# How close are $\hat{\mu}_n$ and $S_n$ to the population mean and variance

#### Boaz Nadler

Department of Computer Science and Applied Mathematics
The Weizmann Institute of Science

Dec. 2021

Part 1: Classical Asymptotic Statistics

#### Reminder

 $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^p$  assumed i.i.d. from r.v. X.

Sample Mean:

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i} \mathbf{x}_{i}$$

#### Reminder

 $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^p$  assumed i.i.d. from r.v. X.

Sample Mean:

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i} \mathbf{x}_{i}$$

Sample Covariance Matrix:

$$S_n = \frac{1}{n-1} \sum_{i=1}^n (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T$$

#### Reminder

 $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^p$  assumed i.i.d. from r.v. X.

Sample Mean:

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i} \mathbf{x}_{i}$$

Sample Covariance Matrix:

$$S_n = \frac{1}{n-1} \sum_{i=1}^n (\mathbf{x}_i - \bar{\mathbf{x}}) (\mathbf{x}_i - \bar{\mathbf{x}})^T$$

Eigendecomposition / Principal Component Analysis

$$S_n = \sum_j \ell_j \hat{\mathbf{v}}_j \hat{\mathbf{v}}_j^{\mathsf{T}}$$



#### Classical Asymptotics, p fixed, $n \to \infty$

Reminder: CLT, if  $x_i$  all i.i.d. from r.v.  $X \in \mathbb{R}^p$  with  $\mathbb{E}[X] = \mu$  and  $Var[X_i] = \sigma^2 < \infty$ , then as  $n \to \infty$ 

$$\sqrt{n}(\bar{\mathbf{x}}_i - \mu_i) \sim \mathcal{N}(0, \sigma^2)$$

Similarly, if *X* has finite fourth moment, element-wise,

$$(S_n)_{ij} - \Sigma_{ij} = O_P\left(\frac{1}{\sqrt{n}}\right)$$

**Main Point:** If p fixed,  $n \gg p$ ,  $\bar{\mathbf{x}}$  and  $S_n$  are accurate estimators of  $\mu$  and  $\Sigma$ .



## Classical Asymptotics, p fixed, $n \to \infty$

Furthermore, as for eigendecomposition,

 $\ell_j 
ightarrow \lambda_j$  and for eigenvalues with multiplicity one  $\hat{m{v}}_j 
ightarrow m{v}_j$ 

**Theorem:** For eigenvalue  $\lambda_i$  of multiplicity one, under mild assumptions on  $\mathbf{x}$ , as  $n \to \infty$ ,  $\ell_i \sim \mathcal{N}(\mu, \sigma^2)$  where

$$\mu = \mathbb{E}[\ell_i] = \lambda_i + \frac{1}{n} \sum_j \frac{\lambda_i \lambda_j}{\lambda_i - \lambda_j} + o\left(\frac{1}{n}\right)$$

$$\sigma^2 = Var[\ell_i] = \frac{2}{n\beta}\lambda_i^2 + o\left(\frac{1}{n}\right)$$

Also,

$$\hat{\mathbf{v}}_j = \mathbf{v}_j + O_P\left(\frac{1}{\sqrt{n}}\right)$$



## Asymptotic Eigenvalue Distribution

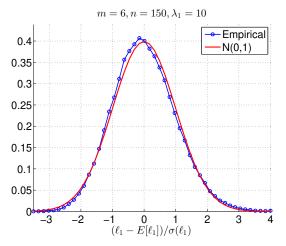
**Example:** Single signal in noise

$$\Sigma = \lambda_1 \mathbf{e}_1 \mathbf{e}_1^T + \sigma^2 I_m$$

#### Asymptotic Eigenvalue Distribution

**Example:** Single signal in noise

$$\Sigma = \lambda_1 \mathbf{e}_1 \mathbf{e}_1^T + \sigma^2 I_m$$



#### Eigenvector Asymptotics

#### **Example:**

Signal strength  $\lambda$  in noise variance  $\sigma^2$ .

$$\lambda_1 = \lambda + \sigma^2$$
,  $\lambda_j = \sigma^2$ .

Without loss of generality, assume  $\boldsymbol{h}=\boldsymbol{e}_1.$ 

#### Eigenvector Asymptotics

#### Example:

Signal strength  $\lambda$  in noise variance  $\sigma^2$ .

$$\lambda_1 = \lambda + \sigma^2$$
,  $\lambda_i = \sigma^2$ .

