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Part 1: Classical Asymptotic Statistics
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X1,...,Xn, € RP assumed i.i.d. from r.v. X.

)_(:%ZX;

Sample Mean:
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X1,...,Xn, € RP assumed i.i.d. from r.v. X.

)_(:%ZX;

Sample Covariance Matrix:

Sample Mean:
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X1,...,Xn, € RP assumed i.i.d. from r.v. X.

)_(:%ZX;

Sample Covariance Matrix:

Sample Mean:

1 n

(xi = %)(xi —%)7

Eigendecomposition / Principal Component Analysis

o 'A./\T
S, = E EJvij
J
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Classical Asymptotics, p fixed, n — oo

Reminder: CLT, if x; all i.i.d. from r.v. X € RP with E[X] = p and
Var[Xj] = 02 < oo, then as n — oo

V(% — pi) ~ N(0,0%)
Similarly, if X has finite fourth moment, element-wise,

Main Point: If p fixed, n > p, X and S, are accurate estimators
of p and X.
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Classical Asymptotics, p fixed, n — oo

Furthermore, as for eigendecomposition,
¢; — \j and for eigenvalues with multiplicity one ¥; — v;

Theorem: For eigenvalue A; of multiplicity one, under mild
assumptions on x, as n — oo, £; ~ N(u,7?) where

1 AiAj 1
R[] = N =S 1
1 [4i] )\+nj)\i_)\j+o<n>

2 1
2 = Var[t]] = = )\? =
o ar[(;] nﬁ)\,—l—o p
Also,

R 1
v =v;+ Op (ﬁ)
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Asymptotic Eigenvalue Distribution

Example: Single signal in noise
> = AlelelT + 0’2/m
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Asymptotic Eigenvalue Distribution

Example: Single signal in noise
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> = AlelelT + 0’2/m

m = 6,n =150, \; = 10
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Eigenvector Asymptotics

Example:
Signal strength X in noise variance o?.
A=\ + 02, Aj = 2.

Without loss of generality, assume h = e;.
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Eigenvector Asymptotics

Example:
Signal strength X in noise variance o?.

A1 =\+0?, Aj =02,
Without loss of generality, assume h = e;.
Asymptotically,

o |\+o02
vi = (1,0,... — A —— coém
Vi ( ,07 70) + \/E )\2 (07527 75 )

Hence
N 2
Vi1 1 1
R= ‘ —h)| = ~
<IIV1|| ) 1+ S2tg%y2 7y plal

If n>> p and A > 02, good overlap between first sample and
population principal components, R =~ 1.
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Simulation Example: Eigenvector Spread
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Part 1l: What happens when dimension p is large

when p and n are comparable, or even p > n ?
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Modern Asymptotics: Random Matrix Theory

Example: Consider x1,...,X, all i.i.d. from A(0,1,).
Namely, > =1, all its p eigenvalues are equal \; = 1.
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Modern Asymptotics: Random Matrix Theory

Example: Consider x1,...,X, all i.i.d. from A(0,1,).
Namely, > =1, all its p eigenvalues are equal \; = 1.

How do eigenvalues of S, look like when p, n are comparable ?
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Modern Asymptotics: Random Matrix Theory

Example: Consider x1,...,X, all i.i.d. from A(0,1,).
Namely, > =1, all its p eigenvalues are equal \; = 1.

How do eigenvalues of S, look like when p, n are comparable ?

Note: If p > n then S, not even invertible !
It has p — n — 1 eigenvalues exactly equal to zero !
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Numerical lllustration

X = randn(m,n);
S=1/n X X’ ;
L = eig(8) ;

histL = hist(L,x);
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Simulation: Eigenvalue Spread

iter: 5000 m = 25 n = 5000 Nbins= 64
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Simulation: Eigenvalue Spread

iter: 5000 m = 25 n = 1000 Nbins= 64
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Spread of Sample Eigenvalues

Let {¢;}7, be the eigenvalues of a random symmetric matrix H.

Empirical Spectral Distribution Function:

Fult) = {6 < 1}

Boaz Nadler



The Quarter-Circle Law

[Marchenko & Pastur, 1967]
Let S, be sample covariance of n Gaussian observations from
N, 1,).
Theorem: For ¥ =/, as p,n — oo with p/n — ¢, (c < 1) let ¢;
be sample eigenvalues of S, then

fup(t) = 5B~ Dt —3) t€lah

where a = (1 — \/c)?, b= (1+ /c)?
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The Quarter-Circle Law

[Marchenko & Pastur, 1967]
Let S, be sample covariance of n Gaussian observations from
N, 1,).
Theorem: For ¥ =/, as p,n — oo with p/n — ¢, (c < 1) let ¢;
be sample eigenvalues of S, then

fup(t) = 5B~ Dt —3) t€lah

where a = (1 — \/c)?, b= (1+ /c)?

