Sparse PCA

and

Sparse Covariance Estimation

Theory, Algorithms and Applications

Boaz Nadler
Department of Computer Science and Applied Mathematics
The Weizmann Institute of Science

Dec 2021

Introduction

We observe n i.i.d. realizations $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ from $N\left(0, \Sigma_{p}\right)$.
S_{n} - sample covariance matrix.
If $n=O(p)$ or $n \ll p, S_{n}$ may be poor approximation to Σ, and eigenvectors of S_{n} may be poor approximation to eigenvectors of Σ.

Different Sparsity Assumptions

To obtain a better estimator (of $\Sigma, \Sigma^{-1}, P C A(\Sigma)$), need some additional assumptions on structure of problem.

Different Sparsity Assumptions

To obtain a better estimator (of $\Sigma, \Sigma^{-1}, P C A(\Sigma)$), need some additional assumptions on structure of problem.

Several Recent Suggestions:

- Sparse-PCA: few large eigenvalues with sparse eigenvectors.

Different Sparsity Assumptions

To obtain a better estimator (of $\Sigma, \Sigma^{-1}, P C A(\Sigma)$), need some additional assumptions on structure of problem.

Several Recent Suggestions:

- Sparse-PCA: few large eigenvalues with sparse eigenvectors.
- Sparse Covariance matrix (most entries close to zero).

Different Sparsity Assumptions

To obtain a better estimator (of $\Sigma, \Sigma^{-1}, P C A(\Sigma)$), need some additional assumptions on structure of problem.

Several Recent Suggestions:

- Sparse-PCA: few large eigenvalues with sparse eigenvectors.
- Sparse Covariance matrix (most entries close to zero).
- Sparse Inverse covariance (graphical models, conditional independence).

Different Sparsity Assumptions

To obtain a better estimator (of $\Sigma, \Sigma^{-1}, P C A(\Sigma)$), need some additional assumptions on structure of problem.

Several Recent Suggestions:

- Sparse-PCA: few large eigenvalues with sparse eigenvectors.
- Sparse Covariance matrix (most entries close to zero).
- Sparse Inverse covariance (graphical models, conditional independence).
- Robust-PCA: Matrix $\Sigma=$ low rank + sparse (outlier noise).

Introduction

Questions:
Under different sparsity assumptions,

- How to construct better estimators ?

Introduction

Questions:
Under different sparsity assumptions,

- How to construct better estimators ?
- What are fundamental limits for detection/estimation.

Sparse PCA

Consider single spike model

$$
\mathbf{x}=\sqrt{\lambda} s \mathbf{v}+\sigma \boldsymbol{\xi}
$$

Assume eigenvector \mathbf{v} is approximately sparse:

$$
L_{q}(C)=\left\{\left.\mathbf{v} \in \mathbb{R}^{p}\left|\|\mathbf{v}\|_{2}=1, \sum_{j}\right| v_{j}\right|^{q} \leq C^{q}\right\}
$$

$q \in[0,2)$,
smaller value for q - a sparser vector \mathbf{v}.

Sparse PCA

Consider single spike model

$$
\mathbf{x}=\sqrt{\lambda} s \mathbf{v}+\sigma \boldsymbol{\xi}
$$

Assume eigenvector \mathbf{v} is approximately sparse:

$$
L_{q}(C)=\left\{\left.\mathbf{v} \in \mathbb{R}^{p}\left|\|\mathbf{v}\|_{2}=1, \sum_{j}\right| v_{j}\right|^{q} \leq C^{q}\right\}
$$

$q \in[0,2)$,
smaller value for q - a sparser vector \mathbf{v}.
$q=0$ then, \mathbf{v} is sparse with at most C non-zero entries.

