How close are $\hat{\mu}_n$ and S_n to the population mean and variance

Boaz Nadler

Department of Computer Science and Applied Mathematics
The Weizmann Institute of Science

Dec. 2021

Part 1: Classical Asymptotic Statistics

Reminder

 $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^p$ assumed i.i.d. from r.v. X.

Sample Mean:

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i} \mathbf{x}_{i}$$

Reminder

 $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^p$ assumed i.i.d. from r.v. X.

Sample Mean:

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i} \mathbf{x}_{i}$$

Sample Covariance Matrix:

$$S_n = \frac{1}{n-1} \sum_{i=1}^n (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T$$

Reminder

 $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^p$ assumed i.i.d. from r.v. X.

Sample Mean:

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i} \mathbf{x}_{i}$$

Sample Covariance Matrix:

$$S_n = \frac{1}{n-1} \sum_{i=1}^n (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T$$

Eigendecomposition / Principal Component Analysis

$$S_n = \sum_j \ell_j \hat{\mathbf{v}}_j \hat{\mathbf{v}}_j^{\mathsf{T}}$$

Classical Asymptotics, p fixed, $n \to \infty$

Reminder: CLT, if x_i all i.i.d. from r.v. $X \in \mathbb{R}^p$ with $\mathbb{E}[X] = \mu$ and $Var[X_i] = \sigma^2 < \infty$, then as $n \to \infty$

$$\sqrt{n}(\bar{\mathbf{x}}_i - \mu_i) \sim \mathcal{N}(0, \sigma^2)$$

Similarly, if *X* has finite fourth moment, element-wise,

$$(S_n)_{ij} - \Sigma_{ij} = O_P\left(\frac{1}{\sqrt{n}}\right)$$

Main Point: If p fixed, $n \gg p$, $\bar{\mathbf{x}}$ and S_n are accurate estimators of μ and Σ .

Classical Asymptotics, p fixed, $n \to \infty$

Furthermore, as for eigendecomposition,

 $\ell_j
ightarrow \lambda_j$ and for eigenvalues with multiplicity one $\hat{m{v}}_j
ightarrow m{v}_j$

Theorem: For eigenvalue λ_i of multiplicity one, under mild assumptions on \mathbf{x} , as $n \to \infty$, $\ell_i \sim \mathcal{N}(\mu, \sigma^2)$ where

$$\mu = \mathbb{E}[\ell_i] = \lambda_i + \frac{1}{n} \sum_j \frac{\lambda_i \lambda_j}{\lambda_i - \lambda_j} + o\left(\frac{1}{n}\right)$$

$$\sigma^2 = Var[\ell_i] = \frac{2}{n\beta}\lambda_i^2 + o\left(\frac{1}{n}\right)$$

Also,

$$\hat{\mathbf{v}}_j = \mathbf{v}_j + O_P\left(\frac{1}{\sqrt{n}}\right)$$

Asymptotic Eigenvalue Distribution

Example: Single signal in noise

$$\Sigma = \lambda_1 \mathbf{e}_1 \mathbf{e}_1^T + \sigma^2 I_m$$

Asymptotic Eigenvalue Distribution

Example: Single signal in noise

$$\Sigma = \lambda_1 \mathbf{e}_1 \mathbf{e}_1^T + \sigma^2 I_m$$

Eigenvector Asymptotics

Example:

Signal strength λ in noise variance σ^2 .

$$\lambda_1 = \lambda + \sigma^2$$
, $\lambda_j = \sigma^2$.

Without loss of generality, assume $\boldsymbol{h}=\boldsymbol{e}_1.$

Eigenvector Asymptotics

Example:

Signal strength λ in noise variance σ^2 .

$$\lambda_1 = \lambda + \sigma^2$$
, $\lambda_i = \sigma^2$.

Without loss of generality, assume $\mathbf{h}=\mathbf{e}_1.$ Asymptotically,

$$\hat{\mathbf{v}}_1 = (1,0,\ldots,0) + \frac{\sigma}{\sqrt{n}} \sqrt{\frac{\lambda + \sigma^2}{\lambda^2}} (0,\xi_2,\ldots,\xi_m)$$

Hence

$$R = \left| \left\langle \frac{\hat{\mathbf{v}}_1}{\|\hat{\mathbf{v}}_1\|}, \mathbf{h} \right\rangle \right|^2 \approx \frac{1}{1 + \frac{\sigma^2}{n} \frac{\lambda + \sigma^2}{\lambda^2} \chi_{m-1}^2} \approx \frac{1}{1 + \frac{p-1}{n} \frac{\sigma^2}{\lambda}}$$

If $n \gg p$ and $\lambda \gg \sigma^2$, good overlap between first sample and population principal components, $R \approx 1$.

Simulation Example: Eigenvector Spread

Part II: What happens when dimension p is large when p and n are comparable, or even $p \gg n$?

