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Genome wide association studies

* Goal: find connections between:
* A phenotype: height, type-| diabetes, etc., known to be heritable
* Whole-genome genotype

 Specific goals are distinct:

1.

Identify statistical connections between points (or areas) in the genome and the
phenotype

* Drive hypotheses for biological studies of specific genes/regions in specific context

Generate insights on genetic architecture of phenotype
* Many small genetic effects dispersed across the genome?
* Few large effects concentrated in one area (MHC?)

Build statistical models to predict phenotype from genotype
* “Show me your genome and | will tell you what diseases you will get”



Methodology

Collect n subjects with known phenotype (usually n in range 103-10%)

Measure each one in m genomic locations (“representing common variation in the whole
genome”)

e Usually SNPs: Single Nucleotide Polymorphisms

* Typically min range 10°-10°

* Recently moving to whole genome sequencing (m = 3*10° but realistically same information)

* Now we can think of our data as X, «,, matrix with subjects as rows, SNPs as columns,
* X;isin{0,1,2} (genotype at single locus)
* Also given extra vector Y, of phenotypes

Our first task: association testing
* Find SNPs (columns in X) that are statistically associated with Y
* Can be thought of as m separate statistical tests run on this matrix



Can you find the associated SNP?

Cases:
AGAGCAGTCGACAGGTATAGCCTACATGAGATCGACATGAGAT TAGAGCCGTGAGATCGACATGATAGCC
AGAGCCGTCGACATGTATAGTCTACATGAGATCGACATGAGAT TAGAGCAGTGAGATCGACATGATAGTC

AGAGCAGTCGACAGGTATAGTCTACATGAGATCGACATGAGAT TAGAGCCGTGAGATCGACATGATAGCC
AGAGCAGTCGACAGGTATAGCCTACATGAGATCAACATGAGAT TAGAGCAGTGAGATCGACATGATAGCC
AGAGCCGTCGACATGTATAGCCTACATGAGATCGACATGAGAT TAGAGCCGTGAGATCAACATGATAGCC
AGAGCCGTCGACATGTATAGCCTACATGAGATCGACATGAGAT TAGAGCAGTGAGATCAACATGATAGCC
AGAGCCGTCGACAGGTATAGCCTACATGAGATCGACATGAGAT TAGAGCAGTGAGATCAACATGATAGTC
AGAGCAGTCGACAGGTATAGCCTACATGAGATCGACATGAGAT TAGAGCCGTGAGATCGACATGATAGCC

Controls: : Associated SNP

AGAGCAGTCGACATGTATAGTCTACATGAGATCGACATGAGATQGPATAGAGCAGTGAGATCAACATGATAGCC
AGAGCAGTCGACATGTATAGTCTACATGAGATCAACATGAGATQTPTAGAGCCGTGAGATCGACATGATAGCC
AGAGCAGTCGACATGTATAGCCTACATGAGATCGACATGAGAT(QTQTAGAGCCGTGAGATCAACATGATAGCC
AGAGCCGTCGACAGGTATAGCCTACATGAGATCGACATGAGATQTPTAGAGCCGTGAGATCGACATGATAGTC
AGAGCCGTCGACAGGTATAGTCTACATGAGATCGACATGAGAT(QTQTAGAGCCGTGAGATCAACATGATAGCC
AGAGCAGTCGACAGGTATAGTCTACATGAGATCGACATGAGATQTPTAGAGCAGTGAGATCGACATGATAGCC
AGAGCCGTCGACAGGTATAGCCTACATGAGATCGACATGAGAT(QTQTAGAGCCGTGAGATCGACATGATAGCC
AGAGCCGTCGACAGGTATAGTCTACATGAGATCAACATGAGATQTPTAGAGCAGTGAGATCGACATGATAGTC




Disease association analysis of a single SNP

e wo

Y=1 (sick)

Now our problem is one of testing:
Ho: No connection between disease and SNP <> the rows and columns of the table are independent

Obvious approach: x? test for 3x2 table (2-df)
Other alternatives: logistic regression, trend test,... (dealing with genotype as numeric)

This approach generates m (=10°) total hypotheses tests and p values



“Manhattan plot” of GWAS results

What happens if we use a p-value
threshold of a=0.05 (black line) to
declare results as significant?

We would get about 10°x0.05 =
50K false discoveries

Solution: be very selective in what
results we declare as significant.
In this plot the threshold is the
orange line at a=10"
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The multiplicity problem in GWAS

What is a statistically sound choice of a threshold for declaring an association?

* Family wise error rate (FWER): the probability of making even one false discovery
out of our m tests

e Controlling FWER: the well known Bonferroni correction, perform each test at
level o = 0.05/m

* For m=10°this givesa =5 x 108

* Leading journals (Nature Genetics) require a p value smaller than 5 x 108 to
publish GWAS results
* Implicitly require Bonferroni for 10° — super conservative!

* Lesson learned in blood, from findings that did not replicate and were eventually deemed
false!



GWAS promise and history

* We know of many highly heritable traits and diseases including
* Height
* Heart Disease
* Many cancers

* The GWAS promise: we will identify the genetic basis for this heritability

* First GWAS in 2005, since then:
Thousands of studies, hundreds of thousands of individuals, hundreds of billions

of SNPs genotyped, many billions of $$S invested

* Was the promise fulfilled?



