Statistical Learning, Fall 2024-5 Class notes 11

Model evaluation and selection

Last week:

- Basic definitions: selection, evaluation,
- Sampling-based: Training-validation-test, K-fold cross-validation (CV), n-fold or leave-oneout CV (LOOCV)

LOOCV and the leaving out lemma

The Leaving Out Lemma requires two conditions under the squared loss, iid error assumption:

- 1. Linear model: $\hat{\mathbb{Y}} = S(\mathbb{X})\mathbb{Y}$ in training.
- 2. For any $1 \leq i_0 \leq n$, define a pseudo training dataset $\mathbb{X}, \tilde{\mathbb{Y}}$ with the same \mathbb{X} as our training data, and $\tilde{y}_j = y_j$ for $j \neq i_0$ and:

$$\tilde{y}_{i_0} = \hat{y}_{i_0}^{(-i_0)}$$

where the superscript $(-i_0)$ indicates the model built on n-1 observations, leaving out i_0 . Then we require:

$$\hat{\tilde{y}}_{i_0} = (S\tilde{\mathbf{y}})_{i_0} = \hat{y}_{i_0}^{(-i_0)}$$

Under these conditions we can easily prove that:

$$(y_{i_0} - \hat{y}_{i_0}^{(-i_0)}) = \frac{(y_{i_0} - \hat{y}_{i_0})}{1 - S_{i_0 i_0}}$$

and therefore:

$$LOOCV = \sum_{i=1}^{n} \frac{(y_i - \hat{y}_i)^2}{(1 - S_{ii})^2},$$

and we can calculate LOOCV by only fitting the model on the training data once.

Proofs:

• OLS complies with condition 2: Define in the obvious way $\hat{\beta}$ as the full OLS solution and $\hat{\beta}^{-(i_0)}$ as the OLS solution with observation i_0 held out:

$$\hat{\beta}^{-(i_0)} = \arg\min_{\beta} \sum_{i=1, i \neq i_0}^n (Y_i - x_i^t \beta)^2.$$

Now define $\tilde{\mathbb{Y}}$ as in condition 2:

$$\tilde{Y}_i = \begin{cases} Y_i & \text{if } i \neq i_0 \\ x_{i_0}^t \hat{\beta}^{-(i_0)} & \text{if } i = i_0 \end{cases}$$

Now fit OLS to $(\mathbb{X}, \tilde{\mathbb{Y}})$:

$$\tilde{\hat{\beta}} = \arg\min_{\beta} \sum_{i=1, i \neq i_0}^n (Y_i - x_i^t \beta)^2 + (x_{i_0}^t (\hat{\beta}^{-(i_0)} - \beta))^2,$$

the first term is minimized by $\beta = \hat{\beta}^{-(i_0)}$ and the second is 0 when $\beta = \hat{\beta}^{-(i_0)}$. Therefore $\tilde{\hat{\beta}} = \hat{\beta}^{-(i_0)}$.

• Proof of the Lemma under the conditions:

$$\hat{Y}_{i_0} = (S\mathbb{Y})_{i_0} = \sum_{j=1}^n S_{i_0j} Y_j , \text{ From property 2: } \hat{Y}^{(-i_0)} i_0 = (S\tilde{\mathbb{Y}})_{i_0} = \sum_{j=1, j \neq i_0}^n S_{i_0j} Y_j + S_{i_0i_0} \hat{Y}^{(-i_0)} i_0$$

Therefore:

$$Y_{i_0} - \hat{Y}_{i_0}^{(i_0)} = Y_{i_0} - \hat{Y}_{i_0} + S_{i_0 i_0} (Y_{i_0} - \hat{Y}_{i_0}^{(i_0)}).$$

Changing sides we get:

$$Y_{i_0} - \hat{Y}_{i_0} = (1 - S_{i_0 i_0})(Y_{i_0} - \hat{Y}_{i_0}^{(i_0)})$$

Ridge regression also complies with the two conditions. K-NN complies with the first but not the second, while we stated that Lasso does not comply with the result, but left it as a challenge to figure out which of the conditions do not hold.

Optimism and degrees of freedom

Recall for Fixed-X, we have the training squared loss: $\frac{1}{n}RSS = \frac{1}{n}||\mathbb{Y} - \hat{\mathbb{Y}}||^2$, and the prediction loss for \mathbb{Y}^{new} an iid copy of \mathbb{Y} at same \mathbb{X} : $\mathbb{E}_{\mathbb{Y},\mathbb{Y}^{new}}\frac{1}{n}||\mathbb{Y}^{new} - \hat{\mathbb{Y}}||^2$ (where \mathbb{Y} plays a role through defining $\hat{\mathbb{Y}}$).

