
Statistics of Big Data, Fall 2023-24

Class notes 2

Amotivating application: Genome-Wide Association Studies (GWAS)

The human genome can be thought of as a word of length 3× 109 in a 4-letter alphabeth ACGT.
Each person has two copies of this word, and the two copies are similar but not identical (similarly
for copies from different individuals). A typical number cited is that two copies of the genome
are about 99.9% identical, meaning several million letters different (0.1% = 3 × 106). A common
representation of an individual genome (two copies) is as a ternary vector of length 3 × 109: xj ∈
{0, 1, 2} , j = 1 . . . 3× 109.

GWAS basic idea: for a number of people (n = 1000 traditionally, today n = 105 is common),
measure their “entire” genome and also a property (phenotype) of interest that has a heritable
component, such as height or whether they have diabetes. Then look for statistical connections
between each point in the genome and the pheonytpe, that is test:

H0i : point (or region) i has no statistical connection to the phenotype , i = 1, . . . , 3× 109.

If we reject some of the null hypotheses we learned something about the genetics of this phenotype.
In this naive view we have p = 3× 109 tests with n ≈ 1000 observations — very wide data.

A few more details that will be important in our further consideration of this problem:

1. The genome has a unique and interesting correlation structure called linkage disequlibrium
(LD) that is related to how inheritance actually works: Points in the genome that are phys-
ically close tend to be co-inherited and therefore are highly correlated (that is, two chro-
mosomes that have the same letter in point i will tend to have the same letter in point
i+ k for small |k|). In contrast, far away points in the genome are uncorrelated under some
assumptions, or more weakly correlated under others.

2. Measuring all 3×109 in the genome is called sequencing. However because of the combination
of only 0.1% difference and LD, it is considered that the entire “common” diversity of the
genome can be represented by measuring much fewer locations, typically about 106 — this is
called genotyping.

3. Additional interesting aspects that will not be widely considered in this course (⇒ Statistical
Genetics course next semester):

� Case-control sampling and its implications for statistical modeling and testing

� The stochastic process of mutation and recombination and their spread in the population

� Population structure and its implications for GWAS

1



This GWAS problem has been widely researched, and it has some important and interesting
aspects related to core areas of our course. We will spend some time on several of these:

1. GWAS as an example of wide data with n << p, and implications for modeling it

2. Similar but slightly different view: GWAS as an example of multiple testing with high mul-
tiplicity, and the implications for how testing should be done

3. (TODAY) The privacy issues in releasing GWAS information for scientific research — how
can we preserve the maximum useful information while preserving the privacy of study par-
ticipants?

Privacy in big data

The basic problem: How to collect and publish data in a way that will be both:

� Useful for valid statistical analysis and scientific research

� “Safe” in terms of reasonably protecting the privacy of the individuals whose information was
collected in the study

For most of the discussion we will assume standard tabular data with n individuals, each with
p pieces of information, as in GWAS.

We are looking for non-trivial privacy protection, that will be robust against:

� Smart statistical analysis by the “privacy attackers”

� Availability of additional outside information in helping to identify participants and violate
privacy

Unsatisfactory but common solution 1: anonymization

It seems reasonable that releasing the information without the identifying information of the par-
ticipants like name, address, etc. will protect their privacy. This has been proven to fail in GWAS:
it is enough for someone to have a tiny part of someone’s genome to find whether that person is in
the GWAS, and then know their entire genome.
Specific example: One of the most famous public genetic databases was called HapMap, which
released increasingly detailed genomes of random individuals from 2005 onwards. The only per-
sonal details were sex, age and country/US state for each individual. In 2013 a Science paper
demonstrated how the identities of some individuals in HapMap can be exposed:

� The male genome has a special small genetic pieces called the Y-chromosome that is directly
inherited from father to son. It is widely used in relative search, and so millions of people
have published some of their Y information online with their name and are actually finding
relatives on their father’s side.

� If a relative of a HapMap individual published their Y information online, we can identify
that the HapMap individual is their relative on their paternal inheritance line — so probably
have the same last name.
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� The combination of age, country/state and last name is sometime enough to uniquely identify
a person in the phone book and other publicly available sources.

