Statistical Learning, Fall 2024-5
Example final No. 2

1. (40 points) Minimum norm interpolation

In this problem we investigate the behavior of regression models in high dimension, show how we can
define the “best” interpolating solution via a choice of regularization and investigate the empirical
implications of this result with standard linear regression and kernel methods. Assume as usual that
we have n observations and p covariates (+intercept=p + 1 total), and assume p > n. Define as usual
the design matrix X as the matrix with p columns and n rows.

(a)

(b)

Assume X is full rank, and state explicitly what its rank is in that case. Explain why it implies
that the standard linear regression problem will result in interpolation, i.e.:
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i. Does this result uniquely define the solution?
ii. Will the conclusion be different if we use a linear model with absolute loss? Quantile loss?

Now assume we add a little ridge penalty regularization to our linear regression problem, which

becomes:
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Denote the solution to this problem by B(\). Argue that this (unique!) optimal solution will no

longer be an interpolating one.

Hint: One way to do this is by looking at the derivatives with regard to 3; at any interpolation

point and arguing that they are different from zero.

Define B(lz), the minimal-2-norm interpolator, as the interpolation solution which minimizes the
ridge penalty:

p
minZﬁ? subject to Z(yz -z 8- 60)2 =0
j=1 i

When A\ > 0, argue that this solution has the smallest ridge-penalized loss of any interpolating
solution.

Given a non-interpolating modelNB , show that there is € > 0 such that for A\ < € the solution B (t2)
has smaller penalized loss than (.

Combine the previous results to show that as A — 0, the solution B (M) converges to 3(12).

Note: A formal proof is appreciated but clear relevant arguments will also be accepted.

(* Extra credit) Derive an explicit algebraic expression for the minimum Euclidean norm inter-
polator B(lz).

Extending the result from part (d) (in this case, short non-formal correct arguments are enough,
no need for formal proofs):



i. What would be the equivalent result if we used lasso regularization instead of ridge regular-
ization?

ii. How would the result change if we used absolute or quantile loss instead of squared error loss?

2. Short problems — 8 points each

(a)

In a regression problem, we are given n = 200 training observations in p = 1000 dimensions,
and also a very large test set from the same distribution. We are told that when performing
PC-regression on d = 1 principal components in this data, we get the following results:

e The first PC captures over 80% of the overall variance of the training data x vectors

e Performing 1-dimensional PC regression (i.e., linear regression with only this PC) does ex-
tremely well in prediction

Is Ridge regression likely to work well in this setting? Explain.

We take a data set, divide it into equally-sized training and test sets, and then try out two different
classification procedures. First we use logistic regression and get a misclassification error rate of
20% on the training data and 30% on the test data. Next we use l-nearest neighbors (i.e. K =
1) and get an average error rate (averaged over both test and training data sets) of 18%. Based
on these results, which method should we prefer to use for classification of new observations?

Assume we build a Neural Network for regression as described in class, with one or more hidden
layers, with one or more nodes in each hidden layer, and nonlinear transformation o. For example,
a model with two hidden layers, and two nodes in each, and p explanatory variables, will be (as
we showed in class):
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Assume that for the "nonlinearity” function o we decide to use the absolute value function o(u) =
|u|. What can we say about the resulting model? Is it a reasonable choice compared to standard
non-linearities like sigmoid or relu? Or does it suffer from some issues that rule it out as a
non-linearity choice?

3. Longer problems — 12 points each

(a)

You have some training data (X,Y) and are considering fitting two simplistic models to it:

Model 1: Y = y the average of the training data
Model 2: Y = y1 the first observation.

(Both models ignore X completely, and for both the prediction is identical for all observations).
Now consider the expected fixed-X squared prediction error of these models. As we discussed,
this error can be decomposed into expected training error + optimism, which is defined as:

2
optimism = o Z cov(yi, i )-
i

Denote the expected training error by ¢; for model 1 and ¢y for model 2, their respective optimism
by 01, 0o and their respective expected prediction errors by pi, ps. For each of ¢, 0,p explain
whether the value for model 1 is bigger, equal or smaller than for model 2, or whether it’s
impossible to say.

Given a training set, assume we apply K-NN with k& neighbors using leave-one-out-CV (n-fold
CV) to the data and calculate the sum of squared errors, denote it RSS;(LOO). We then apply



regular K-NN with & + 1 neighbors to the same data (no cross validation), and calculate the
training sum of squared errors, denote it RSSy41(Train). Calculate:

RSSi+1(Train)
RSSi(LOO)

Hint: Write the prediction of a specific observation in each one of the two scenarios and find the
relationship between the two expressions.

We described gradient boosting as taking the (negative) derivative of the loss after ¢ — 1 iterations
and using that as the response for finding the weak learner in iteration ¢t. We than explained the
use of residual as (half) the negative derivative of squared loss L(y,9) = (y — 9)?. Using the
notation from class, where F(!~1) is the model after ¢ — 1 iterations, we can denote this:

y? =y — FOD ().

Now assume instead of taking half the negative derivative, we take the derivative itself:
y? =2 (g - PO (@y).

We compare two boosting algorithms run on the same data: the first (version A) uses the first
version with the residual, and the second (version B) with twice the residual. Both algorithms
use CART trees of a fixed depth (say 2) as weak learners. We choose a value of €4 and number of

iterations Ty and build a boosting model FIE‘TA) using version A. Are there values eg, Ts that will

give the exact same model on the same data (F ]gTB ) = FATA) when running version B instead?
Explain.



