2p/n, regardless if the linear model is true or
not:

V =
1

n

n∑
i=1

Var(Ŷi) =
1

n
tr(Cov(Xβ̂)) =

1

n
tr(Cov(HY)) =

1

n
tr(HCov(Y )HT ) =

σ2

n
tr(HHT ) =

σ2

n
tr(H) =

pσ2

n
,

where H = X
[
XTX

]−1XT is the hat matrix, and we use its symmetry (HT = H), idemoptency
(HH = H) and circular trace properties:

tr(HH) = tr(X
[
XTX

]−1XTX
[
XTX

]−1XT ) = tr(XTX
[
XTX

]−1
) = tr(Ip) = p.

The attached powerpoint presentation shows some mathematical derivations and especially
geometric intuitions in this model.
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