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Eigenstates of the annihilation type operator U = C +iS, where C and S are the “cosine” and
*sine” operators for harmonic oscillator phase, are shown to be closely related to thermal
equilibrium states of the oscillator and to provide a new interpretation of the thermal equilibrium
density operator. The problem of creating such states is considered and a general theorem is
established leading to the construction of interaction Hamiltonians which transform the eigenstates of
U among themselves and, in particular, create them from the oscillator ground state. These
Hamiltonians lead to representations of the Lie algebras of O(2,1) and O(3). It is suggested that the
mathematical technique used, in which generalized U-type operators provide the link between a
group and its representations, has its own intrinsic interest for the study of Lie groups.

1. INTRODUCTION

In studying the quantum theory of harmonic oscillator
phase, new Hermitian operators C and S were intro-
ducedl~7 whose spectra coincide with the range of
values of the trigonometric functions cos¢ and sing.
Since these operators do not commute with one another,
one cannot prepare a state in which the phase is arbi-
trarily sharply defined except in certain limiting cases.
However, one might expect that the operator U= C + 1S,
which is the quantum analog of the quantity e*¢ = cos¢ +
i sing, would define states of maximal phase resolution
in some reasonable sense.

The eigenstates of U, referred to here as the phase
states, have been studied,? and not only provide a physi-
cally reasonable description of phase, but also possess
other interesting physical properties. These properties
stem from the close relationship between phase states
and the description of an oscillator in thermal equili-
brium with its surroundings, a relationship in which the
classical concept of oscillator phase plays an important
role,

As an example, consider an oscillator of natural fre-
quency w in thermal equilibrium at a temperature T.
Then the statistical average of the oscillator energy can
be shown to be equal to a pure quantum expectation
value in a suitable phase state, This implies that mea-
surement of the oscillator energy cannot distinguish a
phase state from a thermal equilibrium mixture. The
expectation value of any other oscillator observable is
obtained by uniform averaging of its quantum expectation
value in such a state over a single parameter which, in
the limit 2T > fiw, is identifiable as the classical phase
of the oscillator,

Therefore, although the density operator formalism
makes it clear that thermal equilibrium cannot be des-
cribed by a pure quantum state, the phase states provide
as close a description as one might hope for within the
pure state framework, The additional randomness asso-
ciated with thermal equilibrium is represented by a uni-
form distribution over the phase parameter associated
with the state.

In view of the foregoing remarks, it becomes a matter of
considerable interest to examine the possibility of find-
ing a physical model for the creation of a phase state.
In this model the oscillator would be part of a well-
defined larger dynamical system, the effect of which
would be to subject it to an interaction which would take
it from its ground state, for example, to a phase state.
Such a model would conceivably have the interesting
property of exhibiting, within the framework of pure
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quantum dynamics, a process very closely related to
the approach to thermal equilibrium,

An obvious first step in the search for this model is to
find interaction Hamiltonians which generate phase
states. The formulation and solution of this problem
form the bulk of the present paper. In developing the
mathematical techniques for this purpose, we find that
the desired Hamiltonians form a representation of a Lie
algebra. The elements of the group generated by this
algebra are identified with transformations of the spec-
trum of the operator U, which in turn acts in the under-
lying space of the representation, We believe that this
linking of the group with its representation via an opera-
tor is of sufficient generality to be of intrinsic interest
for the study of group representations.

This paper is therefore one of largely mathematical
nature, motivated and guided by physical considerations.
The emergence of a possible new approach to the study
of Lie groups was quite unforseen at the outset. We
therefore do not include here attempts to extend our
approach beyond the groups O(2, 1) and O(3) which arise
naturally in our treatment of harmonic oscillator dyna-
mics. These further efforts will be the subject of a
future paper.

In Sec. 2, the relation indicated above between the statis-
tics of an oscillator in thermal equilibrium and the
phase states is established. A brief discussion of the
properties of these states and of the operators defining
them is included here and in the following section.
Further clarification of their significance as phase
states is provided by examining them in the classical
limit and showing that they have just the interpretation
one would expect in terms of an ensemble in phase
space.

