
Statistical Learning, Fall 2024-5

Class notes 12

Kernel methods

The general paradigm we have discussed, given modeling problem with x ∈ Rp low dimensional:

� Embed x → h(x) ∈ Rq with q >> p.

� Fit a (possible linear model) in the high dimension f̂(x) =
∑q

j=1 hj(x)β̂j .

� Challenges:

– Computational: how to fit in high dimension

– Statistical: how to regularize in high dimension

Examples:

� Boosting:

– Model space: all trees of given size

– Computational trick: coordinate descent via gradient boosting

– Regularization: sort of lasso (not discussed in class)

� DNN:

– Model space: Not a linear model but linear combination of non-linear transformation of
linear combinations...

– Computational tricks: (stochastic) gradient descent,

– Regularization: sort of ridge (gradient descent ≈ ridge, similarly dropout

Now we will discuss perhaps the primary example of this thinking, which was hugely important
in ML in the past, lost some of its glamour: Kernel methods including (but not limited to) kernel
SVM. We can think of the basic idea the same way, except now x → h(x) where h1, ...hq (possibly
q = ∞) is a basis of a Reproducing kernel Hilbert functional space (RKHS) HK . The space is
defined indirectly through the kernel function

K(·, ·) : Rp × Rp → R such that: K(x, y) = ⟨h(x), h(y)⟩ =
q∑

j=1

hj(x)hj(y).

We also naturally define for a function in HK , f =
∑

j βjhj , we naturally define ∥f∥2HK
=

∑
j β

2
j .

Kernel examples:
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1. Linear Kernel (q = p): K(x, y) = ⟨x, y⟩. Here HK is simply linear functions.

2. Polynomial kernel: Kd(x, y) = (1 + xty)d. Here q =
(
p+d
p

)
all polynomials in xj , yj up to

degree d.

3. RBF (Gaussian) kernel: Kσ(x, y) = exp
(
−∥x− y∥2/(2σ2)

)
. Here q = ∞ and we usually

don’t think about h1, ... explicitly, only about the kernel as measuring distance:

� When σ is small, the kernel K(x, ·) is very tight around x

� When σ is big, the kernel K(x, ·) becomes very spread and K(x, y) remains big for
∥x− y∥ big

Since q = ∞ the function space HK contains all nicely behaved functions regardless of σ,
however we will see that the different nature of the kernel will play a role in model building
(i.e. selecting among the functions in HK) through regularization.

Kernel machines

The Hilbert space comes with a norm attached and therefore a natural regularization term that
controls that norm. Given a loss function our problem is:

f̂λ = arg min
f∈HK

n∑
i=1

L(yi, f(xi)) + λ∥f∥2HK
.

We see here that the regularization term is where the specific kernel plays an important role: how
functions in HK are prioritized for fitting.

The most important result in this area is the Representer theorem (Kimmeldorf and Wahba
1970):
The optimal solution to the kernel regression problem above has the form:

f̂λ =
n∑

i=1

αiK(xi, ·) , ∥f̂λ∥2HK
= αTKα, where: Kij = K(xi, xj).

Thus we get that we can solve the problem in the n dimensional basis of the columns of K:

f̂λ = argmin
α

n∑
i=1

L(yi,

n∑
j=1

αjK(xi, xj)) + λαTKα.

For squared loss this Kernal linear regression problem can be nicely written:

f̂λ =
∑

α̂iK(xi, ·) where: α̂ = argmin
α

∥Y−Kα∥2 + λαTKα,

a “generalized ridge regression” problem, with an algebraic solution:

α̂ = (K + λIn)
−1Y.

Now we can interpret what some of our kernels do in this context:
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� Linear kernel: K = XXT and therefore α̂ = (XXT +λIn)
−1Y. In this case we can easily show:

Kα̂ = XXT (XXT + λIn)
−1Y = X(XTX+ λIp)

−1XTY = Xβ̂λ,

the solution is the same as regular ridge regression!