Without loss of generality, assume  $\mathbf{h}=\mathbf{e}_1.$  Asymptotically,

$$\hat{\mathbf{v}}_1 = (1,0,\ldots,0) + \frac{\sigma}{\sqrt{n}} \sqrt{\frac{\lambda + \sigma^2}{\lambda^2}} (0,\xi_2,\ldots,\xi_m)$$

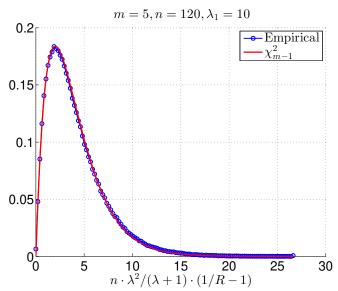
Hence

$$R = \left| \left\langle \frac{\hat{\mathbf{v}}_1}{\|\hat{\mathbf{v}}_1\|}, \mathbf{h} \right\rangle \right|^2 \approx \frac{1}{1 + \frac{\sigma^2}{n} \frac{\lambda + \sigma^2}{\lambda^2} \chi_{m-1}^2} \approx \frac{1}{1 + \frac{p-1}{n} \frac{\sigma^2}{\lambda}}$$

If  $n \gg p$  and  $\lambda \gg \sigma^2$ , good overlap between first sample and population principal components,  $R \approx 1$ .



#### Simulation Example: Eigenvector Spread



Part II: What happens when dimension p is large when p and n are comparable, or even  $p \gg n$ ?

## Modern Asymptotics: Random Matrix Theory

```
Example: Consider \mathbf{x}_1, \dots, \mathbf{x}_n all i.i.d. from \mathcal{N}(0, \mathbf{I}_p). Namely, \Sigma = \mathbf{I}_p, all its p eigenvalues are equal \lambda_j = 1.
```

## Modern Asymptotics: Random Matrix Theory

```
Example: Consider \mathbf{x}_1, \dots, \mathbf{x}_n all i.i.d. from \mathcal{N}(0, \mathbf{I}_p). Namely, \Sigma = \mathbf{I}_p, all its p eigenvalues are equal \lambda_j = 1.
```

How do eigenvalues of  $S_n$  look like when p, n are comparable?

#### Modern Asymptotics: Random Matrix Theory

```
Example: Consider \mathbf{x}_1, \dots, \mathbf{x}_n all i.i.d. from \mathcal{N}(0, \mathbf{I}_p). Namely, \Sigma = \mathbf{I}_p, all its p eigenvalues are equal \lambda_j = 1.
```

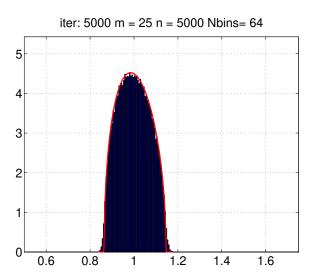
How do eigenvalues of  $S_n$  look like when p, n are comparable?

```
Note: If p > n then S_n not even invertible!
It has p - n - 1 eigenvalues exactly equal to zero!
```

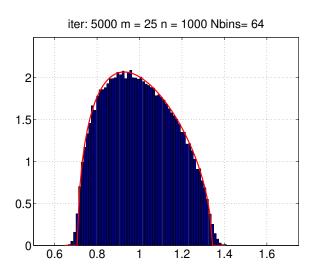
#### Numerical Illustration

```
X = randn(m,n);
S = 1/n X X';
L = eig(S);
histL = hist(L,x);
```

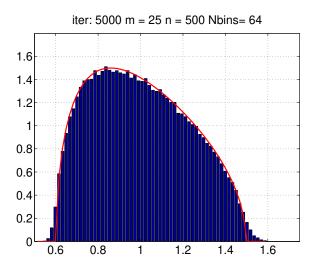
# Simulation: Eigenvalue Spread



# Simulation: Eigenvalue Spread



# Simulation: Eigenvalue Spread



#### Spread of Sample Eigenvalues

Let  $\{\ell_i\}_{i=1}^m$  be the eigenvalues of a random symmetric matrix H.

Empirical Spectral Distribution Function:

$$F_m(t) = \frac{1}{m} \# \{\ell_i \le t\}$$

#### The Quarter-Circle Law

[Marchenko & Pastur, 1967]

Let  $S_n$  be sample covariance of n Gaussian observations from  $\mathcal{N}(0, I_p)$ .