Using this approach, they were actually able to positively identify several HapMap participants,
meaning they now have their non-anonymized genomes, with severe consequences.

Unsatisfactory but common solution 2: releasing summaries

Assume now our n = 2000 GWAS samples are made of n1 = 1000 cases who have some disease,
say Type-I diabetes, and n2 = 1000 samples of healthy controls. All their genomes are measured
at p = 106 locations. It is widely recognized that in addition to analyzing this dataset separately,
releasing it to the scientific community is of great interest, for example to combine with other
studies and increase power.

The summary approach amounts to releasing only two tables of size 3×p, one summarizing the
statistics of the cases genotypes and one summarizing the statistics of the controls.

Now assume we have a genome of a specific individual, but we don’t know whether they are a
case (sick) or control (healthy). Two questions arise:

� If we know that this individual was in the current GWAS, can we find out whether they are
a case or control?

� If we don’t know whether this individual is in the study, can we separate the three options:
not in the study/case/control?

The surprising(?) result is that we can typically positively answer the two questions above: not
only identify whether the individual is a case or control if in the study, but also whether they were
in the study at all.

For simplicity let’s now assume that the disease studied is not genetic at all (say HIV), and a
slightly simpler genotype structure: binary and independent coin tosses, and of length 105 only,

to make the problem tougher (why?). So the data is matrices X
(case)
1000×105

, X
(cont)
1000×105

with Xij ∼
Ber(0.5) all i.i.d. The released information is a pair of vectors p̂case, p̂cont ∈ [0, 1]10

5
.

Now assume we are given a “genome” x ∈ {0, 1}105 and we want to see whether it is a case,
control, or not in our study. Let’s start from the simpler problem:

H0 : x case ⇔ xj ∼ Ber(p̂case,j) vs H1 : x control ⇔ xj ∼ Ber(p̂cont,j).

Of course we can switch the hypotheses. Note these are simple hypotheses (specify the entire
distribution).

We can write the log-likelihood ratio for this problem:

λ =

∑
j

xj log(p̂case,j) + (1− xj) log(1− p̂case,j)

−
∑

j

xj log(p̂cont,j) + (1− xj) log(1− p̂cont,j)

 .

We can draw some data and present a histogram of the first sum (case likelihood) and second sum
(control likelihood).

Next, we can consider the case of a third option that it is neither population, and not surprisingly
the distribution of the two sums is the same and looks like the “wrong” distribution above.

The bottom line is, it turns out to be very easy to find out the hidden information about the
disease status of the individual even if only summary statistics are released. Proving this rigorously
will be part of the HW that will be given next week...
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Example of non-privacy invasion

It is important to also understand that we can reveal information about a person without it being
an invasion of their privacy. For example, consider an imaginary study that shows that smoking
hurts work productivity. After reading it the boss checks which of the employees smoke and fires
them. So the fired employee is damaged by the results of the study that “taught” the manager that
he is a bad employee. But assuming that the smoking status is not private, there was no violation
of the employee’s privacy, since his personal information was not used in any way in the study.

Hence harming X through information is not the same as harming X’s privacy. There is privacy
violation only if his information was used in the study and in that way it was exposed. Specifically
this means “The study did not expose information on X” is not a good criterion for privacy.

The key to a proper definition: Limiting the information that can be exposed about participants
in our study as a result of information we release. So we want to expose almost no additional
information about the participants in our study, to any outside observer, whatever else they know
about those participants or other people. Can we do this and still release information? It turns
out we can, through the notion of Differential Privacy.
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Differential Privacy

Main source for differential privacy material: The Algorithmic Foundations of
Differential Privacy by Dwork and Roth

Differential privacy definition

Assume our n sampled objects (say individuals in GWAS) belong to a finite set X (for GWAS
X can be the whole population). A sample is now x ∈ NX , (or more simply x ∈ {0, 1}X , where
xi = 1 if the ith element in X was selected for the sample and xi = 0 if not). Remarks:

� The typical setting is where x is a sampling indicator, so xi = 1 means the sample was selected
and xi = 0 otherwise. However, x can have different meaning, such as a indicator of who in
the population has some property, in which case xi = 1 is positive and xi = 0 is negative.
Any setting that can be put into this indicator framework is relevant.

