
Statistical Learning, Fall 2024-5

Class notes 10

The gradient boosting paradigm

� Choose a loss function for modeling (like RSS for regression)

� At each iteration: calculate the (negative) gradient of the loss function at the current model,
use that as Y (t) for the next weak learner

� Interpretation: trying to find a weak learner hkt which ”behaves like” the negative gradient,
which is the direction of fastest decrease of the loss

� Can be applied with different loss functions for regression or classification

For 2-class classification we denote yi ∈ {0, 1} (sometimes yi ∈ {±1} but we stick here with
0/1). A common loss function, which we also presented in the context of logistic regression is the
(negative) Bernoulli log likelihood:

L(yi, ŷi) = −yi log(
exp(ŷi)

1 + exp(ŷi)
)− (1− yi) log(

1

1 + exp(ŷi)
).

For simplicity denote as in logistic regression using the inverse logit transformation:

p̂i =
exp(ŷi)

1 + exp(ŷi)
=

exp(F (t−1)(xi))

1 + exp(F (t−1)(xi))
,

where the last equality refers to already applying ŷi = F (t−1)(xi).
If we use this loss function in a gradient boosting algorithm, after some scary differentiation we

get that simply:

y
(t)
i = yi(1− p̂i)− (1− yi)p̂i.

Note that since yi ∈ {0, 1}, only one of the two expressions is non-zero.

Formal gradient boosting description

In the gradient boosting paradigm, define:

� Training loss function per observation: L(y, ŷ), and total: L =
∑

i L(Yi, Ŷi).

� Family of q weak learners: hk : X → R , k = 1, . . . , q, possibly q =∞.

Now define F (0) ≡ 0, and for t = 1, . . . , T :

1



1. Set ∇L =

{
∂L(yi,ŷi)

∂ŷi

∣∣∣
ŷi=F (t−1)(xi)

}n

i=1

2. Solve (exactly or approximately) kt = argmink ⟨∇L, hk(X)⟩

3. Find coefficient αt =

{
argminα L(F (t−1) + αhk) Line search boosting
ϵ (small) ϵ-boosting

4. Update F (t) = F (t−1) + αthkt .

The optimization problem in the second step is often replaced with:

kt = argmin
k
∥(−∇L)− hk(X)∥2

which is very similar, except it also penalizes ∥hk(X)∥2, controlling the norm of the model.

Gradient boosting and AdaBoost

The famous AdaBoost algorithm (Freund and Schapire 1992) was developed in the machine learning
community, with a different theory, but we can discuss it as gradient boosting. The algorithm for
two-class classification initializes wi ≡ 1, then for t = 1...T updates:

1. Fit a classification tree with response y and weights w on the observations, getting tree ht

2. Denote by Errt the (weighted) misclassification error of ht

3. Set αt = 0.5 log ((1− Errt)/Errt)

4. Update weights: wi ← wi exp (−αt(yiht(xi)))

This is a gradient boosting algorithm with L(y, ŷ) = exp(−yŷ), (where y ∈ {±1} and ŷ ∈ R). The
weights w are the gradient, and step 3 is the solution to line search in this setting.

Model evaluation and selection

The possible goals:

� Model evaluation: estimate prediction error for a given model (or modeling approach “black
box”)

� Model selection: among a set of candidate modeling approaches, seek to select one with low
prediction error

Definitions of prediction error, given a prediction loss function L(y, ŷ):

� Fixed-X error: Assume X given and fixed and shared between training and prediction, define
the prediction error: 1

nEY,Ynew

∑
i L(Y

new
i , Ŷi).

� Same-X error: Similar to Fixed-X, but assume X is random: EX

[
1
nEY,Ynew

∑
i L(Y

new
i , Ŷi)|X

]
.

� Random-X error: The realistic scenario when new X is used for prediction:

ET=(X,Y),X,Y

∑
i

L(Y, f̂(X)).

2



Validation and cross validation

For a given data set T of size n, we can divide it into two or three pieces for training, validation
(model selection) and test (model evaluation). A typical split is 60%− 20%− 20%. If we want only
validation or only test we can split 80%− 20%.

A more advanced approach uses K-fold cross-validation (CV): define a random partition of the
n data points into K sets, each of size n/K (exactly or approximately). Express it as a function:

ϕ : {1, . . . , n} → {1, . . . ,K},

and call the set ϕk = {i : ϕ(i) = k} the kth fold.

Model evaluation using cross validation: for k = 1, . . . ,K :

� Build a model f̂ (k) using all folds except the kth fold (total (K − 1)/K · n data points)

� Lk =
∑

i∈ϕk
L(Yi, f̂

(k)(Xi))

And define the CV estimate: CV = 1
n

∑K
k=1 Lk. This way, the model is evaluated on the entire n

observations. Each model is built on (K − 1)/K · n < n observations, and we generally want to
make K as large as possible, to get a realistic evaluation of the performance of the model built on
n observations. However making K too large can have substantial computational cost.