Section 3 is concerned with the formulation and solution
of the problem of finding the Hamiltonians that generate
phase states., The formulation is achieved by establish-
ing a general theorem which characterizes those Hamil-
tonians which transform the eigenstates of an operator
of the type U into themselves. This leads to a whole
class of operators A(k) parametrized by a real variable
k and including the operator U itself. For each value of
k,there is a set of allowable Hamiltonians H(k). It fol-
lows from the general conditions of our theorem that
the H(k) constitute a representation of a Lie algebra,
which turns out to be essentially that of 0(2,1). We
show also that the familiar destruction operator, whose
eigenstates are the coherent states, is a member of our
class in the limit 2 - ©, We thus refer to the operators
A(k) as generalized destruction operators.
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In Sec.4 we explicitly exhibit the general form of the
unitary transformations which the H(k) induce on the
A(R) eigenstates, It is seen that the eigenvalues of A(k)
undergo linear fractional transformations, For a given
k, these transformations can be classified into two
types. In one, the eigenvalues vary periodically in time;
in the other they display the interesting property of
approaching a given limit as £ — <« independently of
their initial values.

In the last two sections, we take up the group theoretic
aspects of our work. In Sec. 5, we show that an exten-
sion of the range of the parameter % allows us to gene-
ralize the methods of Sec. 3 to include O(3) as well as
0(2,1). By a slight broadening of the concept of eigen-
state, we are able to retain the useful transformation
properties of the eigenstates of the generalized destruc-
tion operator even in the finite dimensional subspaces
which support representations of O(3). In the final sec-
tion, after identifying the relevant representations of
O(3) and 0O(2, 1), we give some characterization of the
phase states from the point of view of the theory of
group representations. The section closes with a dis-
cussion of the derivation of the explicit forms of the
matrix representation of the group by means of our
formalism,

2. PHASE STATES AND THERMAL EQUILIBRIUM

Consider an oscillator which has been brought into ther-
mal contact with a heat bath of temperature 7' = (kg)"1
and allowed to reach equilibrium, If the contact is then
broken and the oscillator allowed to evolve as an iso-
lated system, its state is represented by the thermal
density operator
bl
p=(1—eBro) 35 embre|p)(n], (2.1)
n=0
where the |#) are orthonormal eigenstates of the num-
ber operator N = a‘a.

Formally, we may exhibit a pure quantum state which,
for observables diagonal on the oscillator number basis,
gives the same expectation values as are obtained from
the thermal density operator. This state is
0
[Yg) = V1— eBhio 35 enBru/2 |p), 2.2
n=0

As an example, the familiar result for the average value
of the number operator,

Ny = 1/(et™ — 1)
is obtained as a pure quantum expectation value, For

general observables, we may make use of the time de-
pendent state associated with (2. 2),

(2.3)

) = V1 — e brw “Zi)o enbnw/2-inut [n)  (2,4)

to obtain p by time averaging over the oscillator period
T

p= /1) f5 atly Nyl

These somewhat formal constructs acquire a more tan-
gible significance from the fact that, for the classical
oscillator, averaging over a period is equivalent to ave-
raging over a completely random phase. With this in
mind, we rewrite Eq. (2. 5) as

(2.5)

o= f" 2 1y, @)@ 1, (2.6)
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with |, (¢)) defined by
|Wg (o) = V1 — eB2w % enBEY2 ging ), (2.7)
n=0

Thus, the time averaging of Eq. (2. 5) is replaced by an
averaging over a set of time independent states para-
metrized by the quantity ¢.

