
Statistical Learning, Fall 2024-5

Example final No. 2

1. (40 points) Minimum norm interpolation

In this problem we investigate the behavior of regression models in high dimension, show how we can
define the “best” interpolating solution via a choice of regularization and investigate the empirical
implications of this result with standard linear regression and kernel methods. Assume as usual that
we have n observations and p covariates (+intercept=p+ 1 total), and assume p ≥ n. Define as usual
the design matrix X as the matrix with p columns and n rows.

(a) Assume X is full rank, and state explicitly what its rank is in that case. Explain why it implies
that the standard linear regression problem will result in interpolation, i.e.:

min
β0,β

∑
i

(yi − xT

iβ − β0)
2 = 0

i. Does this result uniquely define the solution?

ii. Will the conclusion be different if we use a linear model with absolute loss? Quantile loss?

(b) Now assume we add a little ridge penalty regularization to our linear regression problem, which
becomes:

min
β0,β

n∑
i=1

(yi − xT

iβ − β0)
2 + λ

p∑
j=1

β2
j

Denote the solution to this problem by β̂(λ). Argue that this (unique!) optimal solution will no
longer be an interpolating one.
Hint: One way to do this is by looking at the derivatives with regard to βj at any interpolation
point and arguing that they are different from zero.

(c) Define β̂(l2), the minimal-2-norm interpolator, as the interpolation solution which minimizes the
ridge penalty:

min

p∑
j=1

β2
j subject to

∑
i

(yi − xT

iβ − β0)
2 = 0

When λ > 0, argue that this solution has the smallest ridge-penalized loss of any interpolating
solution.

(d) Given a non-interpolating model β̃, show that there is ϵ > 0 such that for λ < ϵ the solution β̂(l2)

has smaller penalized loss than β̃.

(e) Combine the previous results to show that as λ → 0, the solution β̂(λ) converges to β̂(l2).
Note: A formal proof is appreciated but clear relevant arguments will also be accepted.

(f) (* Extra credit) Derive an explicit algebraic expression for the minimum Euclidean norm inter-

polator β̂(l2).

(g) Extending the result from part (d) (in this case, short non-formal correct arguments are enough,
no need for formal proofs):
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i. What would be the equivalent result if we used lasso regularization instead of ridge regular-
ization?

ii. How would the result change if we used absolute or quantile loss instead of squared error loss?

2. Short problems — 8 points each

(a) In a regression problem, we are given n = 200 training observations in p = 1000 dimensions,
and also a very large test set from the same distribution. We are told that when performing
PC-regression on d = 1 principal components in this data, we get the following results:

� The first PC captures over 80% of the overall variance of the training data x vectors

� Performing 1-dimensional PC regression (i.e., linear regression with only this PC) does ex-
tremely well in prediction

Is Ridge regression likely to work well in this setting? Explain.

(b) We take a data set, divide it into equally-sized training and test sets, and then try out two different
classification procedures. First we use logistic regression and get a misclassification error rate of
20% on the training data and 30% on the test data. Next we use 1-nearest neighbors (i.e. K =
1) and get an average error rate (averaged over both test and training data sets) of 18%. Based
on these results, which method should we prefer to use for classification of new observations?

(c) Assume we build a Neural Network for regression as described in class, with one or more hidden
layers, with one or more nodes in each hidden layer, and nonlinear transformation σ. For example,
a model with two hidden layers, and two nodes in each, and p explanatory variables, will be (as
we showed in class):

f(x) =

2∑
i=1

w
(3)
i σ

 2∑
j=1

w
(2)
ji σ(

p∑
k=1

w
(1)
kj xk)

 .

Assume that for the ”nonlinearity” function σ we decide to use the absolute value function σ(u) =
|u|. What can we say about the resulting model? Is it a reasonable choice compared to standard
non-linearities like sigmoid or relu? Or does it suffer from some issues that rule it out as a
non-linearity choice?

3. Longer problems — 12 points each

(a) You have some training data (X,Y) and are considering fitting two simplistic models to it:

Model 1: Ŷ = ȳ the average of the training data

Model 2: Ŷ = y1 the first observation.

(Both models ignore X completely, and for both the prediction is identical for all observations).
Now consider the expected fixed-X squared prediction error of these models. As we discussed,
this error can be decomposed into expected training error + optimism, which is defined as:

optimism =
2

n

∑
i

cov(yi, ŷi).

Denote the expected training error by t1 for model 1 and t2 for model 2, their respective optimism
by o1, o2 and their respective expected prediction errors by p1, p2. For each of t, o, p explain
whether the value for model 1 is bigger, equal or smaller than for model 2, or whether it’s
impossible to say.

(b) Given a training set, assume we apply K-NN with k neighbors using leave-one-out-CV (n-fold
CV) to the data and calculate the sum of squared errors, denote it RSSk(LOO). We then apply
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regular K-NN with k + 1 neighbors to the same data (no cross validation), and calculate the
training sum of squared errors, denote it RSSk+1(Train). Calculate:

RSSk+1(Train)

RSSk(LOO)
.

Hint: Write the prediction of a specific observation in each one of the two scenarios and find the
relationship between the two expressions.

(c) We described gradient boosting as taking the (negative) derivative of the loss after t−1 iterations
and using that as the response for finding the weak learner in iteration t. We than explained the
use of residual as (half) the negative derivative of squared loss L(y, ŷ) = (y − ŷ)2. Using the
notation from class, where F (t−1) is the model after t− 1 iterations, we can denote this:

y
(t)
i = yi − F (t−1)(xi).

Now assume instead of taking half the negative derivative, we take the derivative itself:

y
(t)
i = 2

(
yi − F (t−1)(xi)

)
.

We compare two boosting algorithms run on the same data: the first (version A) uses the first
version with the residual, and the second (version B) with twice the residual. Both algorithms
use CART trees of a fixed depth (say 2) as weak learners. We choose a value of ϵA and number of

iterations TA and build a boosting model F
(TA)
A using version A. Are there values ϵB , TB that will

give the exact same model on the same data (F
(TB)
B = F

(TA)
A when running version B instead?

Explain.
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