Model selection using CV: Assume the modeling approach has a tuning parameter λ, then
we would calculate:

Lk(λ) =
∑
i∈ϕk

L(Yi, f̂
(k)
λ (Xi)) , CV (λ) =

1

n

K∑
k=1

Lk(λ) , λ̂ = argmin
λ

CV (λ),

then we rebuild the model on the entire n observations using λ̂.

n-fold (Leave-one-out) CV and the leaving out lemma

The Leaving Out Lemma requires two conditions under the squared loss, iid error assumption:

1. Linear model: Ŷ = S(X)Y in training.

2. For any 1 ≤ i0 ≤ n, define a pseudo training dataset X, Ỹ with the same X as our training
data, and ỹj = yj for j ̸= i0 and:

ỹi0 = ŷ
(−i0)
i0

,

where the superscript (−i0) indicates the model built on n − 1 observations, leaving out i0.
Then we require:

ˆ̃yi0 = (Sỹ)i0 = ŷ
(−i0)
i0

.

Under these conditions we can easily prove (on the board) that:

(yi0 − ŷ
(−i0)
i0

) =
(yi0 − ŷi0)

1− Si0i0

,

3



and therefore:

LOOCV =
n∑

i=1

(yi − ŷi)
2

(1− Sii)2
,

and we can calculate LOOCV by only fitting the model on the training data once.

We show in class the least squares regression complies with both conditions, and stated that
ridge regression also does. K-NN complies with the first but not the second, while we stated that
Lasso does not comply with the result, but left it as a challenge to figure out which of the conditions
do not hold.

Optimism and degrees of freedom

Recall for Fixed-X, we have the training squared loss: 1
nRSS = 1

n∥Y− Ŷ∥2,
and the prediction lost for Ynew an iid copy of Y at same X: ”EPE” = EY,Ynew

1
n∥Y

new−Ŷ∥2 (where
Y plays a role through defining Ŷ).

It is natural to define the optimism of a model building approach (a mapping Y → Ŷ) as the
difference in expectation between the two measures:

op = EY,Ynew
1

n
∥Ynew − Ŷ∥2 − 1

n
∥Y− Ŷ∥2.

The beautiful and fundamental result is that under very general assumptions we have:

op =
2

n

n∑
i=1

Cov(yi, ŷi).

Furthermore, we can actually calculate or estimate this quantity for many models of interest. If
we can calculate op or an estimate ôp, then we can use it to obtain an unbiased estimate of the
prediction error as :

1

n
RSS + op.

Proof of optimism formula:

E∥Y− Ŷ∥2 = E∥Y− EY+ EY− EŶ+ EŶ− Ŷ∥2 = E∥Y− EY∥2 + ∥EY− EŶ∥2 + E∥EŶ− Ŷ∥2 +
+ 2E(Y− EY)T (EY− EŶ)︸ ︷︷ ︸

A

+2E(Y− EY)T (EŶ− Ŷ)︸ ︷︷ ︸
B

+2(EY− EŶ)TE(EŶ− Ŷ)︸ ︷︷ ︸
C

=

= ∥Y− EY∥2︸ ︷︷ ︸
Irreducible

+ ∥EY− EŶ∥2︸ ︷︷ ︸
Bias2

+E∥EŶ− Ŷ∥2︸ ︷︷ ︸
Variance

−2E(Y− EY)T (Ŷ− EŶ)︸ ︷︷ ︸
Covariance

It is easy to see that A = C = 0 from arguments we have seen previously. For the prediction error
(remember that Ynew,Y are identically distributed and in particular EYnew = EY):

E∥Ynew − Ŷ∥2 = E∥Ynew − EY+ EY− EŶ+ EŶ− Ŷ∥2 = E∥Y− EY∥2 + ∥EY− EŶ∥2 + E∥EŶ− Ŷ∥2 +
+ 2E(Ynew − EY)T (EY− EŶ)︸ ︷︷ ︸

A

+2E(Ynew − EY)T (EŶ− Ŷ)︸ ︷︷ ︸
B

+2(EY− EŶ)TE(EŶ− Ŷ)︸ ︷︷ ︸
C

=

= ∥Y− EY∥2︸ ︷︷ ︸
Irreducible

+ ∥EY− EŶ∥2︸ ︷︷ ︸
Bias2

+E∥EŶ− Ŷ∥2︸ ︷︷ ︸
Variance

4



And it follows that:

op =
1

n

(
E∥Ynew − Ŷ∥2 − E∥Y− Ŷ∥2

)
=

2

n

n∑
i=1

Cov(yi, ŷi) =
2

n
tr(Cov(Y, Ŷ)).

The simple setting where we can use this result is when:

� We have iid error model y = f(X) + ϵ , ϵ ∼ (0, σ2)

� We have a linear model (in the generalized sense): Ŷ = S(X)Y.

(notice no linearity or normality assumptions). In these cases we can write:

op =
2

n
tr(Cov(Y, SY)) =

2

n
tr(SCov(Y,Y)) =

2σ2

n
tr(SI) =

2σ2tr(S)

n
.

For least squares: S = H = X
(
XTX

)−1XT , so:

op =
2σ2

n
tr(H) =

2p

n
σ2,

in other words, an unbiased estimate of Fixed-X prediction error is:

RSS(β̂)

n
+

2pσ2

n
.

For ridge regression: Sλ = X
(
XTX+ λI

)−1XT for λ > 0, so:

op =
2σ2

n
tr(Sλ) <

2p

n
σ2,

and we see the reduced optimism from adding regularization.

We can also apply this result to k-NN which has the required form for Fixed-X, the result? in
HW4...

Interesting extensions we may discuss as time permits:

� Dealing with unknown σ2 (e.g. using unbiased estimates assuming linear model)

� Extending beyond squared loss to likelihood-loss (as in logistic regression): AIC

� Extending to cases where op cannot be calculated but can be estimated in unbiased manner:
Stein’s Lemma

5