Of course, the resemblance of Eq. (2. 6) to classical
phase averaging does not guarantee that ¢ is related to
the phase, The relation can be established, however, on
the basis of a previously published mathematical analy-
sis? of oscillator phase operators in which new states
of the oscillator, the phase states, were introduced.
These are eigenstates of the operator U = C + iS, where
C and S are the “cosine” and “sine” operators and satis-
fy

[C,N]=1S, [S,N]=—iC, (2.8)

or

[U,N]=U. (2.9)

The simplest choice for U, namely, U = E, the unit shift
operator, defined by

Elm=(1-5,,) n—-1, (2.10)

leads to phase states of precisely the form (2, 7) with
the eigenvalue z identified as

Z = lz[ eilb: ei‘D—Bﬁ&)/z

= —<N> etd
V() +1 )

Thus the averaging in Eq. (2. 6) is carried out with res-
pect to a parameter which, in the limit (N) = «© (i.e.,
Briw < 1,0r |z | = 1),is formally identifiable with the
classical oscillator phase.8

(2.11)

This formal identification of ¢ with the classical phase
can be made intuitive by noting the following behavior,
which is established mathematically in the Appendix:
for ¢ = 0, the expectation value of the coordinate (gq)
becomes indefinitely large with large (N). Furthermore,
the fractional uncertainty 6¢/4 ¢) approaches a nonzero
constant value less than unity. Therefore,5q also be-
comes very large, but remains less than ( ¢), indicating
that the probability distribution covers primarily the
positive real axis.? At the same time, the expectation
value of the momentum {p) vanishes, and the uncertainty
8p becomes vanishingly small as (N) becomes infinite.
Thus p is sharply defined about zero, When ¢ = 7/2,
the roles of p and q are reversed, with the p distribu-
tion being smeared out over positive values and g being
sharply defined about the origin.

More descriptively, we can picture a classical ensemble
of oscillators with different amplitudes but identical
phases. Thus, ¢ = 0 sees them strung out to the right of
the origin and at rest, while ¢ = 7/2 sees them all loca-
ted at the origin with different momenta, but moving in
the same direction,

The phase states differ in this respect from the well-
known coherent states, which are eigenstates of the anni-
hilation operator with eigenvalue a, expressible as

a=(ANZ)(@ + i{p)) =V{Ny eis. (2.12)

Here the parameter ¢ also becomes interpretable3 as
the phase of the oscillator in the limit of large (N). But
in this case, all the dynamical quantities, ¢,p,N, etc.,
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become essentially classical, having fractical uncer-
tainties which vanish in this limit. The classical beha-
vior is evidenced by the fact, shown by Glauber,10 that
the thermal density operator (2. 6) can be expressed in
terms of the coherent states asl!
p= L [azaelely™| a)al. (2.13)
e
The distribution function in Eq. (2.13) is Gaussian, as
one would expect classically, In the limit of small 8, it
goes over into the Boltzman function and becomes in-
terpretable as a probability distribution,10

In analogous fashion, the uniform distribution over ¢ in
Eq. (2. 6) becomes interpretable as a uniform probability
distribution in phase for large (N). The distinguishing
property of the phase states is that, for them, only the
phase becomes classically definable, the other quantities
retaining finite fractional uncertainties, Thus the den-
sity operator acquires a new interpretation. The statis-
tics associated with phase independent variables, such
as the energy, are purely quantum-mechanical, while

the total statistical picture emerges as a result of uni-
form phase averaging.

In view of this close relationship between phase states
and thermal averaging, it becomes a matter of consider-
able interest to find a model in which these states are
generated as a result of some interaction. It is with this
aim in mind that we undertake in this paper a general
mathematical formulation of the problem of finding
Hamiltonians which generate states of this type from
the ground state and transform them into one another,

3. GENERAL FORMULATION

We begin by noting12 that the phase states form a non-
degenerate, overcomplete set of eigenstates of the non-
unitary shift operator E, whose spectrum consists of
the unit circle in the complex plane, An interior point
z of the circle corresponds to a phase state

<O
lz) = v1—[z]2 25 2n|n).
n=0 -
These properties bear a strong resemblance to those of
the coherent states, where the relevant shift operator is
the familiar annihilation operator EVN , and the spec-
trum consists of the entire complex plane.

(3.1)

An important feature of the coherent states is that they

retain their character as eigenstates of the annihilation

operator under the influence of linear, c-number driving
forces, that is, the class of Hamiltonians of the form

H=ciN + coq +c3p (3.2)
generates unitary transformations of these states into
themselves.

