Introduction to Genome Wide Association Studies

Saharon Rosset Tel Aviv University

Genome wide association studies

- Goal: find connections between:
 - A phenotype: height, type-I diabetes, etc., known to be heritable
 - Whole-genome genotype
- Specific goals are distinct:
 - 1. Identify statistical connections between points (or areas) in the genome and the phenotype
 - Drive hypotheses for biological studies of specific genes/regions in specific context
 - 2. Generate insights on genetic architecture of phenotype
 - Many small genetic effects dispersed across the genome?
 - Few large effects concentrated in one area (MHC?)
 - 3. Build statistical models to predict phenotype from genotype
 - "Show me your genome and I will tell you what diseases you will get"

Methodology

- Collect *n* subjects with known phenotype (usually *n* in range 10³-10⁴)
- Measure each one in *m* genomic locations ("representing common variation in the whole genome")
 - Usually SNPs: Single Nucleotide Polymorphisms
 - Typically *m* in range 10⁵-10⁶
 - Recently moving to whole genome sequencing ($m = 3*10^9$ but realistically same information)
- Now we can think of our data as X_{n*m} matrix with subjects as rows, SNPs as columns,
 - X_{ii} is in {0,1,2} (genotype at single locus)
 - Also given extra vector Y_n of phenotypes
- Our first task: association testing
 - Find SNPs (columns in X) that are statistically associated with Y
 - Can be thought of as *m* separate statistical tests run on this matrix

Can you find the associated SNP?

Cases:

Controls:	Associated SNP
AGAGCAGTCGACAGGTATAGCCTACATGAGATCGACATGAGATC	TCTAGAGCCGTGAGATCGACATGATAGCC
AGAGCCGTCGACAGGTATAGCCTACATGAGATCGACATGAGATC	G TAGAGCAGTGAGATCAACATGATAGTC
AGAGCCGTCGACATGTATAGCCTACATGAGATCGACATGAGATC	GC TAGAGCAGTGAGATCAACATGATAGCC
AGAGCCGTCGACATGTATAGCCTACATGAGATCGACATGAGATC	GCTAGAGCCGTGAGATCAACATGATAGCC
AGAGCAGTCGACAGGTATAGCCTACATGAGATCAACATGAGATC	GC TAGAGCAGTGAGATCGACATGATAGCC
AGAGCAGTCGACAGGTATAGTCTACATGAGATCGACATGAGATC	GC TAGAGCCGTGAGATCGACATGATAGCC
AGAGCCGTCGACATGTATAGTCTACATGAGATCGACATGAGATC	GC TAGAGCAGTGAGATCGACATGATAGTC
AGAGCAGTCGACAGGTATAGCCTACATGAGATCGACATGAGATC	G(TAGAGCCGTGAGATCGACATGATAGCC

AGAGCAGTCGACATGTATAGTCTACATGAGATCGACATGAGATC	G	TÀGAGC A GTGAGATC A ACATGATAG <mark>C</mark> C
AGAGCAGTCGACATGTATAGTCTACATGAGATCAACATGAGATC	T	TAGAGC <mark>C</mark> GTGAGATC G ACATGATAG <mark>C</mark> C
AGAGCAGTCGACATGTATAGCCTACATGAGATCGACATGAGATC	T	TAGAGC C GTGAGATC A ACATGATAG <mark>C</mark> C
AGAGCCGTCGACAGGTATAGCCTACATGAGATCGACATGAGATC	T (TAGAGC C GTGAGATC G ACATGATAG T C
AGAGCCGTCGACAGGTATAGTCTACATGAGATCGACATGAGATC	T	TAGAGC C GTGAGATC A ACATGATAG <mark>C</mark> C
AGAGCAGTCGACAGGTATAGTCTACATGAGATCGACATGAGATC	T	TAGAGC A GTGAGATC <mark>G</mark> ACATGATAG <mark>C</mark> C
AGAGCCGTCGACAGGTATAGCCTACATGAGATCGACATGAGATC	T	TAGAGC C GTGAGATC <mark>G</mark> ACATGATAG C C
AGAGCCGTCGACAGGTATAGTCTACATGAGATCAACATGAGATC	T	TAGAGC A GTGAGATC <mark>G</mark> ACATGATAG T C

Disease association analysis of a single SNP

	Genotype 0	Genotype 1	Genotype 2	Total
Y=0 (healthy)	N ₀₀	N ₀₁	N ₀₂	N ₀
Y=1 (sick)	N ₁₀	N ₁₁	N ₁₂	N ₁
Total	M ₀	M ₁	M ₂	n

Now our problem is one of testing:

 H_0 : No connection between disease and SNP \Leftrightarrow the rows and columns of the table are independent

```
Obvious approach: \chi^2 test for 3x2 table (2-df)
```

Other alternatives: logistic regression, trend test,... (dealing with genotype as numeric)

This approach generates $m (\approx 10^6)$ total hypotheses tests and p values

"Manhattan plot" of GWAS results

What happens if we use a p-value threshold of α =0.05 (black line) to declare results as significant?

We would get about $10^6 \times 0.05 =$ 50K false discoveries

Solution: be very selective in what results we declare as significant. In this plot the threshold is the orange line at α =10⁻⁵

 \Rightarrow Declaring only one association in Chr7

The multiplicity problem in GWAS

What is a statistically sound choice of a threshold for declaring an association?

- Family wise error rate (FWER): the probability of making even one false discovery out of our *m* tests
- Controlling FWER: the well known Bonferroni correction, perform each test at level $\alpha = 0.05/m$
 - For $m = 10^6$ this gives $\alpha = 5 \times 10^{-8}$
- Leading journals (Nature Genetics) require a p value smaller than 5 x 10⁻⁸ to publish GWAS results
 - Implicitly require Bonferroni for 10^6 super conservative!
 - Lesson learned in blood, from findings that did not replicate and were eventually deemed false!

