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Introduction

We observe n i.i.d. realizations x1, . . . , xn from N(0,Σp).

Sn - sample covariance matrix.

If n = O(p) or n ≪ p, Sn may be poor approximation to Σ, and
eigenvectors of Sn may be poor approximation to eigenvectors of Σ.
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Different Sparsity Assumptions

To obtain a better estimator (of Σ,Σ−1,PCA(Σ) ), need some
additional assumptions on structure of problem.

Several Recent Suggestions:

▶ Sparse-PCA: few large eigenvalues with sparse eigenvectors.

▶ Sparse Covariance matrix (most entries close to zero).

▶ Sparse Inverse covariance (graphical models, conditional
independence).

▶ Robust-PCA: Matrix Σ = low rank + sparse (outlier noise).
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Introduction

Questions:

Under different sparsity assumptions,

- How to construct better estimators ?

- What are fundamental limits for detection/estimation.
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Sparse PCA

Consider single spike model

x =
√
λsv + σξ

Assume eigenvector v is approximately sparse:

Lq(C ) = {v ∈ Rp | ∥v∥2 = 1,
∑
j

|vj |q ≤ Cq}

q ∈ [0, 2),

smaller value for q - a sparser vector v.

q = 0 then, v is sparse with at most C non-zero entries.
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Sparse Eigenvector Estimation

Loss Function: quality of estimate v̂ of v

L(v̂, v) = min{∥v̂ − v∥22, ∥v̂ + v∥22}

Remark:
L(a,b) = 2(1− |aTb|).

Theorem In the joint limit p, n → ∞, if λ >
√
p/n, then

R2 = |v̂TPCAv|2 →
n
pλ

2 − 1
n
pλ

2 + λ

if λ ≤
√

p/n then R → 0.
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Diagonal Thresholding

Question: Assuming a sparse eigenvector, is it possible to achieve
smaller errors ?

Very simple method [Johnstone and Lu, J. Am. Stat. Assoc.
2009]:

- Compute diagonal of Sn.

- I = {i | (Sn)ii > σ2t(α)}

- Compute eigenvector of (Sn)|I .
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Diagonal Thresholding

Questions:

- How should the threshold t(α) be chosen ?

- What is the resulting error ?

- Is this method rate optimal ? (what is optimal ?)

Boaz Nadler PCA



Diagonal Thresholding

The threshold t(α): Assume v was truly sparse, with few ≪ p
non-zero entries.

Pr[Sii > t(α) | vi = 0] ≈ α/p

or
Pr[max

i
Sii > t(α) | vi = 0] ≈ α

maxima of many i.i.d. random variables is a classical problem in
extreme value theory.
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Diagonal Thresholding

Theorem Let Zi be p i.i.d. N(0, 1) r.v.’s. Then, as p → ∞

max
i

Xi →
√
2 ln p

In our case, in the absence of a signal, all Sii are i.i.d., with
distribution χ2

n/n.

For large n, χ2
n/n ≈ 1 +

√
2
nN(0, 1).

Then threshold

t(α) ≈ 1 +

√
2 ln p

n
(1 + o(1)).
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Diagonal Thresholding
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Diagonal Thresholding

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

sample size

p = 500, λ = 5

 

 

PCA−Theory
PCA
S−PCA

Boaz Nadler PCA



Diagonal Thresholding

Which coordinate strengths can be detected ?

For signal coordinate, Sii = (1 + λv2i )χ
2
n/n.

E[Sii ] = 1 + λv2i > 1 +
√

2 ln p/n

Thus
λv2i > C

√
ln p/n
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Diagonal Thresholding

[Joint work with A. Birnbaum, D. Paul and I.M. Johnstone]

What is the worst error rate of Diagonal Thresholding algorithm ?

Theorem: Consider single signal, v ∈ Lq(C ). Then,

sup
v∈Lq(C)

∥v̂DT − v∥2 ≥ K (Cq − 1) n−
1
2 (1−

q
2 )

Question: Can one do better ?
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Oracle Rate

Consider an oracle that tells us all large coordinates of v,

Iδ = {j ∈ {1, 2, . . . , p} | |vj | > δ}

Then, we could do PCA only on S restricted to I .