Was the promise fulfilled? Yes and no!




Yes: we found a lot of associations, learned some
biology

Published Genome-Wide Associations through 09/2011

2011 3rd quarter
Lessons learned:

* A few of strongest
associations are in coding
regions

* Most associations are in
regulatory elements

* Some are in gene deserts

NHGRI GWA Catalog
www.genome.gov/GWAStudies



Results of famous
WTCCC study of seven
diseases on 14,000
cases and 3,000 shared
controls

(Nature, 2007)

Total found: 13 significant
findings at level 5*108
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Not al all: where is all the heritability?
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The case of the missing heritability




Our GWAS findings do not explain heritability

* Height:
* From twins and family study, about 80% of height variability is heritable
* Huge height GWAS (n>40K ) found SNPs explaining ~10% of height variability

» Diseases: Schizophrenia, heart disease, cancers,...
* Heritability: 30%-80%
* For none of these, GWAS gives more than 5%-10%

 Basically, for all complex traits investigated a major gap remains!



Results of famous
WTCCC study of seven
diseases on 14,000
cases and 3000 shared
controls

(Nature, 2007)

Total found: 13 significant
findings at level 5*108
Heritability explained: small for
all except T1D

—|OQ1D{P)
ot O WU

Bipolar disorder

Hyperte-nsion
aldd e il eid me e B
(3% )
— (] BN w0 =] ~ o 0 -

-k 4% [ %] +u n [+:] | (o] [i=]

. Type 1 diabetes
gl g el i
L N w s w @ N @ O = - 4 o
(== ] 3] [#% ] R =9

Type 2 diabetes

1]

e ey il ol s b m
= B =y = i -
M wa (53] (o] = [0 ] (o] by = < BB

Chromosome




Where is the missing heritability? Theories:

1. Rare variants not covered by GWAS : Every family has its own mutation
* We know some examples in cancer (BRCA)

2. Complex associations/epistasis: combinations of SNPs
* Problem: 10% SNPs is 102 pairs

3. Lack of power: the effects are weak, we need much more data
* Or statistical approaches that aggregate more smartly

4. Epigenetic effects: heritability is not in the genome at all

To some extent, all these theories have been tested, some have provided interesting
answers (still hotly debated)



The importance of genetic structure

* Genetic structure: not everyone in the population is from same genetic
background

* Some people are more genetically similar than others
* Israel: Ashkenazi Jews, Mizachi Jews, Arabs,...
e US: Caucasian, Black, Hispanic

 Particularly interesting: admixed populations

 African/Hispanic Americans: mixture of African, European and Native American ancestry
* Proportions may vary significantly between “African American” individuals

 Many SNPs in the genome have different distribution between Africans and
Europeans

* Most not due to selection/adaptation but due to random drift



Genetic structure and GWAS

* Many traits have strong population association
* In the US, diabetes much more common among blacks
* InlIsrael, Crohn’s disease is much more common among Ashkenazi Jews

* Now, say that we sampled diabetes cases in some hospitals in US + controls in the
same hospitals, performed GWAS
* % of blacks in cases will be higher than in controls (because of high prevalence)
* What will our GWAS show?

* Every SNP which differs in distribution between Europeans and Africans will be
statistically associated with the disease
* Only because of structure/stratification in our sample!



Even homogeneous population has some structure:
Genes mirror geography within Europe

\

J Novembre et al. Nature 000, 1-4 (2008) doi:10.1038/nature07331 nal l Ire



GWAS: controlling for structure, using structure

* We are seeking associations that are not “due to structure”
* How can we eliminate ones that are due to it?

* If we know who is white and who is black, we can do an analysis that controls for
the “race” variable
* For example, logistic regression with both the race and the SNP as predictors

* What happens if we don’t know?
* We just saw that structure can be automatically extracted even from “homogeneous” data
* We can extract it, then control for it
* This is what modern GWAS analyses do



Using structure in a cool way: Admixture mapping

 Assume we have:

* A disease that is more common in Africans than Europeans, say: early onset kidney disease
(<40)

* A population that is an admixture of European and African, like African Americans

» Suggestion: find the genetic cause by examining genomes of sick admixed
individuals

* The area of the genome where the genetic cause resides will be more “African” in the cases
than the rest of their genome

* We don’t necessarily need controls for this analysis
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Genetic risk prediction from GWAS

* The vision, the doctor will have a “desktop predictor”
* Input: patient’s genome
* Qutput: risk for one (or many) diseases

* Building prediction models is a very different use of GWAS information

* Non-genetic risk factors that are correlated with the genome (like diet) are also legitimate for
prediction

* Don’t need to name the SNPs that are responsible for risk ( = can use structure)
* Don’t necessarily need a biologist in the loop

* We have accumulating evidence that we may be able to do much better
prediction than our identified significant associations only can offer

* Advanced methods can take advantage of weaker associations, signal from rare variants,
environmental effects, etc.



Summary

* GWAS is a modern “Big Data” challenge

* Proper analysis is a major statistical/methodological challenge, e.g.:
* Controlling and using structure
* Finding complex associations

* We have learned a lot — but not as much as we hoped

* We are still improving on both major fronts:
* Size and extent of data available
e Advanced statistical methods



Thank you!

saharon@post.tau.ac.il