It is natural to define the *optimism* of a model building approach (a mapping $\mathbb{Y} \to \hat{\mathbb{Y}}$) as the difference in expectation between the two measures:

$$op = \mathbb{E}_{\mathbb{Y}, \mathbb{Y}^{new}} \frac{1}{n} \|\mathbb{Y}^{new} - \hat{\mathbb{Y}}\|^2 - \frac{1}{n} \|\mathbb{Y} - \hat{\mathbb{Y}}\|^2.$$

The beautiful and fundamental result is that under very general assumptions we have:

$$op = \frac{2}{n} \sum_{i=1}^{n} Cov(y_i, \hat{y}_i).$$

Furthermore, we can actually calculate or estimate this quantity for many models of interest. If we can calculate op or an estimate \hat{op} , then we can use it to obtain an unbiased estimate of the prediction error as :

$$\frac{1}{n}RSS + op.$$

Proof of optimism formula:

$$\begin{split} \mathbb{E}\|\mathbb{Y} - \hat{\mathbb{Y}}\|^2 &= \mathbb{E}\|\mathbb{Y} - \mathbb{E}\mathbb{Y} + \mathbb{E}\mathbb{Y} - \mathbb{E}\hat{\mathbb{Y}} + \mathbb{E}\hat{\mathbb{Y}} - \hat{\mathbb{Y}}\|^2 = \mathbb{E}\|\mathbb{Y} - \mathbb{E}\mathbb{Y}\|^2 + \|\mathbb{E}\mathbb{Y} - \mathbb{E}\hat{\mathbb{Y}}\|^2 + \mathbb{E}\|\mathbb{E}\hat{\mathbb{Y}} - \hat{\mathbb{Y}}\|^2 + \\ &+ \underbrace{2\mathbb{E}(\mathbb{Y} - \mathbb{E}\mathbb{Y})^T(\mathbb{E}\mathbb{Y} - \mathbb{E}\hat{\mathbb{Y}})}_{A} + \underbrace{2\mathbb{E}(\mathbb{Y} - \mathbb{E}\mathbb{Y})^T(\mathbb{E}\hat{\mathbb{Y}} - \hat{\mathbb{Y}})}_{B} + \underbrace{2(\mathbb{E}\mathbb{Y} - \mathbb{E}\hat{\mathbb{Y}})^T\mathbb{E}(\mathbb{E}\hat{\mathbb{Y}} - \hat{\mathbb{Y}})}_{C} = \\ &= \underbrace{\|\mathbb{Y} - \mathbb{E}\mathbb{Y}\|^2}_{\text{Irreducible}} + \underbrace{\|\mathbb{E}\mathbb{Y} - \mathbb{E}\hat{\mathbb{Y}}\|^2}_{\text{Bias}^2} + \underbrace{\mathbb{E}\|\mathbb{E}\hat{\mathbb{Y}} - \hat{\mathbb{Y}}\|^2}_{\text{Variance}} - 2\underbrace{\mathbb{E}(\mathbb{Y} - \mathbb{E}\mathbb{Y})^T(\hat{\mathbb{Y}} - \mathbb{E}\hat{\mathbb{Y}})}_{\text{Covariance}} \end{split}$$

It is easy to see that A = C = 0 from arguments we have seen previously. For the prediction error (remember that \mathbb{Y}^{new} , \mathbb{Y} are identically distributed and in particular $\mathbb{E}\mathbb{Y}^{new} = \mathbb{E}\mathbb{Y}$):

$$\begin{split} \mathbb{E}\|\mathbb{Y}^{new} - \hat{\mathbb{Y}}\|^2 &= \mathbb{E}\|\mathbb{Y}^{new} - \mathbb{E}\mathbb{Y} + \mathbb{E}\mathbb{Y} - \mathbb{E}\hat{\mathbb{Y}} + \mathbb{E}\hat{\mathbb{Y}} - \hat{\mathbb{Y}}\|^2 = \mathbb{E}\|\mathbb{Y} - \mathbb{E}\mathbb{Y}\|^2 + \|\mathbb{E}\mathbb{Y} - \mathbb{E}\hat{\mathbb{Y}}\|^2 + \mathbb{E}\|\mathbb{E}\hat{\mathbb{Y}} - \hat{\mathbb{Y}}\|^2 + \\ &+ \underbrace{2\mathbb{E}(\mathbb{Y}^{new} - \mathbb{E}\mathbb{Y})^T(\mathbb{E}\mathbb{Y} - \mathbb{E}\hat{\mathbb{Y}})}_{A} + \underbrace{2\mathbb{E}(\mathbb{Y}^{new} - \mathbb{E}\mathbb{Y})^T(\mathbb{E}\hat{\mathbb{Y}} - \hat{\mathbb{Y}})}_{B} + \underbrace{2(\mathbb{E}\mathbb{Y} - \mathbb{E}\hat{\mathbb{Y}})^T\mathbb{E}(\mathbb{E}\hat{\mathbb{Y}} - \hat{\mathbb{Y}})}_{C} = \\ &= \underbrace{\|\mathbb{Y} - \mathbb{E}\mathbb{Y}\|^2}_{\text{Irreducible}} + \underbrace{\|\mathbb{E}\mathbb{Y} - \mathbb{E}\hat{\mathbb{Y}}\|^2}_{\text{Bias}^2} + \underbrace{\mathbb{E}\|\mathbb{E}\hat{\mathbb{Y}} - \hat{\mathbb{Y}}\|^2}_{\text{Variance}} \end{split}$$