GWAS promise and history

- We know of many highly heritable traits and diseases including
 - Height
 - Heart Disease
 - Many cancers
- The GWAS promise: we will identify the genetic basis for this heritability
- First GWAS in 2005, since then: Thousands of studies, hundreds of thousands of individuals, hundreds of billions of SNPs genotyped, many billions of \$\$\$ invested
- Was the promise fulfilled?

Was the promise fulfilled? Yes and no!

Yes: we found a lot of associations, learned some biology Published Genome-Wide Associations through 09/2011 2011 3rd of

Lessons learned:

- A few of strongest associations are in coding regions
- Most associations are in regulatory elements
- Some are in gene deserts

Results of famous WTCCC study of seven diseases on 14,000 cases and 3,000 shared controls (Nature, 2007)

Total found: 13 significant findings at level 5*10⁻⁸

Not al all: where is all the heritability?

Our GWAS findings do not explain heritability

- Height:
 - From twins and family study, about 80% of height variability is heritable
 - Huge height GWAS (n>40K) found SNPs explaining ~10% of height variability
- Diseases: Schizophrenia, heart disease, cancers,...
 - Heritability: 30%-80%
 - For none of these, GWAS gives more than 5%-10%
- Basically, for all complex traits investigated a major gap remains!

Results of famous WTCCC study of seven diseases on 14,000 cases and 3000 shared controls (Nature, 2007)

Total found: 13 significant findings at level 5*10⁻⁸ Heritability explained: small for all except T1D

Where is the missing heritability? Theories:

- 1. Rare variants not covered by GWAS : Every family has its own mutation
 - We know some examples in cancer (BRCA)
- 2. Complex associations/epistasis: combinations of SNPs
 - Problem: 10⁶ SNPs is 10¹² pairs
- 3. Lack of power: the effects are weak, we need much more data
 - Or statistical approaches that aggregate more smartly
- 4. Epigenetic effects: heritability is not in the genome at all

To some extent, all these theories have been tested, some have provided interesting answers (still hotly debated)

The importance of genetic structure

- Genetic structure: not everyone in the population is from same genetic background
 - Some people are more genetically similar than others
 - Israel: Ashkenazi Jews, Mizachi Jews, Arabs,...
 - US: Caucasian, Black, Hispanic
- Particularly interesting: admixed populations
 - African/Hispanic Americans: mixture of African, European and Native American ancestry
 - Proportions may vary significantly between "African American" individuals
- Many SNPs in the genome have different distribution between Africans and Europeans
 - Most not due to selection/adaptation but due to random drift

Genetic structure and GWAS

- Many traits have strong population association
 - In the US, diabetes much more common among blacks
 - In Israel, Crohn's disease is much more common among Ashkenazi Jews
- Now, say that we sampled diabetes cases in some hospitals in US + controls in the same hospitals, performed GWAS
 - % of blacks in cases will be higher than in controls (because of high prevalence)
 - What will our GWAS show?
- Every SNP which differs in distribution between Europeans and Africans will be statistically associated with the disease
 - Only because of structure/stratification in our sample!

Even homogeneous population has some structure: Genes mirror geography within Europe

J Novembre *et al. Nature* **000**, 1-4 (2008) doi:10.1038/nature07331

GWAS: controlling for structure, using structure

- We are seeking associations that are not "due to structure"
 - How can we eliminate ones that are due to it?
- If we know who is white and who is black, we can do an analysis that controls for the "race" variable
 - For example, logistic regression with both the race and the SNP as predictors
- What happens if we don't know?
 - We just saw that structure can be automatically extracted even from "homogeneous" data
 - We can extract it, then control for it
 - This is what modern GWAS analyses do

Using structure in a cool way: Admixture mapping

- Assume we have:
 - A disease that is more common in Africans than Europeans, say: early onset kidney disease (<40)
 - A population that is an admixture of European and African, like African Americans
- Suggestion: find the genetic cause by examining genomes of sick admixed individuals
 - The area of the genome where the genetic cause resides will be more "African" in the cases than the rest of their genome
 - We don't necessarily need controls for this analysis

Figure 2 Discovering associations with a disease through admixture mapping

Permission obtained from Nature Publishing Group. Darvasi, A. & Shifman, S. *Nat. Genet.* **37**, 118–119 (2005)

Rosset, S. *et al.* (2011) The population genetics of chronic kidney disease: insights from the *MYH9–APOL1* locus *Nat. Rev. Nephrol.* doi:10.1038/nrneph.2011.52

Genetic risk prediction from GWAS

- The vision, the doctor will have a "desktop predictor"
 - Input: patient's genome
 - Output: risk for one (or many) diseases
- Building prediction models is a very different use of GWAS information
 - Non-genetic risk factors that are correlated with the genome (like diet) are also legitimate for prediction
 - Don't need to name the SNPs that are responsible for risk (\Rightarrow can use structure)
 - Don't necessarily need a biologist in the loop
- We have accumulating evidence that we may be able to do much better prediction than our identified significant associations only can offer
 - Advanced methods can take advantage of weaker associations, signal from rare variants, environmental effects, etc.

Summary

- GWAS is a modern "Big Data" challenge
- Proper analysis is a major statistical/methodological challenge, e.g.:
 - Controlling and using structure
 - Finding complex associations
- We have learned a lot but not as much as we hoped
- We are still improving on both major fronts:
 - Size and extent of data available
 - Advanced statistical methods

Thank you!

saharon@post.tau.ac.il