In seeking analogous Hamiltonians for the phases states
we were led to the following general formulation of the
problem:

(i) Consider an annihilation type operator A = EF(N),
so that

Aln) =Fn)in—1) (3.3)
with F(0) = 0, but F(n) nonvanishing for n = 0. There is
no loss of generality in assuming F(z) to be real and
positive.?” We assume further than F(n) converges to a
finite nonzero limit as» — ©, A solution of the eigen-
value equation

Ala)=alla) (3.4)
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is given by

lay=l0)y+ % 2 _
n=1 mlzl F(m)

| n), (3.5)

in which we assume that the F(n) are such that || a) is
normalizable for |@| < R where R is some nonzero
positive constant. The double bar notation is used to
denote states with the normalization (3. 5) in which the
coefficient of the ground state is unity and the coeffi-
cients of the other states are analytic in @. The eigen-
state with unit norm is denoted by | a). The spectrum?
of A then consists of the interior and circumference of
a circle of radius R in the complex plane. The states

| @) form a nondegenerate, overcompletel3 set.

(ii) We now show that a necessary and sufficient condi-
tion that a Hamiltonian H generates transformations of
the || &) into themselves is thatl4
[4,H] = f(4), (3.6)
where the notation f(A4) is understood to mean that the

eigenstates of A are also eigenstates of [4, H]. It will be
seen, in fact, that f is an analytic function of its argument,

The proof of necessity proceeds from the fact that if #
generates unitary transformations of the || o) into them-
selves, it follows that

Aetitd | g) = re"iH | a), (3.7

where A is a number which is dependent on £ and «. In
infinitesimal form,
(1 + istH) A(1 — idtH) | a) = (a — i6tf) ]| @), (3.8)

where we have written A = a — ¢6#f, and f is independent
of £. Then,

[A,H] o) =fla). (3.9)

The dependence of f on a is obtained from the relation
f=rf@=C01[4H]I @)
=(0I[A,H] | 0) + % M an

no1 ﬁl F(m)
m= (3.10)

’

which showsl5 that f(a) is analytic in @ and therefore
that f(A) is well defined.

Sufficiency follows from the fact that Eq.(3.8) is a
direct consequence of assuming Eq. (3. 6)

(iii) We observe now the important fact that the set of
all operators H which satisfy Eq. (3. 6) for a given A
constitutes a Lie algebra., For,if H, and H, are mem-
bers of this set whose commutators with A are f,(A)
and f,(A4), respectively, it follows that

[A,xHy + A Hy] = 2qf1(A) + Ay f5(A), (3.11)
and
df, (4) df,(4)
(4, [H,, Hy]] = fo(4) ;A — /1(4) ;A ,  (3.12)

which shows that the set is linear and closed with res-
pect to commutation. Eq. (3.12) is deduced from the
Jacobi identity and the analyticity of f; and f,.

It is a remarkable fact that, within the framework out-
lined above, it is possible to deduce the form of all
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Hermitian operators H associated in this way with a
generalized destruction operator A. Further, all the A
operators separate into two classes, one of which leads
to Hamiltonians belonging to physically uninteresting
Abelian Lie algebras, while the other contains the shift
operator E as a special case and the standard annijhila-
tion operator as a limiting case. This latter class pro-
vides the physically interesting Hamiltonians.

In demonstrating these results it is convenient to work
with the states || @) as defined in Eq. (3. 5) because they
permit differential representations of operators. Thus
we have from Eq. (3. 8)

(1 — iotH) || @) = (1 — idt g(a, a*)) || @ — idtf(a))

= <1 — iot{gla, a® + fla) ;_a )> I ay.
(3.13)

The function g{a, a*), to be determined, serves not only
to represent a possible phase factor, but also to pre-
serve the normalization (3. 5), and is therefore not
necessarily real. Then,

Hl @) = [f(a) % + gla, aM] |l @), (3.14)

We must now apply the requirements of Hermiticity to
H,which is done by requiring that

Bl Hla)=(allHI B)* (3.15)
for all @ and B. If we write | @) as

lla) = ?{) h,ar |n), (3.16)
and define the function Y (¢) by

v = 5 nzen, (3.17)