� RBF Kernel with small σ:

K(xi, xj) = exp
(
−∥xi − xj∥2/(2σ2)

)
≈ 0 when xi ̸= xj , while K(xi, xi) = 1.

Therefore the kernel regression problem is very much like penalized k-NN:

∥Y−Kα∥2 + λαTKα ≈ ∥Y− α∥2 + λαTα,

the solution to this approximate problem is easily seen to be simple shrinkage of 1 − NN :
α̂i =

Yi
1+λ .

The most important kernel machine was the one using the hinge loss (kernel SVM):

L(y, ŷ) = (1− yŷ)+,

and recall that we discussed how the sparsity of the solution α̂ (support vectors) helps in computing
and finding solution.

For regression, the ML crowd who like loss functions that zero many α̂ came up with the
ϵ-support vector regression loss, which is absolute loss with a dontcare region in the middle:

L(y, ŷ) = (|y − ŷ| − ϵ)+,

Now we can also describe kernel methods in the high dimensional modeling framework:

� Model space: all functions in the RKHS

� Computational tricks: representer theorem, giving a problem of dimension n; Sparsity of
solution α̂ (“support vectors”) when selecting appropriate loss functions, like hinge loss of
SVM for classification or ϵ-SVR for regression

� Regularization: RKHS norm, sort of ridge

Neural networks and deep learning

1-Hidden Layer Neural net: A single layer network (from Wikipedia)
Each arc contains a parameter wij

Each node sums its inputs
Each of K hidden nodes (here K = 4) applies a non-linear function σ :

f̂l(x) =

K∑
k=1

w
(2)
kl σ(

p∑
j=1

w
(1)
jk xj),

where l is the index of the output nodes (in regression or two-class classification usually a single
output node).

Designing a simple Neural net:

3

https://www.tau.ac.il/~saharon/DScourse/images/Class11/nn-tiny.png


� How many hidden layers, how many nodes in each?

� Which non-linearity σ to use?

� One or more output nodes? For regression or 2-class classification, usually only one

� Given training data T , how do we learn the weights/parameters W?

Gradient descent for parameter learning: As in other methods, we start from defining a
loss function L(y, ŷ) for learning, for example

� Squared loss (RSS) for regression, like in OLS or our boosting example

� Bernoulli log-likelihood (AKA cross-entropy) for classification, like in logistic regression

Since ŷi = f̂(xi) is a function of the parameters W , we can write the loss as function of W , in our
simple example with one hidden layer, one output node, and squared loss:

n∑
i=1

L(yi, ŷi) =

n∑
i=1

yi −
K∑
k=1

w
(2)
k σ(

p∑
j=1

w
(1)
jk xij)

2

Given W (t−1), we calculate the derivative (gradient) of the loss function relative to every pa-
rameter ∇L(t). Dimension of ∇L is the number of parameters in our network — can be millions
or billions. We then take a downward step to decrease the loss

W (t) = W (t−1) − ϵ∇L(t)

We repeat that for many iterations

Two important notions: back-propagation and stochastic gradient descent (SGD)

A big part of the Neural Nets knowledge-base deals with ways of updating the weights based on
gradient which are:

� Statistically efficient (including regularization, implicitly or explicitly)

� Computationally efficient (how do we get somewhere in such a huge parameter space, with
non-convex functions of parameters?)

Back-prop is an efficient approach for taking advantage of the graphical model structure for calcu-
lating elements of ∇L(t) of the form:

∂
∑n

i=1 L(yi, ŷ
(t−1)
i )

∂w
(l)
jk

In mathematical terms, back-prop is simply using the chain rule to differentiate for weights that
are ”deep” in the function, and uses the layer structure to calculate it efficiently. More generally,
the important idea is that of a computation graph that allows to efficiently calculate the gradient
relative to all parameters.
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SGD uses the idea that:
∂
∑n

i=1 L(yi, ŷi)

∂w
(l)
jk

=
n∑

i=1

∂L(yi, ŷi)

∂w
(l)
jk

SGD calculates the term inside the sum for one observation (or small group of observations) every
time, and updates the weights. Because the number of weights can be very large, backprop + SGD
allow updating all of them with relatively little computation. In practice, this converges much
faster than calculating ∇L over all observations before updating.