� Using N allows a situation where samples were selected more than once, for example xi = 3.

The sample size is:

n = ∥x∥1 =
∑
i∈X

|xi|.

For two samples x, y ∈ {0, 1}X , denote the distance between them as the number of samples
that are in one and not the other:

d(x, y) = ∥x− y∥1 =
∑
i∈X

|xi − yi|.

Next we define the simplex on a finite set B:

∆(B) =

p ∈ R|B| : pi ≥ 0 ∀i ,
|B|∑
i=1

pi = 1

 .

Definition of a randomized algorithm: Define a draw probability function M : A → ∆(B), then
M applied to A is a random algorithm with M if:

M(a) = b w.p. M(a)(b), ∀ a ∈ A, b ∈ B.

In words, M gives random output that is distributed according to M .
Now we are ready to define differential privacy:

A randomized algorithm M applied on NX (all possible datasets) is (ϵ, δ)-differentially private if
∀S ⊆ Range(M)(= B), and for any x, y ∈ NX such that d(x, y) ≤ 1, we have:

P(M(x) ∈ S) ≤ eϵ · P(M(y) ∈ S) + δ.

In interpreting this definition, we can see the different roles of ϵ and ∆:

� To preserve (0, δ) privacy, we can release the full information of a random portion δ of the
participants, since with probability 1− δ the difference between x, y is not released. So it can
lead to complete privacy violation of a small portion of the participants.
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� If we preserve (ϵ, 0), it means our confidence that a specific individual is in the sample cannot
change by more than exp(ϵ) depending on the results we get reported.

Thus, it is generally considered that δ = 0 called ϵ−privacy is the most relevant notion, and we
will not consider the case δ > 0 further.

Example of ϵ-privacy preservation: Randomized response

Assume we want to ask a set of people X whether they do something bad (say cheat on their
taxes). We instruct them to do the following:

� Flip a coin (say a fair coin, but can be a general Ber(q))

� If it comes out as heads, report the true answer

� If it comes out as tails, flip another fair coin, and answer yes if it comes heads, no otherwise

Thus, 50% (or more generally, q) of the answers are true and 1− q are randomly given as 50% true,
and 50% false.

The statistician who analyzes the survey can easily conclude on the true percentage of cheaters
via the unbiased estimate:

p̂unbiased =
p̂− (1− q)/2

q
,

where p̂ is the observed positive rate in the surveys.

On the other hand, this approach guarantees
(
log

(
1+q
1−q

)
, 0
)
-differential privacy. We will show

it for the specific case q = 0.5, where 1+q
1−q = 3 for simplicity of notation.

In this setting X = {1, . . . , n}, and x ∈ {0, 1}n is the identity of the true cheaters (note it is not
a sampling indicator in this case). M(x) are the actual survey responses, and ∥x− y∥ = 1 means
there is exactly one person different between x and y (cheater in one but not in the other), denote
it by j and assume WLOG xj = 1, yj = 0. Since the coordinates are completely independent, and
we know how the randomization works, it is easy to see that ∀S,:

P (M(x)j = 0)

P (M(y)j = 0)
≤ P (M(x) ∈ S)

P (M(y) ∈ S)
≤ P (M(x)j = 1)

P (M(y)j = 1)
.

Given the randomization mechanism we can easily calculate:

P (M(x)j = 1) =
3

4
, P (M(y)j = 1) =

1

4
=⇒ P (M(x)j = 0)

P (M(y)j = 0)
=

1

3
,

P (M(x)j = 1)

P (M(y)j = 1)
= 3.

The resulting log(3)−differential privacy may not be a strong guarantee, in particular we know
that a cheater is 3 times more likely to answer yes than no. What does it tell us about the
probability of being a cheater given the answer is yes? Assuming the true proportion is r, we can
write using Bayes rule:

P (xj = 1|M(x)j = 1) =
P (M(x)j = 1|xj = 1)P (xj = 1)

P((M(x)j = 1|xj = 1)P (xj = 1) + P((M(x)j = 1|xj = 0)P (xj = 0)
=

=
3/4r

3/4r + 1/4(1− r)
≤ 3r (≈ 3r if r is small),

so the probability is still small, giving the person plausible deniability.

7


