All you wanted to know about (sparse / high dimensional)
 PCA and Covariance Estimation

but didn't dare to ask

Boaz Nadler
Department of Computer Science and Applied Mathematics The Weizmann Institute of Science

Dec. 2021

Part 0: Introduction

Introduction

In many applications we need to analyze multivariate data,

$$
\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{p}
$$

Throughout talk:

$$
p \text { - dimension, } n \text { - number of samples }
$$

Introduction

In many applications we need to analyze multivariate data,

$$
\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in \mathbb{R}^{p}
$$

Throughout talk:

$$
p \text { - dimension, } n \text { - number of samples }
$$

Many different scenarios:

- p small, n large.
- both p and n large.
- p large, n small.

Unsupervised Tasks

- Visualization,

Unsupervised Tasks

- Visualization,
- Dimensionality Reduction

Unsupervised Tasks

- Visualization,
- Dimensionality Reduction
- Compression, Denoising

Unsupervised Tasks

- Visualization,
- Dimensionality Reduction
- Compression, Denoising
- Exploratory Data Analysis - finding structure in data

Unsupervised Tasks

- Visualization,
- Dimensionality Reduction
- Compression, Denoising
- Exploratory Data Analysis - finding structure in data
- Many hypothesis testing problems.

Supervised Tasks

In some cases we observe also a response y_{i} for each \mathbf{x}_{i}.
Common tasks:

- Classification (Linear Discriminant Analysis)
- Regression (Multivariate Linear Regression).

Density Estimation and Moments

Typical assumption: \mathbf{x}_{i} are i.i.d. from some r.v. X with unknown density $f(x)$.

Density Estimation and Moments

Typical assumption: \mathbf{x}_{i} are i.i.d. from some r.v. X with unknown density $f(x)$.

In principle, $f(x)$ describes everything about X.

Density Estimation and Moments

Typical assumption: \mathbf{x}_{i} are i.i.d. from some r.v. X with unknown density $f(x)$.
In principle, $f(x)$ describes everything about X.
So, we can try to estimate it.

Density Estimation and Moments

Typical assumption: \mathbf{x}_{i} are i.i.d. from some r.v. X with unknown density $f(x)$.
In principle, $f(x)$ describes everything about X.
So, we can try to estimate it.
Non-parametric (kernel) density estimation:

$$
|\hat{f}(x)-f(x)| \sim n^{-2 \beta /(2 \beta+p)}
$$

where β measure of smoothness of $f(x)$.

Density Estimation and Moments

Typical assumption: \mathbf{x}_{i} are i.i.d. from some r.v. X with unknown density $f(x)$.
In principle, $f(x)$ describes everything about X.
So, we can try to estimate it.
Non-parametric (kernel) density estimation:

$$
|\hat{f}(x)-f(x)| \sim n^{-2 \beta /(2 \beta+p)}
$$

where β measure of smoothness of $f(x)$.

Curse of dimensionality:

For small error ϵ, need exponential in p number of samples, $n=O(\exp (C p))$.

Density Estimation and Moments

Typical assumption: \mathbf{x}_{i} are i.i.d. from some r.v. X with unknown density $f(x)$.
In principle, $f(x)$ describes everything about X.
So, we can try to estimate it.
Non-parametric (kernel) density estimation:

$$
|\hat{f}(x)-f(x)| \sim n^{-2 \beta /(2 \beta+p)}
$$

where β measure of smoothness of $f(x)$.

Curse of dimensionality:

For small error ϵ, need exponential in p number of samples, $n=O(\exp (C p))$.