¥(€) is analytic within the circle | {|< R2,where R is
the spectral radius of A. The matrix element in Eq.
(3.15) becomes

B H ) = [fla) % + go, aM]y(ap®).  (3.18)
Setting 8 = 0 in Eq. (3. 15) gives
g(a, a*) = f(o)* h%a +g(0)*y (3' 19)

which shows that g is analytic and, in fact, linear in «
and that g(0) is real. Putting Eq. (3.19) into Eq. (3. 18),
differentiating the latter with respect to 8* and then
setting 8* = 0 yields the following equation for f,

fla)y = fo +fia+ ihj a2,

(3.20)
E+1
where fo = f(0), f]_ = f(0) and
1/(k + 1) = (2n/h}) — 1. (3.21)

Differentiating f(a) once with respect to o and setting
a = 0 shows that f, is real. Finally,using Eq. (3. 20)
with the Hermiticity requirement leads to

h2
<foﬁ*—f3a)[w'<c)—,;j—l w'<§)—h%w(c)]= 0,
(3.22)

with { = aB*. A moment's reflection now shows that we
must have either
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(A) fo =0
(B) ¥'(€) — [K}/(k + DTy’ () — kY = 0.

Case (A) may be disposed of quickly by noting that Eq.
(3. 14) becomes

[f, a% +20)]lla)
[N + O]l a).

Once stated in general operator form, the restriction to
the specific normalization defined by | @) becomes un-
necessary and we see that H is a real, linear combination
of N and the unit operator I. It is therefore an element
of the two-dimensional Abelian Lie algebra U(1) X U(1).
The transformations generated by N and 7 are physically
uninteresting in that they merely represent the unper-
turbed oscillator.

or

il

Hll a)

(3.23)

The differential equation in case (B), along with the con-
dition {(0) = 1, has the solution

) ={1—[(R20)/(k + D]}~ &D,

In order to match this with Eq. (3. 17) we note that there
is always a finite circle in the {-plane within which we
can expand Eq. (3. 24) in a convergent power series

& re+n+1) K\
O=2 .
W 2=0 p!T(k+ 1) \B+1
Note the implicit requirement that &2 > — 1 to ensure
that the coefficients in the power series all be positive
in conformity with the definition of Eq. (3.17). The

radius of convergence of the above power series is the
square of the spectral radius of A.

(3.24)

(3.25)

Taking the square root of the ratio of successive coeffi-
cients in Eq, (3. 25) shows the F(n) of Eq. (3. 3) to be

F(r) = (1/h))Va(k + 1)/(k + 7).

The factor 1/h; is a scale factor which plays no essen-
tial role in the eigenstates of the resulting A operators.
The choice %; = 1 results in £ = 0 corresponding to the
unit shift operator E, while 2 = © corresponds, as we
shall see, to the annihilation operator. We refer to the
resulting 4 as the generalized destruction operator
A(R),i.e.,

(3.26)

A(k) = ENN(k + 1)/(N + R). (3.27)
It follows from this expression that the spectral radius
of A(k) is vk + 1, Thus,in terms of a single real para-
meter 2, we have the general form of the annihilation
type operator associated with Case (B). It is now a
simple matter to exhibit the associated eigenstates | o, &)
in normalized form. The normalization factor follows
from the definition of {/(£) in Eq.(3.17) with £ = |a |2
and from the expression for ¥({) in Eq. (3.24). The re-
sult is

lo, k) = |1 !aiz}wwz
T E+1

w I‘(n+k+1)< o ),,
X,‘Z"om N ln).  (3.28)

It now remains to deduce the form of the associated
Hamiltonian and to show that it is an arbitrary linear
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combination of interaction terms and the free oscillator
term. Our starting point is once again Eq. (3. 14), into
which we substitute the expression in Eq. (3.20). This
gives

Hla) =I:<]B +fia + 7s a2>i + (foa +g(0))] la) .