And it follows that:

$$op = \frac{1}{n} \left(\mathbb{E} \| \mathbb{Y}^{new} - \hat{\mathbb{Y}} \|^2 - \mathbb{E} \| \mathbb{Y} - \hat{\mathbb{Y}} \|^2 \right) = \frac{2}{n} \sum_{i=1}^n Cov(y_i, \hat{y}_i) = \frac{2}{n} tr(Cov(\mathbb{Y}, \hat{\mathbb{Y}})).$$

The simple setting where we can use this result is when:

- We have iid error model $y = f(X) + \epsilon$, $\epsilon \sim (0, \sigma^2)$
- We have a linear model (in the generalized sense): $\hat{\mathbb{Y}} = S(\mathbb{X})\mathbb{Y}$.

(notice no linearity or normality assumptions). In these cases we can write:

$$op = \frac{2}{n} tr(Cov(\mathbb{Y}, S\mathbb{Y})) = \frac{2}{n} tr(SCov(\mathbb{Y}, \mathbb{Y})) = \frac{2\sigma^2}{n} tr(S\mathbb{I}) = \frac{2\sigma^2 tr(S)}{n}$$

For least squares: $S = H = \mathbb{X} (\mathbb{X}^T \mathbb{X})^{-1} \mathbb{X}^T$, so:

$$op = \frac{2\sigma^2}{n}tr(H) = \frac{2p}{n}\sigma^2,$$

in other words, an unbiased estimate of Fixed-X prediction error is:

$$\frac{RSS(\hat{\beta})}{n} + \frac{2p\sigma^2}{n}.$$

For ridge regression: $S_{\lambda} = \mathbb{X} \left(\mathbb{X}^T \mathbb{X} + \lambda \mathbb{I} \right)^{-1} \mathbb{X}^T$ for $\lambda > 0$, so:

$$op = \frac{2\sigma^2}{n}tr(S_{\lambda}) < \frac{2p}{n}\sigma^2,$$

and we see the reduced optimism from adding regularization.

We can also apply this result to k-NN which has the required form for Fixed-X, the result? in HW4...

Interesting extensions we may discuss as time permits:

- Dealing with unknown σ^2 (e.g. using unbiased estimates assuming linear model)
- Extending beyond squared loss to likelihood-loss (as in logistic regression): AIC
- Extending to cases where *op* cannot be calculated but can be estimated in unbiased manner: Stein's Lemma

Kernel methods

The general paradigm we have discussed, given modeling problem with $x \in \mathbb{R}^p$ low dimensional:

- Embed $x \to h(x) \in \mathbb{R}^q$ with $q \gg p$.
- Fit a (possible linear model) in the high dimension $\hat{f}(x) = \sum_{j=1}^{q} h_j(x)\hat{\beta}_j$.
- Challenges:
 - Computational: how to fit in high dimension
 - Statistical: how to regularize in high dimension

Examples:

- Boosting:
 - Model space: all trees of given size
 - Computational trick: coordinate descent via gradient boosting
 - Regularization: sort of lasso (not discussed in class)
- DNN:
 - Model space: Not a linear model but linear combination of non-linear transformation of linear combinations...
 - Computational tricks: (stochastic) gradient descent,
 - Regularization: sort of ridge (gradient descent \approx ridge, similarly dropout

Now we will discuss perhaps the primary example of this thinking, which was hugely important in ML in the past, lost some of its glamour: Kernel methods including (but not limited to) kernel SVM. We can think of the basic idea the same way, except now $x \to h(x)$ where $h_1, ..., h_q$ (possibly $q = \infty$) is a basis of a Reproducing kernel Hilbert functional space (RKHS) \mathcal{H}_K . The space is defined indirectly through the kernel function

$$K(\cdot, \cdot) : \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$$
 such that: $K(x, y) = \langle h(x), h(y) \rangle = \sum_{j=1}^q h_j(x) h_j(y).$

We also naturally define for a function in \mathcal{H}_K , $f = \sum_j \beta_j h_j$, we naturally define $||f||^2_{\mathcal{H}_K} = \sum_j \beta_j^2$. **Kernel examples:**