Sparse Eigenvector Estimation

Loss Function: quality of estimate $\hat{\mathbf{v}}$ of \mathbf{v}

$$
L(\hat{\mathbf{v}}, \mathbf{v})=\min \left\{\|\hat{\mathbf{v}}-\mathbf{v}\|_{2}^{2},\|\hat{\mathbf{v}}+\mathbf{v}\|_{2}^{2}\right\}
$$

Sparse Eigenvector Estimation

Loss Function: quality of estimate $\hat{\mathbf{v}}$ of \mathbf{v}

$$
L(\hat{\mathbf{v}}, \mathbf{v})=\min \left\{\|\hat{\mathbf{v}}-\mathbf{v}\|_{2}^{2},\|\hat{\mathbf{v}}+\mathbf{v}\|_{2}^{2}\right\}
$$

Remark:

$$
L(\mathbf{a}, \mathbf{b})=2\left(1-\left|\mathbf{a}^{T} \mathbf{b}\right|\right) .
$$

Sparse Eigenvector Estimation

Loss Function: quality of estimate $\hat{\mathbf{v}}$ of \mathbf{v}

$$
L(\hat{\mathbf{v}}, \mathbf{v})=\min \left\{\|\hat{\mathbf{v}}-\mathbf{v}\|_{2}^{2},\|\hat{\mathbf{v}}+\mathbf{v}\|_{2}^{2}\right\}
$$

Remark:

$$
L(\mathbf{a}, \mathbf{b})=2\left(1-\left|\mathbf{a}^{T} \mathbf{b}\right|\right) .
$$

Theorem In the joint limit $p, n \rightarrow \infty$, if $\lambda>\sqrt{p / n}$, then

$$
R^{2}=\left|\hat{\mathbf{v}}_{\mathrm{PCA}}^{T} \mathbf{v}\right|^{2} \rightarrow \frac{\frac{n}{p} \lambda^{2}-1}{\frac{n}{p} \lambda^{2}+\lambda}
$$

if $\lambda \leq \sqrt{p / n}$ then $R \rightarrow 0$.

Diagonal Thresholding

Question: Assuming a sparse eigenvector, is it possible to achieve smaller errors ?

Diagonal Thresholding

Question: Assuming a sparse eigenvector, is it possible to achieve smaller errors?

Very simple method [Johnstone and Lu, J. Am. Stat. Assoc. 2009]:

- Compute diagonal of S_{n}.
$-I=\left\{i \mid\left(S_{n}\right)_{i i}>\sigma^{2} t(\alpha)\right\}$
- Compute eigenvector of $\left(S_{n}\right) \mid$.

Diagonal Thresholding

Questions:

- How should the threshold $t(\alpha)$ be chosen ?
- What is the resulting error ?
- Is this method rate optimal ? (what is optimal ?)

Diagonal Thresholding

The threshold $t(\alpha)$: Assume \mathbf{v} was truly sparse, with few $\ll p$ non-zero entries.

$$
\operatorname{Pr}\left[S_{i i}>t(\alpha) \mid v_{i}=0\right] \approx \alpha / p
$$

or

$$
\operatorname{Pr}\left[\max _{i} S_{i i}>t(\alpha) \mid v_{i}=0\right] \approx \alpha
$$

Diagonal Thresholding

The threshold $t(\alpha)$: Assume \mathbf{v} was truly sparse, with few $\ll p$ non-zero entries.

$$
\operatorname{Pr}\left[S_{i i}>t(\alpha) \mid v_{i}=0\right] \approx \alpha / p
$$

or

$$
\operatorname{Pr}\left[\max _{i} S_{i i}>t(\alpha) \mid v_{i}=0\right] \approx \alpha
$$

maxima of many i.i.d. random variables is a classical problem in extreme value theory.

Diagonal Thresholding

Theorem Let Z_{i} be p i.i.d. $N(0,1)$ r.v.'s. Then, as $p \rightarrow \infty$

$$
\max _{i} X_{i} \rightarrow \sqrt{2 \ln p}
$$

Diagonal Thresholding

Theorem Let Z_{i} be p i.i.d. $N(0,1)$ r.v.'s. Then, as $p \rightarrow \infty$

$$
\max _{i} X_{i} \rightarrow \sqrt{2 \ln p}
$$

In our case, in the absence of a signal, all $S_{i i}$ are i.i.d., with distribution χ_{n}^{2} / n.
For large $n, \chi_{n}^{2} / n \approx 1+\sqrt{\frac{2}{n}} N(0,1)$.
Then threshold

$$
t(\alpha) \approx 1+\sqrt{\frac{2 \ln p}{n}}(1+o(1))
$$

Diagonal Thresholding

Diagonal Thresholding

Diagonal Thresholding

Which coordinate strengths can be detected ?