Typically not practical if $p>15$

First and Second Moments of X

Since already at moderate dimensions cannot estimate $f(x)$, opt for first and second moments:

Definition: The population mean vector $\boldsymbol{\mu} \in \mathbb{R}^{p}$ is

$$
\boldsymbol{\mu}=\mathbb{E}[X]=\int \mathbf{x} f(\mathbf{x}) d \mathbf{x}
$$

First and Second Moments of X

Since already at moderate dimensions cannot estimate $f(x)$, opt for first and second moments:

Definition: The population mean vector $\boldsymbol{\mu} \in \mathbb{R}^{p}$ is

$$
\boldsymbol{\mu}=\mathbb{E}[X]=\int \mathbf{x} f(\mathbf{x}) d \mathbf{x}
$$

Definition: The population covariance matrix $\boldsymbol{\Sigma}_{p \times p}$ is defined as

$$
\boldsymbol{\Sigma}=\mathbb{E}\left[(X-\boldsymbol{\mu})(X-\boldsymbol{\mu})^{T}\right]=\int(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{T} f(\mathbf{x}) d \mathbf{x}
$$

In many problems, estimates of $\boldsymbol{\mu}, \boldsymbol{\Sigma}$ will suffice to solve a data analysis task.

Example I: Quadratic Discriminant Analysis

Binary (2-class) classification problem:

Example I: Quadratic Discriminant Analysis

Binary (2-class) classification problem:
Observe $\left\{\mathbf{x}_{i}\right\}_{i=1}^{n_{+}}$from class +1
and
$\left\{\mathbf{x}_{i}^{\prime}\right\}_{i=1}^{n_{-}}$from class -1.

Example I: Quadratic Discriminant Analysis

Binary (2-class) classification problem:
Observe $\left\{\mathbf{x}_{i}\right\}_{i=1}^{n_{+}}$from class +1
and
$\left\{\mathbf{x}_{i}^{\prime}\right\}_{i=1}^{n_{-}}$from class -1 .
Goal: classify label $y \in\{ \pm 1\}$ of new \mathbf{x}.

Example I: Quadratic Discriminant Analysis

Binary (2-class) classification problem:

Observe $\left\{\mathbf{x}_{i}\right\}_{i=1}^{n_{+}}$from class +1
and
$\left\{\mathbf{x}_{i}^{\prime}\right\}_{i=1}^{n_{-}}$from class -1 .
Goal: classify label $y \in\{ \pm 1\}$ of new \mathbf{x}.
QDA: Assume each class is multivariate Gaussian,
Likellhood Ratio $=C\left(\Sigma_{+}, \Sigma_{-}\right) \frac{\exp \left(-\left(\mathbf{x}-\mu_{+}\right)^{T} \Sigma_{+}^{-1}\left(\mathbf{x}-\mu_{+}\right) / 2\right)}{\exp \left(-\left(\mathbf{x}-\mu_{-}\right)^{T} \Sigma_{-}^{-1}\left(\mathbf{x}-\mu_{-}\right) / 2\right)}$

Example I: Quadratic Discriminant Analysis

Binary (2-class) classification problem:

Observe $\left\{\mathbf{x}_{i}\right\}_{i=1}^{n_{+}}$from class +1
and
$\left\{\mathbf{x}_{i}^{\prime}\right\}_{i=1}^{n_{-}}$from class -1.
Goal: classify label $y \in\{ \pm 1\}$ of new \mathbf{x}.
QDA: Assume each class is multivariate Gaussian,

$$
\text { Likellhood Ratio }=C\left(\Sigma_{+}, \Sigma_{-}\right) \frac{\exp \left(-\left(\mathbf{x}-\mu_{+}\right)^{T} \Sigma_{+}^{-1}\left(\mathbf{x}-\mu_{+}\right) / 2\right)}{\exp \left(-\left(\mathbf{x}-\mu_{-}\right)^{T} \Sigma_{-}^{-1}\left(\mathbf{x}-\mu_{-}\right) / 2\right)}
$$

To apply QDA, need to estimate $\mu_{ \pm}$and $\Sigma_{ \pm}$(actually its inverse)

Example II: Markowitz Portfolio Optimization

[Harry Markowitz, Nobel prize 90']
Person can invest in p stocks, with weight vector $\mathbf{w}=\left(w_{1}, \ldots, w_{p}\right)$, s.t. $\sum w_{i}=1$.

Example II: Markowitz Portfolio Optimization

[Harry Markowitz, Nobel prize 90^{\prime}]
Person can invest in p stocks, with weight vector
$\mathbf{w}=\left(w_{1}, \ldots, w_{p}\right)$, s.t. $\sum w_{i}=1$.
Stock i has expected return μ_{i}. All p stocks have joint covariance Σ, where $\Sigma_{i i}$ is the variance of the i-th stock.