Modern Asymptotics: Random Matrix Theory

```
Example: Consider \mathbf{x}_1, \dots, \mathbf{x}_n all i.i.d. from \mathcal{N}(0, \mathbf{I}_p). Namely, \Sigma = \mathbf{I}_p, all its p eigenvalues are equal \lambda_j = 1.
```

Modern Asymptotics: Random Matrix Theory

```
Example: Consider \mathbf{x}_1, \dots, \mathbf{x}_n all i.i.d. from \mathcal{N}(0, \mathbf{I}_p). Namely, \Sigma = \mathbf{I}_p, all its p eigenvalues are equal \lambda_j = 1.
```

How do eigenvalues of S_n look like when p, n are comparable?

Modern Asymptotics: Random Matrix Theory

```
Example: Consider \mathbf{x}_1, \dots, \mathbf{x}_n all i.i.d. from \mathcal{N}(0, \mathbf{I}_p). Namely, \Sigma = \mathbf{I}_p, all its p eigenvalues are equal \lambda_j = 1.
```

How do eigenvalues of S_n look like when p, n are comparable?

```
Note: If p > n then S_n not even invertible!
It has p - n - 1 eigenvalues exactly equal to zero!
```

Numerical Illustration

```
X = randn(m,n);
S = 1/n X X';
L = eig(S);
histL = hist(L,x);
```

Simulation: Eigenvalue Spread

Simulation: Eigenvalue Spread

Simulation: Eigenvalue Spread

Spread of Sample Eigenvalues

Let $\{\ell_i\}_{i=1}^m$ be the eigenvalues of a random symmetric matrix H.

Empirical Spectral Distribution Function:

$$F_m(t) = \frac{1}{m} \# \{\ell_i \le t\}$$

The Quarter-Circle Law

[Marchenko & Pastur, 1967]

Let S_n be sample covariance of n Gaussian observations from $\mathcal{N}(0, I_p)$.

Theorem: For $\Sigma = I$, as $p, n \to \infty$ with $p/n \to c$, (c < 1) let ℓ_i be sample eigenvalues of S_n , then

$$f_{MP}(t) = rac{1}{2\pi ct} \sqrt{(b-t)(t-a)} \quad t \in [a,b]$$

where
$$a = (1 - \sqrt{c})^2$$
, $b = (1 + \sqrt{c})^2$

The Quarter-Circle Law

[Marchenko & Pastur, 1967]

Let S_n be sample covariance of n Gaussian observations from $\mathcal{N}(0, I_p)$.

Theorem: For $\Sigma = I$, as $p, n \to \infty$ with $p/n \to c$, (c < 1) let ℓ_i be sample eigenvalues of S_n , then

$$f_{MP}(t) = rac{1}{2\pi ct} \sqrt{(b-t)(t-a)} \quad t \in [a,b]$$

where
$$a = (1 - \sqrt{c})^2$$
, $b = (1 + \sqrt{c})^2$

If c > 1, then a = 0, and there are p - n - 1 sample eigenvalues exactly at zero.

Detection of Signals in Noise / Phase Transition

Now consider data of the form signal+noise

Spiked Covariance Models

Consider model whereby

$$\Sigma = diag(\lambda_1, \lambda_2, \dots, \lambda_k, 0, \dots, 0) + \sigma^2 I_m$$

Spiked covariance with *k* spikes.

Observe n vectors $\mathbf{x}_i \in \{\mathbb{R}, \mathbb{C}\}^m$ from this model.

Question: What happens to largest sample eigenvalues and eigenvectors as $n, m \to \infty$, with k, λ_j fixed ?

Phase Transition

[complex case, Ben-Arous, Baik, Peche] [real case, Baik and Silverstein]

Theorem: For spike model with k spikes, as $n, m \to \infty$ with $m/n \to c$, for $j = 1, \ldots, k$,

$$\ell_{j} \to \begin{cases} (\lambda_{j} + \sigma^{2}) \left(1 + \frac{m - k}{n} \frac{\sigma^{2}}{\lambda_{j}} \right) & \lambda_{j} > \sigma^{2} \sqrt{m/n} \\ \sigma^{2} (1 + \sqrt{m/n})^{2} & \lambda_{j} < \sigma^{2} \sqrt{m/n} \end{cases}$$

Phenomena known as retarded learning in statistical physics.