If ¢ > 1, then a =0, and there are p — n — 1 sample eigenvalues
exactly at zero.
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Detection of Signals in Noise / Phase Transition

Now consider data of the form signal4-noise
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Spiked Covariance Models

Consider model whereby

Y = diag(A\1, A2, .-, Mk, 0,...,0) + 02l
Spiked covariance with k spikes.
Observe n vectors x; € {R, C}" from this model.

Question: What happens to largest sample eigenvalues and
eigenvectors as n,m — 00, with k, \; fixed ?
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Phase Transition

[complex case, Ben-Arous, Baik, Peche]
[real case, Baik and Silverstein]

Theorem: For spike model with k spikes, as n, m — oo with
m/n—c, forj=1,... k,

E,%{ (+0%) (1+2EL) n > o2 /m/n
’ o?(1 4 +/m/n)? A < o?y/m/n

Phenomena known as retarded learning in statistical physics.

<
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Phase Transition / Eigenvectors

[D. Paul 07', Nadler 08']
Theorem: As m, n — oo with m/n — ¢,

0 if A <o2y/m/n
R2 _ 2] X
(/) = |tecn. ¥ et 2 if A > 02/m/n

co? 02

In statistical physics:
[Hoyle and Rattray, Reimann & al, Biehl, Watson]
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Phase Transition / Eigenvectors

[D. Paul 07', Nadler 08']
Theorem: As m, n — oo with m/n — ¢,

0 if A <o2y/m/n
R2 _ 2] X
(/) = |tecn. ¥ et 2 if A > 02/m/n

co? 02

In statistical physics:
[Hoyle and Rattray, Reimann & al, Biehl, Watson]

Asymptotic y/n-Gaussian fluctuations for both eigenvalue and
eigenvector [Paul, 07]

Vn(ty — E[(1]) ~ N(0,0%(A1))
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Proof of Phase Transition: Single Spike

z1 0 0 0 b bm
1 0 0 0 by 0 0
H==-X'X= . .| fo )
n : : : 0
0 0 0 bn, O 0
0} O 0
| 0] 22 Zom
+o .
0 Zm,2 Zm,m
Ao + oAq + 02A2
= signal + signal/noise interaction —+ noise
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Proof of Phase Transition: Single Spike

Trick: Diagonalize noise part:

z7 0 ... 0 9 by b
0 O 0 b 0 0
H:lx’ = _ N .2 :
n : : : 0

00 ...0 bm 0 0

0|0 0

0 0

+02 H2
010 Lm
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Proof of Phase Transition: Single Spike

Trick: Diagonalize noise part:

z7 0 ... 0 9 by b
0 O 0 b 0 0
H:lx’ = _ N .2 :
n : : : 0

00 ...0 bm 0 0

0|0 0

0 0

+02 H2
010 Lm

Arrowhead Matrix: Its eigenvalues are roots of secular equation
72
bj

{— 7z =
=Y,
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Proof of Phase Transition

(m—1) x (m—1) matrix Z is of pure noise — 2, ..., tm are
eigenvalues of Wy,_1(n,o?1).
As m,n — oo with m/n — c,
21— (A +0?)
2, - s ftp — Marchenko Pastur density
bj — N(O, Zl,uj/n)
sum converges to integral

(—(\+0°%) = c/()\ + U)2ﬁfMp(u)du

Integral can be computed explicitly, gives quadratic equation. lts
solution gives the phase transition formula.
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Phase Transition for finite m as function of o

First, a "thought experiment”: Take clean signal data {x"} with
finite m, n, add noise and start increasing 0. What should be the
expected behavior of [(Vpca, V)| and of ¢1 7

A1,)\2 as a function of o <vk s e1 >
80 fe—
60 08
06
40 N
04 |
2 0.2
0 JISUONEEE===ctor Vil
0 1 2 3 0 1 2 3
(o2 [0}
A~ K2+ 021+ m/n) R~1-02/k’m/n

n =50, m = 200, x* = 7.87
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Phase Transition as function of o
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Part IlI:

Can we do better in high dimensions
with additional information 7

Sparsity of covariance or of principal components
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