Diagonal Thresholding

Which coordinate strengths can be detected ?
For signal coordinate, $S_{i i}=\left(1+\lambda v_{i}^{2}\right) \chi_{n}^{2} / n$.

$$
\mathbb{E}\left[S_{i i}\right]=1+\lambda v_{i}^{2}>1+\sqrt{2 \ln p / n}
$$

Thus

$$
\lambda v_{i}^{2}>C \sqrt{\ln p / n}
$$

Diagonal Thresholding

[Joint work with A. Birnbaum, D. Paul and I.M. Johnstone]
What is the worst error rate of Diagonal Thresholding algorithm ?

Diagonal Thresholding

[Joint work with A. Birnbaum, D. Paul and I.M. Johnstone] What is the worst error rate of Diagonal Thresholding algorithm ?

Theorem: Consider single signal, $\mathbf{v} \in L_{q}(C)$. Then,

$$
\sup _{\mathbf{v} \in L_{q}(C)}\left\|\hat{\mathbf{v}}_{\mathrm{DT}}-\mathbf{v}\right\|^{2} \geq K\left(C^{q}-1\right) n^{-\frac{1}{2}\left(1-\frac{q}{2}\right)}
$$

Diagonal Thresholding

[Joint work with A. Birnbaum, D. Paul and I.M. Johnstone] What is the worst error rate of Diagonal Thresholding algorithm ?

Theorem: Consider single signal, $\mathbf{v} \in L_{q}(C)$. Then,

$$
\sup _{\mathbf{v} \in L_{q}(C)}\left\|\hat{\mathbf{v}}_{\mathrm{DT}}-\mathbf{v}\right\|^{2} \geq K\left(C^{q}-1\right) n^{-\frac{1}{2}\left(1-\frac{q}{2}\right)}
$$

Question: Can one do better ?

Oracle Rate

Consider an oracle that tells us all large coordinates of \mathbf{v},

$$
I_{\delta}=\left\{j \in\{1,2, \ldots, p\}| | v_{j} \mid>\delta\right\}
$$

Then, we could do PCA only on S restricted to I.

Oracle Rate

Consider an oracle that tells us all large coordinates of \mathbf{v},

$$
I_{\delta}=\left\{j \in\{1,2, \ldots, p\}| | v_{j} \mid>\delta\right\}
$$

Then, we could do PCA only on S restricted to l.

$$
\left\|v_{l}-\hat{v}_{l}\right\|^{2} \approx \frac{1}{\lambda_{l}} \frac{|I|-1}{n}
$$

Oracle Rate

Consider an oracle that tells us all large coordinates of \mathbf{v},

$$
I_{\delta}=\left\{j \in\{1,2, \ldots, p\}| | v_{j} \mid>\delta\right\}
$$

Then, we could do PCA only on S restricted to l.

$$
\left\|v_{l}-\hat{v}_{l}\right\|^{2} \approx \frac{1}{\lambda_{l}} \frac{|I|-1}{n}
$$

Overall Error:

$$
\left\|\mathbf{v}-\hat{v}_{l}\right\|^{2}=\left\|v_{l}^{\perp}\right\|^{2}+\left\|v_{l}-\hat{v}_{l}\right\|^{2}
$$

Oracle Rate

Overall Error:

$$
\left\|\mathbf{v}-\hat{v}_{I}\right\|^{2}=\underbrace{\left\|v_{l}^{\perp}\right\|^{2}}_{\text {squared bias }}+\underbrace{\left\|v_{I}-\hat{v}_{I}\right\|^{2}}_{\text {variance }}
$$