BE+1 oo
(3.29)
Using
%H@wi‘é%—k) E|a), (3.30)
and
O‘ZE% o) = JYEE e a2 ), (3.31)

we are again freed of the || @) normalization and obtain,
after some rearrangement,

H= (fo/Nk+ H, + (f§/Ne + 1)H_ + f{N + g(0)

= Cy + C Hy + CoHy + CuH,, (3.32)

where
H, +iH,=H,=H =VN(N + k) E", (3.33a)
Hy=N+(k+1)/2 (3.33b)

and Cy, Cy,C,,C5 are independent real numbers. The
Hamiltonian of Eq. (3. 32) is an element of the Lie alge-
bra of O(2,1) X U(1), since H,, H,, and H; satisfy the
commutation relations of O(2,1). The basic equation
(8. 6) takes the form

[A)HS]ZA,
[A’H+] =vk +1,
[A,H.]=A2/(k + 1)1/2,

(3.34)

4, DYNAMICS OF THE lo, k) STATES

In this section we turn our attention to the group of
transformations induced on the | o, k) states by unitary
operators e i*#, where H is a Hamiltonian of the form
(3.32). Since the eigenvalue transformations are un-
affected by constant terms in the Hamiltonian, we res-
trict ourselves to the operators H,, H,, H, by choosing
g(0) = f1[(# + 1)/2]. The resulting Hamiltonian will be
referred to as H(k), i.e.,

HE) = QN+ 1) (foH, + fFH.) + f1H,. (4.1)

Using the pertinent results of the previous section, we
can rewrite Eq. (3.13) as

(1 — istH(R) || @, k) = (1 — idig(a))ll @ — 16if(a), k). (4.2)

It then follows that
. .t n )
lim <1 — i H(k) ” a,k>

n-*o0
. {
= exp{—i [ datgla®]} | a(t),k), (4.3)
where «a(f) satisfies the Riccati typel6 differential equa-
tion
dal(l)
dt

e ith® || o, k)

Y

=— if[a®)] = — z[f + fio(®) + az(t)] ,
. kil 4.4)

with initial condition a(0) = «.
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The trivial case f, = 0 represents the free oscillator
with the obvious result that a(f) = ae™#1t. For f, = 0,
we make the substitution

.k +
alt) =—1i *I_de_(t). (4.5)
& w@) dt

The function w(f) need be determined only to within a
multiplicative constant. This can be done by noting that
it satisfies the second order differential equation

d2w dw | fy |2

_ 4+ ifl —_ ...{.9__

dt2 dt k+1

Imposing the condition @(0) = o on the general solution
of this equation gives

* :
w(t) = e Nt/2 \:cos st + z<—21 4 Joo >sm St], 4.7

w =0, (4. 6)

k+1 s
where
(f12 _ | fo |2>1/2 f_12 S | fo 12
4 k+1 4 r+1’
s = (4.8)
Motz _sB\2 g 12
E+1 4 4 B+ 1

This in turn leads to the results that a/vZ + 1 undergoes
the linear fractional transformation

_ alaNkE+1)+b
al)Ne+ 1= b*(a/\/le)+a* (4.9)
with
a = cosst — i(f,/2)(sinst/s), (4.103)
and
b = — (1:]&'0/ Fk + 1) (Sinst/s). (4. 10b)

Thus |a |2 — | 5|2 = 1, so that the transformation has
unit determinant.17 It can be verified also that it maps
the interior of the spectral circle {a| < ¥& + 1 into it-
self.

Having established the transformation properties of the
eigenvalues within the spectral circle, it now remains
to evaluate the multiplier exp{— i [} dtg[a(?)]} in Eq.
(4. 3), which, it will be recalled, does not generally have
unit magnitude because it is defined with respect to the
| @, %2). From Eq.(4.5) and the expression for g(a), it
follows immediately that

. k¥l gp L dwl))
o digla®l =+ == Syt =tk + ) Jo at S S5
(4.11)

which leads to the multiplier

expl- i J; diglad]}
= exP{— (k+1) ln[cosst + z(.’fl + M) Si““]}

2 k+1 s

(4.12)
The branch of the logarithm in the exponent is deter-
mined by taking the principal value zero at ¢ = 0, then
demanding continuity in ¢.

