
Statistics of Big Data, Fall 2023-24

Class notes 3

Main source for today’s material: The Algorithmic Foundations of Differential
Privacy by Dwork and Roth

Differential privacy definition

Assume our n sampled objects (say individuals in GWAS) belong to a finite set X (for GWAS
X can be the whole population). A sample is now x ∈ NX , (or more simply x ∈ {0, 1}X , where
xi = 1 if the ith element in X was selected for the sample and xi = 0 if not). Remarks:

� The typical setting is where x is a sampling indicator, so xi = 1 means the sample was selected
and xi = 0 otherwise. However, x can have different meaning, such as a indicator of who in
the population has some property, in which case xi = 1 is positive and xi = 0 is negative.
Any setting that can be put into this indicator framework is relevant.

� Using N allows a situation where samples were selected more than once, for example xi = 3.

The sample size is:

n = ∥x∥1 =
∑
i∈X

|xi|.

For two samples x, y ∈ {0, 1}X , denote the distance between them as the number of samples
that are in one and not the other:

d(x, y) = ∥x− y∥1 =
∑
i∈X

|xi − yi|.

Next we define the simplex on a finite set B:

∆(B) =

p ∈ R|B| : pi ≥ 0 ∀i ,
|B|∑
i=1

pi = 1

 .

Definition of a randomized algorithm: Define a draw probability function M : A → ∆(B), then
M applied to A is a random algorithm with M if:

M(a) = b w.p. M(a)(b), ∀ a ∈ A, b ∈ B.

In words, M gives random output that is distributed according to M .
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Now we are ready to define differential privacy:
A randomized algorithm M applied on NX (all possible datasets) is (ϵ, δ)-differentially private if
∀S ⊆ Range(M)(= B), and for any x, y ∈ NX such that d(x, y) ≤ 1, we have:

P(M(x) ∈ S) ≤ eϵ · P(M(y) ∈ S) + δ.

In interpreting this definition, we can see the different roles of ϵ and ∆:

� To preserve (0, δ) privacy, we can release the full information of a random portion δ of the
participants, since with probability 1− δ the difference between x, y is not released. So it can
lead to complete privacy violation of a small portion of the participants.

� If we preserve (ϵ, 0), it means our confidence that a specific individual is in the sample cannot
change by more than exp(ϵ) depending on the results we get reported.

Thus, it is generally considered that δ = 0 called ϵ−privacy is the most relevant notion, and we
will not consider the case δ > 0 further.

Example of ϵ-privacy preservation: Randomized response

Assume we want to ask a set of people X whether they do something bad (say cheat on their
taxes). We instruct them to do the following:

� Flip a coin (say a fair coin, but can be a general Ber(q))

� If it comes out as heads, report the true answer

� If it comes out as tails, flip another fair coin, and answer yes if it comes heads, no otherwise

Thus, 50% (or more generally, q) of the answers are true and 1− q are randomly given as 50% true,
and 50% false.

The statistician who analyzes the survey can easily conclude on the true percentage of cheaters
via the unbiased estimate:

p̂unbiased =
p̂− (1− q)/2

q
,

where p̂ is the observed positive rate in the surveys.

On the other hand, this approach guarantees
(
log
(
1+q
1−q

)
, 0
)
-differential privacy. We will show

it for the specific case q = 0.5, where 1+q
1−q = 3 for simplicity of notation.

In this setting X = {1, . . . , n}, and x ∈ {0, 1}n is the identity of the true cheaters (note it is not
a sampling indicator in this case). M(x) are the actual survey responses, and ∥x− y∥ = 1 means
there is exactly one person different between x and y (cheater in one but not in the other), denote
it by j and assume WLOG xj = 1, yj = 0. Since the coordinates are completely independent, and
we know how the randomization works, it is easy to see that ∀S,:

P (M(x)j = 0)

P (M(y)j = 0)
≤ P (M(x) ∈ S)

P (M(y) ∈ S)
≤ P (M(x)j = 1)

P (M(y)j = 1)
.