Oracle Rate

Overall Error:

$$
\left\|\mathbf{v}-\hat{v}_{l}\right\|^{2}=\underbrace{\left\|v_{l}^{\perp}\right\|^{2}}_{\text {squared bias }}+\underbrace{\left\|v_{l}-\hat{v}_{l}\right\|^{2}}_{\text {variance }}
$$

or

$$
\left\|\mathbf{v}-\hat{v}_{I}\right\|^{2}=\underbrace{\left\|v_{I}^{\perp}\right\|^{2}}_{\text {approximation err }}+\underbrace{\left\|v_{I}-\hat{v}_{I}\right\|^{2}}_{\text {estimation err }}
$$

Oracle Rate

Overall Error:

$$
\left\|\mathbf{v}-\hat{v}_{l}\right\|^{2}=\underbrace{\left\|v_{l}^{\perp}\right\|^{2}}_{\text {squared bias }}+\underbrace{\left\|v_{I}-\hat{v}_{I}\right\|^{2}}_{\text {variance }}
$$

or

$$
\left\|\mathbf{v}-\hat{v}_{I}\right\|^{2}=\underbrace{\left\|v_{I}^{\perp}\right\|^{2}}_{\text {approximation err }}+\underbrace{\left\|v_{I}-\hat{v}_{I}\right\|^{2}}_{\text {estimation err }}
$$

Bias - Variance Tradeoff

Oracle Rate

Claim: Optimal oracle threshold is to choose all coordinates up to

$$
v_{i}^{2}>\frac{C}{n}
$$

compare to $\sqrt{2 \ln p / n}$

Oracle Rate

Claim: Optimal oracle threshold is to choose all coordinates up to

$$
v_{i}^{2}>\frac{C}{n}
$$

compare to $\sqrt{2 \ln p / n}$
Claim: Let $\hat{\mathbf{v}}_{\text {oracle }}$ denote the PCA estimator using coordinates chosen by oracle with optimal threshold. Then,

$$
\sup _{\mathbf{v} \in L_{q}(C)}\left\|\hat{\mathbf{v}}_{\text {oracle }}-\mathbf{v}\right\|^{2}=O\left(n^{(1-q / 2)}\right)
$$

Oracle Rate

Claim: Optimal oracle threshold is to choose all coordinates up to

$$
v_{i}^{2}>\frac{C}{n}
$$

compare to $\sqrt{2 \ln p / n}$
Claim: Let $\hat{\mathbf{v}}_{\text {oracle }}$ denote the PCA estimator using coordinates chosen by oracle with optimal threshold. Then,

$$
\sup _{\mathbf{v} \in L_{q}(C)}\left\|\hat{\mathbf{v}}_{\text {oracle }}-\mathbf{v}\right\|^{2}=O\left(n^{(1-q / 2)}\right)
$$

compare to DT rate of $n^{-\frac{1}{2}(1-q / 2)}$

Oracle Rate

Claim: Optimal oracle threshold is to choose all coordinates up to

$$
v_{i}^{2}>\frac{C}{n}
$$

compare to $\sqrt{2 \ln p / n}$
Claim: Let $\hat{\mathbf{v}}_{\text {oracle }}$ denote the PCA estimator using coordinates chosen by oracle with optimal threshold. Then,

$$
\sup _{\mathbf{v} \in L_{q}(C)}\left\|\hat{\mathbf{v}}_{\text {oracle }}-\mathbf{v}\right\|^{2}=O\left(n^{(1-q / 2)}\right)
$$

compare to DT rate of $n^{-\frac{1}{2}(1-q / 2)}$
Question: Can we close this gap ?

Sparse PCA

Key Idea: 2 step procedure.

Sparse PCA

Key Idea: 2 step procedure.
Step 1: Compute diagonal thresholding as initial estimator for eigenvector.

Sparse PCA

Key Idea: 2 step procedure.
Step 1: Compute diagonal thresholding as initial estimator for eigenvector.

Step 2: Find additional coordinates that are highly correlated with this eigenvector.

Sparse PCA

Key Idea: 2 step procedure.
Step 1: Compute diagonal thresholding as initial estimator for eigenvector.

Step 2: Find additional coordinates that are highly correlated with this eigenvector.