Example II: Markowitz Portfolio Optimization

[Harry Markowitz, Nobel prize 90']
Person can invest in p stocks, with weight vector
$\mathbf{w}=\left(w_{1}, \ldots, w_{p}\right)$, s.t. $\sum w_{i}=1$.
Stock i has expected return μ_{i}. All p stocks have joint covariance Σ, where $\Sigma_{i i}$ is the variance of the i-th stock.

Goal: Construct a portfolio that achieves an average target return μ_{R}, namely $\sum_{i} w_{i} \mu_{i}=\mu_{R}$

Example II: Markowitz Portfolio Optimization

[Harry Markowitz, Nobel prize 90']
Person can invest in p stocks, with weight vector
$\mathbf{w}=\left(w_{1}, \ldots, w_{p}\right)$, s.t. $\sum w_{i}=1$.
Stock i has expected return μ_{i}. All p stocks have joint covariance Σ, where $\Sigma_{i i}$ is the variance of the i-th stock.

Goal: Construct a portfolio that achieves an average target return μ_{R}, namely $\sum_{i} w_{i} \mu_{i}=\mu_{R}$
but
with minimal risk (variance).

$$
\min _{w} \mathbf{w}^{T} \Sigma \mathbf{w}
$$

To construct portfolio, need to estimate μ_{i} and Σ.

Example III: Dimensionality of Data / Signals in Noise

Analytical Chemistry, Array Signal Processing, ...:

Assume "signal+noise" model

$$
\mathbf{x}=\sum_{j=1}^{K} s_{j} \mathbf{v}_{j}+\text { noise }
$$

Given observed data $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, a basic question is: what is K ?

Example III: Dimensionality of Data / Signals in Noise

Analytical Chemistry, Array Signal Processing, ...:

Assume "signal+noise" model

$$
\mathbf{x}=\sum_{j=1}^{K} s_{j} \mathbf{v}_{j}+\text { noise }
$$

Given observed data $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, a basic question is: what is K ?
The covariance matrix of data has K spikes, eigenvalues larger than noise variance σ^{2}, and remaining eigenvalues all equal σ^{2}.

Example III: Dimensionality of Data / Signals in Noise

Analytical Chemistry, Array Signal Processing, ...:

Assume "signal+noise" model

$$
\mathbf{x}=\sum_{j=1}^{K} s_{j} \mathbf{v}_{j}+\text { noise }
$$

Given observed data $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, a basic question is: what is K ?
The covariance matrix of data has K spikes, eigenvalues larger than noise variance σ^{2}, and remaining eigenvalues all equal σ^{2}.

Question: How to estimate K, which signal strengths can be detected?

Detection of Structure / Signals in Noise

Eigenvalues of S_{n} (log-scale):

Estimation of Signal Direction

Suppose there is one signal in the data.

$$
\mathbf{x}=s \mathbf{v}+\sigma \boldsymbol{\xi}
$$

Goal: Estimate signal direction (vector v).

Estimation of Signal Direction

Suppose there is one signal in the data.

$$
\mathbf{x}=s \mathbf{v}+\sigma \boldsymbol{\xi}
$$

Goal: Estimate signal direction (vector v).
Questions: How should it be estimated ?
How well can it be estimated ?
What happens when dimension p is high ?

Estimation of Signal Direction

Estimation of Signal Direction

Common Statistical Inference Problems

Given data $\mathbf{x}_{1}, \ldots, x_{n}$:

- Estimate population covariance matrix $\boldsymbol{\Sigma}$

Common Statistical Inference Problems

Given data $\mathbf{x}_{1}, \ldots, x_{n}$:

- Estimate population covariance matrix $\boldsymbol{\Sigma}$
- Estimate the precision matrix $\Omega=\boldsymbol{\Sigma}^{-1}$.