Given the randomization mechanism we can easily calculate:

P (M(x)j = 1) =
3

4
, P (M(y)j = 1) =

1

4
=⇒ P (M(x)j = 0)

P (M(y)j = 0)
=

1

3
,

P (M(x)j = 1)

P (M(y)j = 1)
= 3.
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The resulting log(3)−differential privacy may not be a strong guarantee, in particular we know
that a cheater is 3 times more likely to answer yes than no. What does it tell us about the
probability of being a cheater given the answer is yes? Assuming the true proportion is r, we can
write using Bayes rule:

P (xj = 1|M(x)j = 1) =
P (M(x)j = 1|xj = 1)P (xj = 1)

P((M(x)j = 1|xj = 1)P (xj = 1) + P((M(x)j = 1|xj = 0)P (xj = 0)
=

=
3/4r

3/4r + 1/4(1− r)
≤ 3r (≈ 3r if r is small),

so the probability is still small, giving the person plausible deniability.

The Laplace Mechanism

The general idea: If I want to report some function(s) or summary(s) of the data f(x), how can I
“noise” it in a way that would guarantee ϵ-DP ?

Example: Counting queries. Assume we want to release K summaries on our data (in the
case-control GWAS summaries example, we had K = 106 × 2), meaning f(x) ∈ NK , where each
coordinate is a count. We want to report f(x)+r for some random noise r ∈ RK that will guarantee
ϵ-DP .

The Laplace mechanism is one example how to do this. Two definitions we need:

� ℓ1 sensitivity of a function f : N|X | → RK is:

△f = max
∥x−y∥−1=1

∥f(x)− f(y)∥1.

For example, if K = 2 × 106 and f are counts, it is easy to see that △f = K = 2 × 106, for
example if the observation that is in x and not in y has all the counted properties turned on.

� The Laplace distribution (AKA double exponential distribution) is a continuous distribution
denoted X ∼ Lap(b), with density:

p(x) =
1

2b
exp

(
−|x|

b

)
.

It is symmetric distribution around zero with E(X) = 0, V ar(X) = E(X2) = 2 · b2.

Laplace Mechanism definition: Given a K dimensional release problem as above, draw
random variables

Y1, . . . YK ∼ Lap

(
△f

ϵ

)
i.i.d,

and report the randomized summaries:

MLap,f,ϵ(x)j = f(x)j + Yj , j = 1, . . . ,K.

Theorem: The Laplace mechanism MLap,f,ϵ guarantees ϵ-DP .
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Proof: Take x, y ∈ N|X | two datasets with ∥x− y∥1 ≤ 1. We denote MLap,f,ϵ(x) ∼ px the density
function when the truth is x and similarly py. Take a point z ∈ Range(M) ⊆ RK , and check the
ratio of densities under the two distributions:

px(z)
py(z)

=

K∏
k=1

exp
(
− ϵ

△f |f(x)k − zk|
)

exp
(
− ϵ

△f |f(y)k − zk|
) =

K∏
k=1

exp

(
ϵ

△f
|f(y)k − zk| − |f(x)k − zk|

)
(∗)
≤

K∏
k=1

exp

(
ϵ

△f
|f(y)k − f(x)k|

)
= exp

(
ϵ

△f

∑
k

|f(y)k − f(x)k|

)
= exp

(
ϵ

△f
∥f(y)− f(x)∥1

)
(∗∗)
≤ eϵ,

where (∗) is due to properties of absolute value (same if the differences have +,− signs, bigger in
all other cases), and (∗∗) is due to the definition of △f.
This bound on the ratio holds for all z and therefore also for any group of such z values S ⊆
Range(M).

Conclusion: If we want K counts from GWAS we need to noise each one with noise Lap
(
K
ϵ

)
,

whose variance is 2K2/ϵ2. For K = 2 ·106, ϵ = log 2, the standard deviation of the noise is therefore:

sd =
2
√
2 · 106

log 2
≈ 4 · 106.

This means we can release the number of carriers of each property to within about ±4 · 106 (note
this is independent of the sample size n).
⇒ unless the sample size of individuals is in the many millions, this is not a useful way to release
that many summaries.

How can we make it useful? If we wanted to release a much smaller number of summaries then
that would obviously change: for K = 10 we easily see that the Laplace noise standard deviation
will be only 20, meaning if f(x) is in the thousands, the information will be useful.

It is also important to note that the Laplace mechanism (like other mechanisms we will discuss)
is sufficient for ϵ-DP but not necessary, so it may be very suboptimal.