The results obtained thus far in this section are sum-
marized in the formula
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exp{— it(—f&‘/:;—__{o—}m + f1H3)} “ a,k>

* .
ginst
= exp{— (+1)In [cosst + z<é + M) l]}
2 k+1 s
aoa + bvk +1 k>
b*a+a* ,———k+1) b

where a,b, and s are given by Egs. (4. 8) and (4. 10).

x ” VE+1 (4.13)

We are now in a position to exhibit unitary transforma-
tions which transform the ground state to an arbitrary
(normalized) state | a, ). Setting a(0) = @ = 0 in Eq.
(4.9), it is apparent from Eq. (4. 10) that an arbitrary
o(t) is easily attained by making the choice f; = 0. For
we then have

al) b i (Ifo|t>
N R e P T Y 4.14)
and
ot 1 | fo lt>]'(”’“
exp{— i fo dtg[a(t)]j = [cosh<‘/k —
= [1 — tanh2 (\I/i"Tltl)J(M)/z . (4.15)

Looking at Eq. (3.28) we see that (4. 14) provides just
the proper normalization factor, as it must, since ||0) =
|0). The resulting unitary operator can be put into a
particularly simple form which does not depend explicit-
ly on the parameter ¢ by choosing

fo=tei®, t=pJk+1., (4. 16)
This leads to the relations
D(p,$) | 0)=1e¢VEk + 1 tanhp), (4.17)

where the unitary operator D,(p, ¢) is defined byl18

Dy(p, ) = exp{p(e?o H, — e7i¢H_)}. (4.18)
The states |z) of Eq.(3.1) are obtained by setting ¥ = 0,
so that

Do(p,¢) = exp{p(ei9NE* — e"iv EN)}

= exp{p(ei®VN a* — ei¢ a'\/IV)}, (4.19)

and

Do(p,9)|0) =2), 2= e tanhp, (4.20)
These results, and those of the previous section, provide
the operators called for by the arguments of Sec. 2. In
particular, we note that the interaction Hamiltonians
which generate phase states are linear in aVN and VN o*,

but not in ¢ and p.

An interesting property of the Hamiltonians (4.1) appears
when we consider the eigenvalue transformations of

Eq. (4.9) in more detail. The nature of the transforma-
tions depends on the value of the parameter s. For

each value of %, the Hamiltonians (4. 1) fall into two
classes according to whether the parameters f,; and f;
are such that s is real or pure imaginary as indicated

in Eq. (4. 8).

The difference between the two classes is best under-
stood if we consider the points which are invariant
under the transformation of eigenvalues induced by
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each Hamiltonian,1? These can be determined either
directly from Eq. (4.9), or by setting the right-hand
side of the differential equation (4.4) equal to zero.
There are generally two such points, given by

o= (k+1)( f1 £ 25)/2f;.

It is not difficult to see that for the first class of Hamil-
tonians (s real), both invariant points lie on the same
ray from the center of the spectral circle, one inside
the circle and one outside. For the other class (s pure
imaginary), both points lie on the circumference of the
circle, For the case s = 0, which properly belongs to
the second class, the two invariant points coincide, and
lie on the circumference.

(4.21)

The eigenvalue transformations induced by the first
class of Hamiltonians are periodic in ¢ with period 7/s.
The eigenvalue o, starting from any initial value inside
the spectral circle, follows a closed trajectory which
circumscribes the invariant point within the circle,20
Thus, the free oscillator mean energy, related to |a l,
varies periodically with ¢ for these Hamiltonians.

As s — 0, the trajectories are pinched between the two
coalescing invariant points, so that in the limit, all tra-
jectories pass through this single point, which now lies
on the circumference of the spectral circle, At the
same time, the period becomes infinite.

This behavior implies that the asymptotic state of the
system for ¢ — £ is independent of the initial state,
and is determined only by the parameters f, and f, that
specify the Hamiltonian,21 This final state has infinite
mean energy and sharp phase resolution. A Hamiltonian
of this class therefore leaves its imprint on the system
in the value of the phase of its final state.