Theorem: Under suitable conditions,

$$
\mathbb{E}\left[\|\mathbf{v}-\hat{\mathbf{v}}\|^{2}\right] \leq C\left(\frac{\log p}{n}\right)^{1-q / 2}
$$

Sparse Covariance Estimation

[Bickel and Levina 2008]
Class of approximately sparse matrices:

$$
\mathcal{U}\left(q, c_{0}(p), M\right)=\left\{\Sigma \geq\left. 0\left|\sigma_{i i}<M, \max _{i} \sum_{j}\right| \sigma_{i j}\right|^{q} \leq c_{0}(p)\right\}
$$

Sparse Covariance Estimation

[Bickel and Levina 2008]
Class of approximately sparse matrices:

$$
\mathcal{U}\left(q, c_{0}(p), M\right)=\left\{\Sigma \geq\left. 0\left|\sigma_{i i}<M, \max _{i} \sum_{j}\right| \sigma_{i j}\right|^{q} \leq c_{0}(p)\right\}
$$

Each row is approximately sparse

Sparse Covariance Estimation

[Bickel and Levina 2008]
Class of approximately sparse matrices:

$$
\mathcal{U}\left(q, c_{0}(p), M\right)=\left\{\Sigma \geq\left. 0\left|\sigma_{i i}<M, \max _{i} \sum_{j}\right| \sigma_{i j}\right|^{q} \leq c_{0}(p)\right\}
$$

Each row is approximately sparse
$q \in[0,1]$. If $q=0$ matrix has many zeros provided $c_{0}(p) \ll p$.

Sparse Covariance Estimation

[Bickel and Levina 2008]
Class of approximately sparse matrices:

$$
\mathcal{U}\left(q, c_{0}(p), M\right)=\left\{\Sigma \geq\left. 0\left|\sigma_{i i}<M, \max _{i} \sum_{j}\right| \sigma_{i j}\right|^{q} \leq c_{0}(p)\right\}
$$

Each row is approximately sparse
$q \in[0,1]$. If $q=0$ matrix has many zeros provided $c_{0}(p) \ll p$.
Question: Can we get accurate estimate of covariance matrix $\in \mathcal{U}$

Sparse covariance estimation by thresholding

Very simple procedure:

Sparse covariance estimation by thresholding

Very simple procedure:
Given $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ vectors in \mathbb{R}^{p} with population covariance Σ approximately sparse.

Sparse covariance estimation by thresholding

Very simple procedure:
Given $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ vectors in \mathbb{R}^{p} with population covariance Σ approximately sparse.

Step 1: Compute sample covariance matrix.

$$
S_{n}=\frac{1}{n} \sum_{i}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\top}
$$

Sparse covariance estimation by thresholding

Very simple procedure:
Given $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$ vectors in \mathbb{R}^{p} with population covariance Σ approximately sparse.

Step 1: Compute sample covariance matrix.

$$
S_{n}=\frac{1}{n} \sum_{i}\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{\top}
$$

Step 2: Threshold it. Set to zero small entries.

$$
\hat{\Sigma}=S_{\lambda}\left(S_{n}\right)
$$

where

$$
S_{\lambda}(t)= \begin{cases}0 & |t|<\lambda \\ t & |t| \geq \lambda\end{cases}
$$

Sparse Covariance by Thresholding

Theorem: \mathbf{x}_{i} i.i.d. from sub-Gaussian distribution with covariance Σ. Choose $\lambda=M^{\prime} \sqrt{\log p / n}$ with M^{\prime} sufficiently large.
Then, for a wide variety of thresholding functions (hard/soft/SCAD/...) uniformly over $\mathcal{U}\left(q, c_{0}(p), M\right)$,

$$
\left\|S_{\lambda}\left(S_{n}\right)-\Sigma\right\|_{2}=O_{P}\left(c_{0}(p) \cdot\left(\frac{\log p}{n}\right)^{1-q / 2}\right)
$$

Sparse Covariance by Thresholding

Theorem: \mathbf{x}_{i} i.i.d. from sub-Gaussian distribution with covariance Σ. Choose $\lambda=M^{\prime} \sqrt{\log p / n}$ with M^{\prime} sufficiently large.
Then, for a wide variety of thresholding functions (hard/soft/SCAD/...) uniformly over $\mathcal{U}\left(q, c_{0}(p), M\right)$,

$$
\left\|S_{\lambda}\left(S_{n}\right)-\Sigma\right\|_{2}=O_{P}\left(c_{0}(p) \cdot\left(\frac{\log p}{n}\right)^{1-q / 2}\right)
$$

Note different and slower rate from sparse eigenvector estimation $1-q$.

