
Statistical Genetics, Spring 2024

Class notes 4: Introduction to GWAS

We are interested in general in understanding the mechanisms underlying phenotypes (proper-
ties of organisms). The factors affecting phenotypes can be broadly categorized into:

1. Genetic factors G

2. Environmental factors E : Diet, radiation, pollution, etc.

3. “Random” noise ϵ – can be truly random or due to unmeasured effects, typically assumed to
be independent of G,E.

E′ = (E, ϵ) are sometimes put together in genetic studies, assuming most of E is due to unmeasured
covariates anyway.

For a continuous pheontype, say for Y =height we can write Y = F (G,E) + ϵ = G(G,E′).

For Y ∈ {0, 1} (say 0=healthy, 1=sick in disease) we can write P(Y = 1|G,E) = F (G,E),
where the randomness due to unmeasured error comes in through F (G,E) being far from 0 or 1.
GLM Example: Assume G,E are scalar, and a logistic or probit model

P(Y = 1|G,E) = F (G,E) =
exp(f(G,E))

1 + exp(f(G,E))
, or P(Y = 1|G,E) = F (G,E) = Φ(f(G,E)).

A different representation of the same idea: The Liability threshold model:

l = F (G,E) + ϵ, Y = I{l > t} (indicator function).

This assumes there is an unobserved continuous phenotype, and the binary phenotype (disease) is
a threshold on this unobserved phenoytpe.

Equivalence between liability threshold and GLM view: Assume ϵ ∼ N(0, σ2), then

P(Y = 1|G,E) = P(F (G,E) + ϵ > t|G,E) = P(ϵ > t−F (G,E)) = Φ(F (G,E)− t), a probit model.

Other ϵ distributions can give logit or other GLMs.
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Genetic factors affecting phenotypes

Mutations and other changes in the genome are expected to affect phenotypes:

1. Mutations in genes which change the protein they generate:

� Non-synonymous mutations changing an amino-acid in the gene

� Mutations that change the splicing of the gene by confusing the bounds between exons
(coding) and introns (non-coding) – for example, by adding or removing a stop codon.
Also insertions or deletions that change the reading frame (division into codons).

Example: Most well known are the mutations in BRCA1, BRCA2 genes (about 100 known
rare mutations) which confer significantly increased risk for breast cancer and other female
reproductive cancers.
Since such mutations often have a strong effect, and hence strong selection against, they are
usually rare or very rare.

2. Mutations which affect the genes activation and modulation mechanisms (promoters, micro-
RNA, etc.)
Many of the GWAS findings of “common variants” which affect diseases, probably belong to
this class

In the naive view, mutations which do not belong to these classes are unlikely to affect pheno-
types. In practice, we find many statistical connections between genetics and phenotypes that do
not clearly correspond to biology. This may be due to:

� Confounding mechanisms like linkage disequilibrium and stratification, which we will discuss
in detail

� Other biological mechanisms in the genome which we don’t fully understand – there is a lot
of emerging knowledge on issues like epigenetics, long-range effects, diversity of functional
classes in the genome, etc., which we won’t really discuss in detail

Genome-wide Association Studies (GWAS)

General idea: A statistical search for connections between genetics (the genome) and phenotypes
of interest:

� Collect a large number n of samples, measure their phenotype:

– Quantitative phenotype (like height): collect random people, measure their phenotype

– Binary phenotype like disease, especially when one class (sick) is rare: typically employ
a case-control strategy, to make sure we have a good number of sick individuals

Typical numbers: 2005 : n = 103, 2010 : n = 104, now : n = 105 − 106.

� Measure the genome of these individuals at a large number M of points with common varia-
tion: 2005 : M ≈ 105, 2010 : M ≈ 106, now : whole genome sequencing
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� Search for statistical connections and associations in the resulting n×M matrix with the n
vector of phenotypes

Basic questions which have to be addressed in designing GWAS and analyzing GWAS data:

1. How to select the M loci to sample? (Now somewhat obsolete)

2. How to test for association and determine statistical significance?

3. How to differentiate correlation from causation?

4. Which type of effects are we expecting to find:

(a) Effect of one mutation at a time, independent of others?

(b) Mode: dominant, recessive, additive?

(c) Combination of mutations acting together (interaction/epistasis)?

(d) More generally: which “statistical language” is appropriate to describe the relevant
associations?

There are three critical elements to consider when analyzing GWAS and trying to answer the
above questions:

1. Linkage disequilibrium (LD): Mutations that are close to each other tend to be inherited
together due to non-perfect recombination. Hence if a mutation is associated causally with
the phenotype, its neighbors in the genome will be associated statistically with it as well

2. Stratification: If in studying a disease, all our cases are African, and all our controls are
European, then any genetic difference between Europeans and Africans will be statistically
associated with the disease! So we have to be able to neutralize this, either by careful
sampling, or more likely, by modeling and taking into account stratification in the sampling.

3. Multiplicity: IfM = 106 and we test each locus (column) for association with the phenotype,
we perform 106 hypothesis tests — severe problem of false discovery. The standard solution
in the GWAS community is to perform all tests at level 5× 10−8, implicitly doing Bonferroni
correction for 106 tests. We will discuss this and other strategies in more detail.