Phase Transition / Eigenvectors

[D. Paul 07', Nadler 08']

Theorem: As $m, n \to \infty$ with $m/n \to c$,

$$R^{2}(m/n) = |\langle \mathbf{v}_{PCA}, \mathbf{v} \rangle|^{2} = \begin{cases} 0 & \text{if } \lambda < \sigma^{2} \sqrt{m/n} \\ \frac{\lambda^{2}}{c\sigma^{4}} - 1 & \text{if } \lambda > \sigma^{2} \sqrt{m/n} \end{cases}$$

In statistical physics:

[Hoyle and Rattray, Reimann & al, Biehl, Watson]

Phase Transition / Eigenvectors

[D. Paul 07', Nadler 08']

Theorem: As $m, n \to \infty$ with $m/n \to c$,

$$R^{2}(m/n) = |\langle \mathbf{v}_{PCA}, \mathbf{v} \rangle|^{2} = \begin{cases} 0 & \text{if } \lambda < \sigma^{2} \sqrt{m/n} \\ \frac{\lambda^{2}}{c\sigma^{4}} - 1 & \text{if } \lambda > \sigma^{2} \sqrt{m/n} \end{cases}$$

In statistical physics:

[Hoyle and Rattray, Reimann & al, Biehl, Watson]

Asymptotic \sqrt{n} -Gaussian fluctuations for both eigenvalue and eigenvector [Paul, 07]

$$\sqrt{n}(\ell_1 - \mathbb{E}[\ell_1]) \sim \mathcal{N}(0, \sigma^2(\lambda_1))$$

Proof of Phase Transition: Single Spike

$$H = \frac{1}{n}X'X = \begin{pmatrix} z_1 & 0 & \dots & 0 \\ 0 & 0 & & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix} + \sigma \begin{pmatrix} 0 & b_2 & \dots & b_m \\ b_2 & 0 & & 0 \\ \vdots & & 0 & \vdots \\ b_m & 0 & & 0 \end{pmatrix}$$
$$+\sigma^2 \begin{pmatrix} 0 & 0 & \dots & 0 \\ \hline 0 & z_{2,2} & z_{2m} \\ \vdots & \ddots & \vdots \\ 0 & z_{m,2} & z_{m,m} \end{pmatrix}$$

$$=A_0+\sigma A_1+\sigma^2 A_2$$

= signal + signal/noise interaction + noise

Proof of Phase Transition: Single Spike

Trick: Diagonalize noise part:

$$H = \frac{1}{n}X'X = \begin{pmatrix} z_1 & 0 & \dots & 0 \\ 0 & 0 & & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix} + \sigma \begin{pmatrix} 0 & \tilde{b}_2 & \dots & \tilde{b}_m \\ \tilde{b}_2 & 0 & & 0 \\ \vdots & & 0 & \vdots \\ \tilde{b}_m & 0 & & 0 \end{pmatrix}$$
$$+ \sigma^2 \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & \mu_2 & & 0 \\ & & \ddots & \\ 0 & 0 & & \mu_m \end{pmatrix}$$

Proof of Phase Transition: Single Spike

Trick: Diagonalize noise part:

$$H = \frac{1}{n}X'X = \begin{pmatrix} z_1 & 0 & \dots & 0 \\ 0 & 0 & & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix} + \sigma \begin{pmatrix} 0 & \tilde{b}_2 & \dots & \tilde{b}_m \\ \tilde{b}_2 & 0 & & 0 \\ \vdots & & 0 & \vdots \\ \tilde{b}_m & 0 & & 0 \end{pmatrix}$$
$$+ \sigma^2 \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & \mu_2 & & 0 \\ & & \ddots & \\ 0 & 0 & & \mu_m \end{pmatrix}$$

Arrowhead Matrix: Its eigenvalues are roots of secular equation

$$\ell-z_1=\sum_jrac{ ilde{b}_j^2}{\ell-\mu_j}$$

Proof of Phase Transition

 $(m-1)\times (m-1)$ matrix Z is of pure noise $\to \mu_2,\ldots,\mu_m$ are eigenvalues of $W_{m-1}(n,\sigma^2I)$.

As $m, n \to \infty$ with $m/n \to c$,

$$z_1
ightarrow (\lambda + \sigma^2)$$
 $\mu_2, \ldots, \mu_p
ightarrow \mathsf{Marchenko}$ Pastur density $ilde{b}_j
ightarrow \mathcal{N}(0, z_1 \mu_j / n)$ sum converges to integral

$$\ell - (\lambda + \sigma^2) = c \int (\lambda + \sigma)^2 \frac{\mu}{\ell - \mu} f_{MP}(\mu) d\mu$$

Integral can be computed explicitly, gives quadratic equation. Its solution gives the phase transition formula.

Phase Transition for finite m as function of σ

First, a "thought experiment": Take clean signal data $\{\mathbf{x}^{\nu}\}$ with finite m,n, add noise and start increasing σ . What should be the expected behavior of $|\langle \mathbf{v}_{\mathsf{PCA}},\mathbf{v}\rangle|$ and of ℓ_1 ?

$$\lambda \sim \kappa^2 + \sigma^2 (1+m/n) \qquad R \sim 1 - \sigma^2/\kappa^2 m/n$$

$$n = 50, m = 200, \kappa^2 = 7.87$$

Phase Transition as function of σ

Part III:

Can we do better in high dimensions with additional information ?

Sparsity of covariance or of principal components