Proof

Bias-Variance Decomposition

$$
\left\|S_{\lambda}\left(S_{n}\right)-\Sigma\right\|_{2} \leq\left\|S_{\lambda}(\Sigma)-\Sigma\right\|_{2}+\left\|S_{\lambda}\left(S_{n}\right)-S_{\lambda}(\Sigma)\right\|_{2}
$$

Proof

Bias-Variance Decomposition

$$
\left\|S_{\lambda}\left(S_{n}\right)-\Sigma\right\|_{2} \leq\left\|S_{\lambda}(\Sigma)-\Sigma\right\|_{2}+\left\|S_{\lambda}\left(S_{n}\right)-S_{\lambda}(\Sigma)\right\|_{2}
$$

Bound Each term separately

Bounding the Bias Term:

Gershgorin Theorem: Let A be symmetric matrix, then

$$
\|A\|_{2} \leq \max _{i} \sum_{j}\left|A_{i j}\right|
$$

Bounding the Bias Term:

Gershgorin Theorem: Let A be symmetric matrix, then

$$
\|A\|_{2} \leq \max _{i} \sum_{j}\left|A_{i j}\right|
$$

Now for hard thresholding

$$
\sum_{j}\left|S_{\lambda}\left(\sigma_{i j}\right)-\sigma_{i j}\right|=\sum_{j}\left|\sigma_{i j}\right| \mathbf{1}\left(\left|\sigma_{i j}\right|<\lambda\right)
$$

Bounding the Bias Term:

Gershgorin Theorem: Let A be symmetric matrix, then

$$
\|A\|_{2} \leq \max _{i} \sum_{j}\left|A_{i j}\right|
$$

Now for hard thresholding

$$
\sum_{j}\left|S_{\lambda}\left(\sigma_{i j}\right)-\sigma_{i j}\right|=\sum_{j}\left|\sigma_{i j}\right| \mathbf{1}\left(\left|\sigma_{i j}\right|<\lambda\right)
$$

Write sum,

$$
\sum_{j}\left|\sigma_{i j}\right|^{1-q}\left|\sigma_{i j}\right|^{q} \mathbf{1}\left(\left|\sigma_{i j}\right|<\lambda\right) \leq \lambda^{1-q} c_{0}(p)
$$

Bounding the Variance Term

More complicated. Consider each term separately

$$
\left|S_{\lambda}\left(S_{n}(i, j)\right)-S_{\lambda}\left(\Sigma_{i j}\right)\right| \leq\left\{\begin{array}{cc}
S_{n}(i, j) & \left|S_{n}(i, j)\right|>\lambda,\left|\Sigma_{i j}\right|<\lambda \\
\Sigma_{i j} & \left|S_{n}(i, j)\right|<\lambda,\left|\Sigma_{i j}\right|>\lambda \\
S_{n}(i, j)-\Sigma_{i j} & \left|S_{n}(i, j)\right|>\lambda,\left|\Sigma_{i j}\right|>\lambda \\
0 & \text { both terms smaller than } \lambda
\end{array}\right.
$$

Use sub-Gaussian assumption
$S_{n}(i, j)$ close to $\Sigma_{i j}$, deviation at most $C \sqrt{\log p / n}$.
Key result:

$$
\left\|S_{\lambda}\left(S_{n}\right)-S_{\lambda}(\Sigma)\right\|_{2}=O_{P}\left(c_{0}(p) \lambda^{-q} \sqrt{\frac{\log p}{n}}+c_{0}(p) \lambda^{1-q}\right)
$$

Optimal λ that minimizes overall error: $\lambda=M^{\prime} \sqrt{\log p / n}$

The Last Slide

No matter what, have a last slide that everyone will remember.

The Last Slide

No matter what, have a last slide that everyone will remember.

The Last Slide

No matter what, have a last slide that everyone will remember.