Measures of LD

Assume we have two binary loci, one denoted X with genotypes a,A and Y with b, B. Assume we
are either considering haploid organisms, or more likely, looking at each copy of the genome (so one
diploid organism is two samples). We can describe the joint distribution of the two loci via 2 × 2
table:

X \Y b B Total

a pab paB pa
A pAb pAB pA

Total pb pB
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(We can add hats and write p̂ab, p̂aB, . . . to differentiate observed data distributions from theoretical
distributions).

We are interested in understanding whether the sites X,Y are “associated” by LD and how
much. Intuitively this means that by knowing X we have information on Y.

A simple measure: Lewontin’s D: D = pab − papb = −(paB − papB) = . . . = Cov(X,Y ).

Example: MRCA is AB, mutation A → a, followed by B → b giving:

X \Y b B Total

a 0.3 0.2 0.5
A 0 0.5 0.5

Total 0.3 0.7

For this table D = 0.3− 0.15 = 0.15. However this tree has gone through no recombination!

An alternative measure which respects the phylogenetic order is D′ which is D, normalized to
the range −1 ≤ D ≤ 1 given then marginal distributions of X,Y :

D′ =
D

m(pa, pb, sign(D))
, m =

{
min(pa, pb)− papb if D > 0

papb −max(pa + pb − 1, 0) if D < 0
.

For the example above we would get m = 0.3− 0.15 = 0.15, so not surprisingly D′ = 1.
Claim: For a pair of loci with no recombinations, D′ = 1.

The problem with D′ (to some extent also D): Not really clear how the values relate
directly to the “amount of information X carries on Y.”.

Squared correlation / variance explained r2:

r2 = cor2(X,Y ) =
D2

papApbpB
.

Recall the interpretation from regression as the “variance explained” by regressing Y on X or X
on Y.

For the example above: r2 = 0.152

0.21×0.25 = 0.42.

r2 and D combine information on:

1. Whether there is recombinations breaking the correlation

2. The “phylogenetic context”, i.e., whether the mutations happened in a similar place in the
tree
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r2 ≈ 1 means that both conditions hold – few or no violations of the tree, and similar phylogenetic
context.

Important Note: r2 and D are not monotone decreasing as X,Y move further away along
the genome — recombinations are increasing for sure, but far away mutations can still have similar
phylogenetic context!
Conclusion: If X is causative for some disease, and r2(X,Y ) is big, then Y is likely to also be
associated with the disease only due to this correlation. This should be taken into account:

� What happens if we did not measure X at all, only Y ?

� What should we conclude if we see many associated loci close together: are there indepen-
dent associations, or is it all due to one association and LD? How can we use r2 values to
distinguish?

Statistical testing in case-control GWAS

Given we have collected M loci (say 106 in traditional GWAS), the simplest approach is to look at
the data in case-control GWAS as a collection of M 2× 3 tables:

Genotype AA AG GG Total

Case r0 r1 r2 R
Control s0 s1 s2 S

Total n0 n1 n2 n

The first and most important task is identifying statistical association. Most obvious
solution: Chi-squared test.

� A chi-squared test on the 3× 2 table with 2− df.

� Reduce to a 2 × 2 table by choosing inheritance mode (recessive / dominant). For example,
if we assume A is the risk allele, and mode is dominant, so AA and AG both confer risk, we
get:

Observed: Expected:

Genotype AA+AG GG Total

Case r0 + r1 r2 R
Control s0 + s1 s2 S

Total n0 + n1 n2 n

Genotype AA+AG GG

Case R(n0 + n1)/n R(n2)/n
Control S(n0 + n1)/n S(n2)/n

with test statistic:

χ2 =
∑
ij

(Oij − Eij)
2

Eij

H0, ·∼ χ2
1.

In the 2× 2 case we can alternatively perform a Fisher’s exact (hypergeometric) test.

Concerns and limitations with the Chi squared approach:
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1. How can we efficiently test under the assumption that the effect is monontone/additive:
AA < AG < GG in terms of risk?

2. If we only get a p-value, what do we know about the magnitude of the effect? Can use odds
ratios like:

(r0 + r1)/(s0 + s1)

r2/s2
,

but these are separate from the testing

3. Most important: how do we deal with having additional knowledge or assumptions, like:

� That multiple SNPs might have simultaneous effect

� That there are important measured environmental and other effects (smoking for lung
cancer, age) that can increase power or correct stratification

� Specific stratification due to ethnic origin

The obvious solution:
Testing using a regression approach. Can use logistic (or other relevant) regression, for

example fit model of the form:

̂
log

(
P(Y = 1)

P(Y = 0)

)
= β̂0 + β̂1SNP + β̂2X2 + β̂3X3 + . . . ,

where SNP can be encoded as recessive, dominant, additive etc. and X2, X3 can be ethnic origin,
smoking, or even another SNP, etc.
Then we can both estimate the effect of the SNP and test it for significance using standard method-
ology (e.g., Wald tests).

Advantages:

1. Account for possible confounders and stratification variables (testing is for each effect given
all others)

2. Test and estimate at the same time

3. Extensive flexibility in types of variables and types of association that can be covered

4. Interpretation of coefficients as log-odds change
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