An interesting example: Report noisy max. Assume that we only want to know which of
the K counts or summaries is the biggest (e.g. most common disease in a health dataset). Naive
release with Laplace mechanism requires Lap(K/ϵ) noise, which is deadly for large K as we showed.
The book shows that in this case it is enough to do the following:

� Add noise of Lap(1/ϵ) to each of the K counts, regardless of K — this has standard deviation
of only

√
2/ϵ.

� Report the index k ∈ {1, . . .K} of the biggest noisy count (not the count itself, or any of the
counts).

The information we gain is limited (which count is largest) but useful and likely correct.
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The exponential mechanism

Assume now we also have a utility function:

u : NX ×B −→ R,

where u(x, l) is a measure of how much utility we get out of reporting l when the true data is x.
For example, if we want to report the average of the data x̄, the utility might be:

u(x, l) = −∥x̄− l∥qq,

where q = 1 gives absolute error and q = 2 squared error. This mechanism allows us to combine
adding noise to preserve privacy with not hurting the utility too much and preserving the “relevant”
information.

As before, define the sensitivity:

△u = max
l∈B

max
∥x−y∥1≤1

|u(x, l)− u(y, l)| ,

the maximal possible difference in utility of the same reported result between neighbors.
Now given x we want our randomized algorithm to prefer l’s for which the utility l(x, u) is

high, unlike in Laplace where we added completely random noise. Therefore we will give higher
probability to high utility outcomes, specifically the exponential mechanism with utility u and
privacy parameter ϵ, denoted ME,u,ϵ uses the following distribution:

P(ME,u,ϵ(x) = l) ∝ exp

{
ϵu(x, l)

2△u

}
.

(Note it is proportional and not equal since the quantity on the right is generally not a distribution.
Theorem: The exponential mechanism ME,u,ϵ preserves ϵ-DP for any mechanism u.
Intuition of proof: If the quantity on the right was indeed a distribution, i.e.:

P(ME,u,ϵ(x) = l) = exp

{
ϵu(x, l)

2△u

}
,

then we would have:

log

(
P(M(x) = l)

P(M(y) = l)

)
= ϵ

u(x, l)− u(y, l)

2△
≤ ϵ

2
,

and we would have ϵ/2-DP. Since it is not equal but proportional, both sides have to be divided
by the sums over l, and using the definition of △u again gives the other ϵ/2.
Example: reporting the mean. Assume our data x = (X1, . . . Xn) is an iid sample of size n
from some distribution F and we want to report the mean f(x) = X̄ as an estimate of µ = EF in
a private manner. Assume also the support of F is finite, say Xi ∈ [0, 1]. We could use the Laplace
mechanism, it is easy to see:

△f =
1

n
⇒ ML,ϵ(x) = X̄ + Lap(

1

nϵ
) ⇒ P(ML,ϵ(x) = l) ∝ exp

{
−n · ϵ · |X̄ − l|

}
.

On the other hand, we could apply the exponential mechanism with u(x, l) = −|X̄ − l|, then
we get:

△u = max
l

max
∥x−y∥1=1

| |X̄ − l| − |Ȳ − l| | ≤ max
∥x−y∥1=1

|X̄ − Ȳ | = 1

n
,
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and we get a similar but slightly worse result that:

P(ML,ϵ(x) = l) ∝ exp
{
−n · ϵ

2
· |X̄ − l|

}
,

equivalent to adding Lap(2/(nϵ)) with bigger variance.
A more interesting application of the exponential mechanism would use u(x, l) = −(X̄− l)2 the

Euclidean distance. In this case we can similarly show that δu ≤ 1/n and therefore the exponential
mechanism would give:

P(ML,ϵ(x) = l) ∝ exp
{
−n · ϵ

2
· (X̄ − l)2

}
,

meaning we know that it has a normal distribution:

l|x ∼ N(X̄,
1

nϵ
) ⇒ l ∼ N

(
µ,

1

n

(
1

ϵ
+ σ2

))
,

where the last step shows the unconditional distribution of l as an estimate of µ.
We therefore conclude that l = µ + Op(1/

√
(n)), so the convergence rate of l to µ is the same as

that of the average X̄, even if its variance is bigger.
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