From Neural Nets to deep learning

Neural nets have been around for decades, initially proposed as ”imitating the brain”. They went
in and out of fashion, not the leading choice for predictive modeling as of 2005 (Boosting was,
including for image processing!) Starting around 2005: the deep learning (DL) revolution.

With the explosion of computing power, could fit much bigger neural nets, with millions or
billions of parameters. In parallel, architectures got more imaginative, like:

� Convolutional NNets for images (we will discuss)

� Recurrent NNs

� GANS

These new architectures can address a wide range of problems beyond standard predictive modeling,
a few examples:

� Reinforcement learning: learning to play games, the ”reward” is only observed at the end

� Auto-encoding: find structure in data (non-linear PCA)

� Transfer learning: Learn networks on problems where you have lots of data, adjust to problems
with a little data

They also involve more modern statistical elements, such as:

� Dropout: occasionally zero some of the weights in the network to get out of local minimum

� Momentum: Instead of just using the gradient (first derivative) remember previous gradients
(sort-of second derivative)

Starting around 2005 we observe amazing accuracy gains in many domains from using DL
models, fields dominated by DL today: image recognition, speech recognition, natural language
processing,...

Convolutional neural nets: the original DL revolution for images

Motivating example: CIFAR-10
An image is a K × K × L object (for example K = 100, L = 3 layers of color). For simplicity
assume here one layer L = 1. Denote an image by A, the i, j pixel is A(i, j) A local area in the
image is a q × q region (say q = 3 or q = 5).
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Filters as detectors: A filter f is a q × q mask f(k, l), k, l = 1, . . . q. Now f can be applied
to every q × q area in A:

(f ∗A)(i, j) =
q∑

k=1

q∑
l=1

f(k, l)×A(i+ k, j + l)

Gives a new ”image” of size (K − q + 1) × (K − q + 1), where each pixel is a convolution of a
neighborhood with the filter.

Filter example: finding a corner or a line Consider the following two 3× 3 filters:

f1 =

 0 0 0
1 1 0
0 1 0

 , f2 =

 0 1 0
0 1 0
0 1 0


(f1 ∗ A) gives high values where A has a corner, while (f2 ∗ A) gives high values where A has a
vertical line Example: Sobel filter finds edges

Filters can find ”features” in the image that can help identify it:

� A house has corners

� A snake has a repeating pattern on its back

� A cat has pointy ears

But we don’t know what features will allow us to solve a specific problem:

� Corners, lines, edges, patterns?

� What scale? A small cat has small pointy ears, a big cat has LARGE pointy ears — they are
both cats

So, we want the model to ”learn” filters of different types and different scales that will help it solve
the specific problem

A CNN architecture:

� We don’t decide on filters, we ”learn” them: a q × q filter has q2 parameters.

� Each filter is applied to the entire image to create a new ”image”.

� Images are scaled (”pooling”), then more filters are applied, to find features at different scales

� The learned features are then used in a dense feed-forward network to classify images

Example

Some details:
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� Number of parameters of convolutional layers is relatively small: assume input is K ×K ×L
and we have C convolutions of size q × q × L, then the number of parameters is C × q2 × L
regardless of image size K

� Pooling: decreasing image size from K ×K usually to K/2×K/2 by aggregating every 2× 2
region to a single pixel

� Most common pooling operator: max pooling (are there pointy ears anywhere in this region?)

� By alternating convolutions and pooling we learn features at different scales

� Important: all parameters (filters, dense layers weights,...) are learned *together* using SGD
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