Common Statistical Inference Problems

Given data $\mathbf{x}_{1}, \ldots, x_{n}$:

- Estimate population covariance matrix $\boldsymbol{\Sigma}$
- Estimate the precision matrix $\Omega=\boldsymbol{\Sigma}^{-1}$.
- Estimate the largest eigenvalues and eigenvectors of $\boldsymbol{\Sigma}$.

Common Statistical Inference Problems

Given data $\mathbf{x}_{1}, \ldots, x_{n}$:

- Estimate population covariance matrix $\boldsymbol{\Sigma}$
- Estimate the precision matrix $\Omega=\boldsymbol{\Sigma}^{-1}$.
- Estimate the largest eigenvalues and eigenvectors of $\boldsymbol{\Sigma}$.
- Suppose $\boldsymbol{\Sigma}$ (or $\boldsymbol{\Sigma}^{-1}$) have many zeros. Find their support.

Common Statistical Inference Problems

Given data $\mathbf{x}_{1}, \ldots, x_{n}$:

- Estimate population covariance matrix $\boldsymbol{\Sigma}$
- Estimate the precision matrix $\Omega=\boldsymbol{\Sigma}^{-1}$.
- Estimate the largest eigenvalues and eigenvectors of $\boldsymbol{\Sigma}$.
- Suppose $\boldsymbol{\Sigma}$ (or $\boldsymbol{\Sigma}^{-1}$) have many zeros. Find their support.
- Many hypothesis testing problems: Is $\Sigma=\Sigma_{0}$?
- Uncorrelated variables: Is $\Sigma=$ diag, is Σ banded ?

Inference Problems

Typically, $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ are unknown and must be estimated from data.
Classical Estimates:
Sample Mean:

$$
\overline{\mathbf{x}}=\frac{1}{n} \sum_{i} \mathbf{x}_{i}
$$

Inference Problems

Typically, $\boldsymbol{\mu}$ and $\boldsymbol{\Sigma}$ are unknown and must be estimated from data.
Classical Estimates:
Sample Mean:

$$
\overline{\mathbf{x}}=\frac{1}{n} \sum_{i} \mathbf{x}_{i}
$$

Sample Covariance Matrix:

$$
S_{n}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\bar{x}\right)\left(\mathbf{x}_{i}-\overline{\mathbf{x}}\right)^{T}
$$

Outline

Q-1: How close are S_{n} and its eigenvalues/vectors to those of Σ ?
Part 1. p small, $n \rightarrow \infty$ [classical asymptotic statistics]
Part 2. p, n both large, [modern high dimensional statistics]

Outline

Q-1: How close are S_{n} and its eigenvalues/vectors to those of Σ ?
Part 1. p small, $n \rightarrow \infty$ [classical asymptotic statistics]
Part 2. p, n both large, [modern high dimensional statistics]
Q-2: What if we know additional information: sparsity.

Outline

Q-1: How close are S_{n} and its eigenvalues/vectors to those of Σ ?
Part 1. p small, $n \rightarrow \infty$ [classical asymptotic statistics]
Part 2. p, n both large, [modern high dimensional statistics]
Q-2: What if we know additional information: sparsity.
Part 3. Sparse Principal Component Analysis, Sparse Covariance Estimation

The Important Question

Why is this interesting, relevant, important ?

Covariance Estimation will be important to you later in life because there's going to be a test six weeks from now."

References (Partial List)

* Nadler, Finite sample approximation results for PCA, Annals of Stat., 2008.
* Kritchman and Nadler, determining the number of components in a factor model from limited noisy data, 2008.
* Birnbaum et. al., Minimax bounds for sparse PCA with noisy high dimensional data, Annals of Stat., 2013.
* Baik and Silverstein, Eigenvalues of large sample covariance matrices..., J. Mult. Anal. 2006.
* Paul, Asymptotics of sample eigenstructure..., Stat. Sinica, 2008.
* Bickel and Levina, Covariance regularization by thresholding, Annals of Stat., 2008.
* Cai and Liu, Adaptive thresholding for sparse covariance matrix estimation, J. Am. Stat. Assoc., 2011.
* Cai, Zhang, Zhou, Optimal rates of convergence for covariance matrix estimation, Ann. of Stat. 2010. and many others...