**Theorem:** For  $\Sigma = I$ , as  $p, n \to \infty$  with  $p/n \to c$ , (c < 1) let  $\ell_i$  be sample eigenvalues of  $S_n$ , then

$$f_{MP}(t) = rac{1}{2\pi ct} \sqrt{(b-t)(t-a)} \quad t \in [a,b]$$

where 
$$a = (1 - \sqrt{c})^2$$
,  $b = (1 + \sqrt{c})^2$ 

#### The Quarter-Circle Law

[Marchenko & Pastur, 1967]

Let  $S_n$  be sample covariance of n Gaussian observations from  $\mathcal{N}(0, I_p)$ .

**Theorem:** For  $\Sigma = I$ , as  $p, n \to \infty$  with  $p/n \to c$ , (c < 1) let  $\ell_i$  be sample eigenvalues of  $S_n$ , then

$$f_{MP}(t) = rac{1}{2\pi ct} \sqrt{(b-t)(t-a)} \quad t \in [a,b]$$

where 
$$a = (1 - \sqrt{c})^2$$
,  $b = (1 + \sqrt{c})^2$ 

If c > 1, then a = 0, and there are p - n - 1 sample eigenvalues exactly at zero.



## Detection of Signals in Noise / Phase Transition

Now consider data of the form signal+noise

## Spiked Covariance Models

Consider model whereby

$$\Sigma = diag(\lambda_1, \lambda_2, \dots, \lambda_k, 0, \dots, 0) + \sigma^2 I_m$$

*Spiked covariance* with *k* spikes.

Observe n vectors  $\mathbf{x}_i \in \{\mathbb{R}, \mathbb{C}\}^m$  from this model.

*Question:* What happens to largest sample eigenvalues and eigenvectors as  $n, m \to \infty$ , with  $k, \lambda_j$  fixed ?



#### Phase Transition

[complex case, Ben-Arous, Baik, Peche] [real case, Baik and Silverstein]

**Theorem:** For spike model with k spikes, as  $n, m \to \infty$  with  $m/n \to c$ , for  $j = 1, \ldots, k$ ,

$$\ell_{j} \to \begin{cases} (\lambda_{j} + \sigma^{2}) \left( 1 + \frac{m - k}{n} \frac{\sigma^{2}}{\lambda_{j}} \right) & \lambda_{j} > \sigma^{2} \sqrt{m/n} \\ \sigma^{2} (1 + \sqrt{m/n})^{2} & \lambda_{j} < \sigma^{2} \sqrt{m/n} \end{cases}$$

Phenomena known as retarded learning in statistical physics.



## Phase Transition / Eigenvectors

[D. Paul 07', Nadler 08']

**Theorem:** As  $m, n \to \infty$  with  $m/n \to c$ ,

$$R^{2}(m/n) = |\langle \mathbf{v}_{PCA}, \mathbf{v} \rangle|^{2} = \begin{cases} 0 & \text{if } \lambda < \sigma^{2} \sqrt{m/n} \\ \frac{\lambda^{2}}{c\sigma^{4}} - 1 & \text{if } \lambda > \sigma^{2} \sqrt{m/n} \end{cases}$$

In statistical physics:

[Hoyle and Rattray, Reimann & al, Biehl, Watson]

## Phase Transition / Eigenvectors

[D. Paul 07', Nadler 08']

**Theorem:** As  $m, n \to \infty$  with  $m/n \to c$ ,

$$R^{2}(m/n) = |\langle \mathbf{v}_{PCA}, \mathbf{v} \rangle|^{2} = \begin{cases} 0 & \text{if } \lambda < \sigma^{2} \sqrt{m/n} \\ \frac{\lambda^{2}}{c\sigma^{4}} - 1 & \text{if } \lambda > \sigma^{2} \sqrt{m/n} \end{cases}$$

In statistical physics:

[Hoyle and Rattray, Reimann & al, Biehl, Watson]

Asymptotic  $\sqrt{n}$ -Gaussian fluctuations for both eigenvalue and eigenvector [Paul, 07]

$$\sqrt{n}(\ell_1 - \mathbb{E}[\ell_1]) \sim \mathcal{N}(0, \sigma^2(\lambda_1))$$