∥vI − v̂I∥2 ≈
1

λI

|I | − 1

n

Overall Error:

∥v − v̂I∥2 = ∥v⊥I ∥2 + ∥vI − v̂I∥2
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Oracle Rate

Overall Error:

∥v − v̂I∥2 = ∥v⊥I ∥2︸ ︷︷ ︸
squared bias

+ ∥vI − v̂I∥2︸ ︷︷ ︸
variance

or
∥v − v̂I∥2 = ∥v⊥I ∥2︸ ︷︷ ︸

approximation err

+ ∥vI − v̂I∥2︸ ︷︷ ︸
estimation err

Bias - Variance Tradeoff
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Oracle Rate

Claim: Optimal oracle threshold is to choose all coordinates up to

v2i >
C

n
.

compare to
√

2 ln p/n

Claim: Let v̂oracle denote the PCA estimator using coordinates
chosen by oracle with optimal threshold. Then,

sup
v∈Lq(C)

∥v̂oracle − v∥2 = O(n(1−q/2))

compare to DT rate of n−
1
2
(1−q/2)

Question: Can we close this gap ?
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Sparse PCA

Key Idea: 2 step procedure.

Step 1: Compute diagonal thresholding as initial estimator for
eigenvector.

Step 2: Find additional coordinates that are highly correlated with
this eigenvector.

Theorem: Under suitable conditions,

E
[
∥v − v̂∥2

]
≤ C

(
log p

n

)1−q/2
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Sparse Covariance Estimation

[Bickel and Levina 2008]
Class of approximately sparse matrices:

U(q, c0(p),M) =

Σ ≥ 0 |σii < M,max
i

∑
j

|σij |q ≤ c0(p)



Each row is approximately sparse

q ∈ [0, 1]. If q = 0 matrix has many zeros provided c0(p) ≪ p.

Question: Can we get accurate estimate of covariance matrix ∈ U
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Sparse covariance estimation by thresholding

Very simple procedure:

Given x1, . . . , xn vectors in Rp with population covariance Σ
approximately sparse.

Step 1: Compute sample covariance matrix.

Sn =
1

n

∑
i

(xi − x̄)(xi − x̄)⊤

Step 2: Threshold it. Set to zero small entries.

Σ̂ = Sλ(Sn)

where

Sλ(t) =

{
0 |t| < λ
t |t| ≥ λ
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Sparse Covariance by Thresholding

Theorem: xi i.i.d. from sub-Gaussian distribution with covariance
Σ. Choose λ = M ′√log p/n with M ′ sufficiently large.
Then, for a wide variety of thresholding functions
(hard/soft/SCAD/...) uniformly over U(q, c0(p),M),

∥Sλ(Sn)− Σ∥2 = OP

(
c0(p) ·

(
log p

n

)1−q/2
)

Note different and slower rate from sparse eigenvector estimation
1− q.
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Proof

Bias-Variance Decomposition

∥Sλ(Sn)− Σ∥2 ≤ ∥Sλ(Σ)− Σ∥2 + ∥Sλ(Sn)− Sλ(Σ)∥2

Bound Each term separately
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Bounding the Bias Term:

Gershgorin Theorem: Let A be symmetric matrix, then

∥A∥2 ≤ max
i

∑
j

|Aij |

Now for hard thresholding∑
j

|Sλ(σij)− σij | =
∑
j

|σij |1(|σij | < λ)

Write sum, ∑
j

|σij |1−q|σij |q1(|σij | < λ) ≤ λ1−qc0(p)
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Bounding the Variance Term

More complicated. Consider each term separately

|Sλ(Sn(i , j))−Sλ(Σij)| ≤


Sn(i , j) |Sn(i , j)| > λ, |Σij | < λ
Σij |Sn(i , j)| < λ, |Σij | > λ

Sn(i , j)− Σij |Sn(i , j)| > λ, |Σij | > λ
0 both terms smaller than λ

Use sub-Gaussian assumption
Sn(i , j) close to Σij , deviation at most C

√
log p/n.

Key result:

∥Sλ(Sn)− Sλ(Σ)∥2 = OP

(
c0(p)λ

−q

√
log p

n
+ c0(p)λ

1−q

)

Optimal λ that minimizes overall error: λ = M ′√log p/n
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The Last Slide

No matter what, have a last slide that everyone will remember.

Thank you
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