- 1. Linear Kernel (q = p): $K(x, y) = \langle x, y \rangle$. Here \mathcal{H}_K is simply linear functions.
- 2. Polynomial kernel: $K_d(x,y) = (1+x^ty)^d$. Here $q = \binom{p+d}{p}$ all polynomials in x_j, y_j up to degree d.
- 3. RBF (Gaussian) kernel: $K_{\sigma}(x, y) = \exp\left(-\frac{\|x y\|^2}{(2\sigma^2)}\right)$. Here $q = \infty$ and we usually don't think about h_1, \dots explicitly, only about the kernel as measuring distance:
 - When σ is small, the kernel $K(x, \cdot)$ is very tight around x
 - When σ is big, the kernel $K(x, \cdot)$ becomes very spread and K(x, y) remains big for ||x y|| big

Since $q = \infty$ the function space \mathcal{H}_K contains all nicely behaved functions regardless of σ , however we will see that the different nature of the kernel will play a role in model building (i.e. selecting among the functions in \mathcal{H}_K) through regularization.

Kernel machines

The Hilbert space comes with a norm attached and therefore a natural regularization term that controls that norm. Given a loss function our problem is:

$$\hat{f}_{\lambda} = \arg\min_{f \in \mathcal{H}_K} \sum_{i=1}^n L(y_i, f(x_i)) + \lambda \|f\|_{\mathcal{H}_K}^2.$$

We see here that the regularization term is where the specific kernel plays an important role: how functions in \mathcal{H}_K are prioritized for fitting.

The most important result in this area is the Representer theorem (Kimmeldorf and Wahba 1970):

The optimal solution to the kernel regression problem above has the form:

$$\hat{f}_{\lambda} = \sum_{i=1}^{n} \alpha_i K(x_i, \cdot) , \quad \|\hat{f}_{\lambda}\|_{\mathcal{H}_K}^2 = \alpha^T K \alpha, \quad \text{where:} \quad K_{ij} = K(x_i, x_j).$$

Thus we get that we can solve the problem in the n dimensional basis of the columns of K:

$$\hat{f}_{\lambda} = \arg\min_{\alpha} \sum_{i=1}^{n} L(y_i, \sum_{j=1}^{n} \alpha_j K(x_i, x_j)) + \lambda \alpha^T K \alpha.$$

For squared loss this Kernal linear regression problem can be nicely written:

$$\hat{f}_{\lambda} = \sum \hat{\alpha}_i K(x_i, \cdot)$$
 where: $\hat{\alpha} = \arg \min_{\alpha} \| \mathbb{Y} - K\alpha \|^2 + \lambda \alpha^T K\alpha$,

a "generalized ridge regression" problem, with an algebraic solution:

$$\hat{\alpha} = (K + \lambda I_n)^{-1} \mathbb{Y}$$

Now we can interpret what some of our kernels do in this context:

• Linear kernel: $K = \mathbb{X}\mathbb{X}^T$ and therefore $\hat{\alpha} = (\mathbb{X}\mathbb{X}^T + \lambda I_n)^{-1}\mathbb{Y}$. In this case we can easily show:

$$K\hat{\alpha} = \mathbb{X}\mathbb{X}^T(\mathbb{X}\mathbb{X}^T + \lambda I_n)^{-1}\mathbb{Y} = \mathbb{X}(\mathbb{X}^T\mathbb{X} + \lambda I_p)^{-1}\mathbb{X}^T\mathbb{Y} = \mathbb{X}\hat{\beta}_{\lambda},$$

the solution is the same as regular ridge regression!

• RBF Kernel with small σ :

$$K(x_i, x_j) = \exp\left(-\|x_i - x_j\|^2 / (2\sigma^2)\right) \approx 0 \text{ when } x_i \neq x_j.$$

Therefore the kernel regression problem is very much like penalized k-NN:

$$\|\mathbb{Y} - K\alpha\|^2 + \lambda \alpha^T K\alpha \approx \|\mathbb{Y} - \alpha\|^2 + \lambda \alpha^T \alpha$$

The most important kernel machine was the one using the hinge loss (kernel SVM):

$$L(y, \hat{y}) = (1 - y\hat{y})_{+},$$

and recall that we discussed how the sparsity of the solution $\hat{\alpha}$ helps in computing and finding solution.

For regression, the ML crowd who like loss functions that zero many $\hat{\alpha}$ came up with the ϵ -support vector regression loss, which is absolute loss with a *dontcare* region in the middle:

$$L(y,\hat{y}) = (|y - \hat{y}| - \epsilon)_+,$$

Now we can also describe kernel methods in the high dimensional modeling framework:

- Model space: all functions in the RKHS
- Computational tricks: representer theorem, giving a problem of dimension n; Sparsity of solution $\hat{\alpha}$ ("support vectors") when selecting appropriate loss functions, like hinge loss of SVM for classification or ϵ -SVR for regression
- Regularization: RKHS norm, sort of ridge