## Proof of Phase Transition: Single Spike

$$H = \frac{1}{n}X'X = \begin{pmatrix} z_1 & 0 & \dots & 0 \\ 0 & 0 & & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix} + \sigma \begin{pmatrix} 0 & b_2 & \dots & b_m \\ b_2 & 0 & & 0 \\ \vdots & & 0 & \vdots \\ b_m & 0 & & 0 \end{pmatrix}$$
$$+\sigma^2 \begin{pmatrix} 0 & 0 & \dots & 0 \\ \hline 0 & z_{2,2} & z_{2m} \\ \vdots & \ddots & \vdots \\ 0 & z_{m,2} & z_{m,m} \end{pmatrix}$$

$$=A_0+\sigma A_1+\sigma^2 A_2$$
  
= signal + signal/noise interaction + noise



## Proof of Phase Transition: Single Spike

**Trick:** Diagonalize noise part:

$$H = \frac{1}{n}X'X = \begin{pmatrix} z_1 & 0 & \dots & 0 \\ 0 & 0 & & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix} + \sigma \begin{pmatrix} 0 & \tilde{b}_2 & \dots & \tilde{b}_m \\ \tilde{b}_2 & 0 & & 0 \\ \vdots & & 0 & \vdots \\ \tilde{b}_m & 0 & & 0 \end{pmatrix}$$
$$+ \sigma^2 \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & \mu_2 & & 0 \\ & & \ddots & \\ 0 & 0 & & \mu_m \end{pmatrix}$$

#### Proof of Phase Transition: Single Spike

**Trick:** Diagonalize noise part:

$$H = \frac{1}{n}X'X = \begin{pmatrix} z_1 & 0 & \dots & 0 \\ 0 & 0 & & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix} + \sigma \begin{pmatrix} 0 & \tilde{b}_2 & \dots & \tilde{b}_m \\ \tilde{b}_2 & 0 & & 0 \\ \vdots & & 0 & \vdots \\ \tilde{b}_m & 0 & & 0 \end{pmatrix}$$
$$+ \sigma^2 \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & \mu_2 & & 0 \\ & & \ddots & \\ 0 & 0 & & \mu_m \end{pmatrix}$$

Arrowhead Matrix: Its eigenvalues are roots of secular equation

$$\ell-z_1=\sum_jrac{ ilde{b}_j^2}{\ell-\mu_j}$$



#### Proof of Phase Transition

 $(m-1)\times (m-1)$  matrix Z is of pure noise  $\to \mu_2,\ldots,\mu_m$  are eigenvalues of  $W_{m-1}(n,\sigma^2I)$ .

As  $m, n \to \infty$  with  $m/n \to c$ ,

$$z_1 
ightarrow (\lambda + \sigma^2)$$
  $\mu_2, \ldots, \mu_p 
ightarrow \mathsf{Marchenko}$  Pastur density  $ilde{b}_j 
ightarrow \mathcal{N}(0, z_1 \mu_j / n)$  sum converges to integral

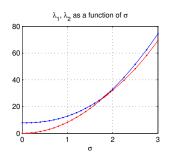
$$\ell - (\lambda + \sigma^2) = c \int (\lambda + \sigma)^2 \frac{\mu}{\ell - \mu} f_{MP}(\mu) d\mu$$

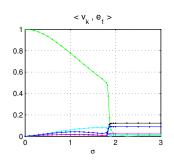
Integral can be computed explicitly, gives quadratic equation. Its solution gives the phase transition formula.



#### Phase Transition for finite m as function of $\sigma$

First, a "thought experiment": Take clean signal data  $\{\mathbf{x}^{\nu}\}$  with finite m,n, add noise and start increasing  $\sigma$ . What should be the expected behavior of  $|\langle \mathbf{v}_{\mathsf{PCA}},\mathbf{v}\rangle|$  and of  $\ell_1$ ?

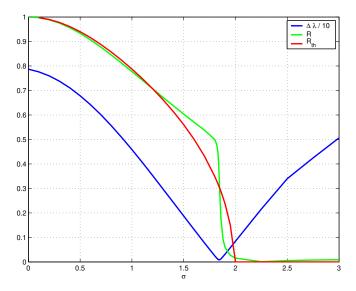




$$\lambda \sim \kappa^2 + \sigma^2 (1+m/n) \qquad R \sim 1 - \sigma^2/\kappa^2 m/n$$
 
$$n = 50, m = 200, \kappa^2 = 7.87$$



## Phase Transition as function of $\sigma$



#### Part III:

Can we do better in high dimensions with additional information ?

Sparsity of covariance or of principal components