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Introduction

In many applications we need to analyze multivariate data,

x1, . . . , xn ∈ Rp

Throughout talk:
p - dimension, n - number of samples

Many different scenarios:

- p small, n large.

- both p and n large.

- p large, n small.
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Unsupervised Tasks

- Visualization,

- Dimensionality Reduction

- Compression, Denoising

- Exploratory Data Analysis - finding structure in data

- Many hypothesis testing problems.
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Supervised Tasks

In some cases we observe also a response yi for each xi .

Common tasks:

- Classification (Linear Discriminant Analysis)

- Regression (Multivariate Linear Regression).
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Density Estimation and Moments

Typical assumption: xi are i.i.d. from some r.v. X with unknown
density f (x).

In principle, f (x) describes everything about X .

So, we can try to estimate it.

Non-parametric (kernel) density estimation:

|f̂ (x)− f (x)| ∼ n−2β/(2β+p)

where β measure of smoothness of f (x).

Curse of dimensionality:
For small error ϵ, need exponential in p number of samples,
n = O(exp(Cp)).

Typically not practical if p > 15
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First and Second Moments of X

Since already at moderate dimensions cannot estimate f (x), opt
for first and second moments:

Definition: The population mean vector µ ∈ Rp is

µ = E[X ] =

∫
xf (x)dx

Definition: The population covariance matrix Σp×p is defined as

Σ = E[(X − µ)(X − µ)T ] =

∫
(x− µ)(x− µ)T f (x)dx

In many problems, estimates of µ,Σ will suffice to solve a data
analysis task.
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Example I: Quadratic Discriminant Analysis

Binary (2-class) classification problem:

Observe {xi}n+i=1 from class +1

and

{x′i}
n−
i=1 from class −1.

Goal: classify label y ∈ {±1} of new x.

QDA: Assume each class is multivariate Gaussian,

Likellhood Ratio = C (Σ+,Σ−)
exp(−(x− µ+)

TΣ−1
+ (x− µ+)/2)

exp(−(x− µ−)TΣ
−1
− (x− µ−)/2)

To apply QDA, need to estimate µ± and Σ± (actually its inverse)
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Example II: Markowitz Portfolio Optimization

[Harry Markowitz, Nobel prize 90’]
Person can invest in p stocks, with weight vector
w = (w1, . . . ,wp), s.t.

∑
wi = 1.

Stock i has expected return µi . All p stocks have joint covariance
Σ, where Σii is the variance of the i-th stock.

Goal: Construct a portfolio that achieves an average target return
µR , namely

∑
i wiµi = µR

but
with minimal risk (variance).

min
w

wTΣw

To construct portfolio, need to estimate µi and Σ.
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Example III: Dimensionality of Data / Signals in Noise

Analytical Chemistry, Array Signal Processing, ...:

Assume “signal+noise” model

x =
K∑
j=1

sjvj + noise

Given observed data x1, . . . , xn, a basic question is: what is K ?

The covariance matrix of data has K spikes, eigenvalues larger
than noise variance σ2, and remaining eigenvalues all equal σ2.

Question: How to estimate K , which signal strengths can be
detected ?
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Detection of Structure / Signals in Noise

Eigenvalues of Sn (log-scale):
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Estimation of Signal Direction

Suppose there is one signal in the data.

x = sv + σξ

Goal: Estimate signal direction (vector v).

Questions: How should it be estimated ?
How well can it be estimated ?
What happens when dimension p is high ?

Boaz Nadler PCA



Estimation of Signal Direction

Suppose there is one signal in the data.

x = sv + σξ

Goal: Estimate signal direction (vector v).

Questions: How should it be estimated ?
How well can it be estimated ?
What happens when dimension p is high ?

Boaz Nadler PCA



Estimation of Signal Direction
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Estimation of Signal Direction
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Common Statistical Inference Problems

Given data x1, . . . , xn:

- Estimate population covariance matrix Σ

- Estimate the precision matrix Ω = Σ−1.

- Estimate the largest eigenvalues and eigenvectors of Σ.

- Suppose Σ (or Σ−1) have many zeros. Find their support.

- Many hypothesis testing problems: Is Σ = Σ0 ?

- Uncorrelated variables: Is Σ = diag , is Σ banded ?
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Inference Problems

Typically, µ and Σ are unknown and must be estimated from data.

Classical Estimates:

Sample Mean:

x̄ =
1

n

∑
i

xi

Sample Covariance Matrix:

Sn =
1

n − 1

n∑
i=1

(xi − x̄)(xi − x̄)T
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Outline

Q-1: How close are Sn and its eigenvalues/vectors to those of Σ ?

Part 1. p small, n → ∞ [classical asymptotic statistics]

Part 2. p, n both large, [modern high dimensional statistics]

Q-2: What if we know additional information: sparsity.

Part 3. Sparse Principal Component Analysis, Sparse Covariance
Estimation
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The Important Question

Why is this interesting, relevant, important ?
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Covariance Estimation will be important to you
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