If the parameter s is pure imaginary, the trajectories
pass through both invariant points on the circumference
of the circle | @| = vk + 1. There are then two asymp-
totic states of infinite energy, one for { — + © and one
for ¢t » — «©, The behavior is otherwise similar to the
case s = 0.

It is intuitively obvious from Eq. (3. 27) that the limit
k — © should lead to the well-known coherent states

la) = e 1al?/2 E} f—i [n). 4.22)

n=0 n!
This follows rigorously from the fact that, for a given o,
we can choose k sufficiently large so that a is within the
spectral radius of A(k) and then compute || o) — |, ) [|2.
Noting that {a |a, k) is real,

|||oz)—la,k)||2=2(1-—(a|a,k)), (4-23)
where
2\ (k*1y2
(alak)=¢lal?2 (1— lal )
k+1
o0 T + kB + 1/2 2n
» ( (n 1) | a| . (4.24)
#n=0 \I'(k + 1)}(k + 1)~ n!
Since
T'n +k+1)
— 272 =, 4.2
Tk + 1)k + 1) (4.29)
we have
la|2 )( k+1)/2
elal2/2<1___ = JB) =1 4.26
herer (a|a,k) , (4.26)
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80 that

(e a,k);—_:g 1, (4.27)

which proves the point.

Similarly, the behavior of the unitary operator D,(p, ¢)
defined by Eq. (4. 17) is of interest. Using essentially
heuristic arguments, we see22 that for a fixed

a = ei?yk + 1 tanhp, (4.28)

p must become small as ¥ > ©, Thus @ =~ %V p,and
from (3. 33a),

*
Dk(pr @) = exP{i_ \[kw E* — Ll EVEN }= e““nd*a,
VE VE
(4.29)
which is just Glauber's1? D(a) operator.

These results encourage us to seek a resolution of the
identity of the form

I= Jd2ap(lal2k)|ak (akl, (4. 30)

with the weighting function p( | a |2, &) to be determined,
and d2o = d(Rea)d(Ima) with integration over the circle

| @ | < YE + 1. By introducing polar coordinates in the
a-plane and making the change of variable t= |a|2/k+1,
the integral in (4. 30) can be written as

S aza p(lal2,B)] a,k)(a, k]

T'(n + k+1) fl

#=0 I'(x + 1)T'(k) "0 dt p(t, B)(1 — Y1 [n)(n |,

(4.31)

where p(| a |2, k) = p(t, k). A resolution of the identity
is obtained if

1 I'(r + 1T (R) )

1 el . +1 fn — .
fo atp@t, k(1 — H)*1¢ T T T B D) (4.32)
Using
1 -14p-1 . D(O)T()
dt(1 —tya-igp-l = 222 4.33)
by aa-n T + 9 ‘

when the real parts of p and g are positive, we see that

plt, k) = (1/7)[1/(1 — 1)2],

or,

(4. 34a)

plal?, k)= (1/m)[1/(1—|a]?/(k + 1))2],  (4.34Db)

with the condition 2 > 0. This gives the result

1 ) | {2\-2
= Jaza (1— 5] la,B)(a,kl=1(E>0).
(4. 35)

Note that the weighting function has sufficiently singular
behavior for its integral to diverge, a property which is
to be expected since Tr(J) = ®©. The condition 2> 0 in-
dicates that this resolution fails for the phase states
(3.1). This is a particularly vexing fact in view of the
physical interest attached to these states. The reason
for it is most simply seen from Eq. (4. 32), which shows
that the condition # = 0 demands that all of the moments
of the function p(¢, 0)(1 — ) on the unit interval be equal.
This in turn forces p(¢, 0) to have 6-function type beha-
vior at # = 1, In a crude sense, this indicates that the
unit shift operator E tries very hard to behave like a
unitary operator.
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5. GENERALIZATIONS AND EXTENSIONS

It should be apparent by now that the formalism deve-
loped thus far already exceeds in generality the require-
ments posed in Sec, 2, Quite aside from relevance to
phase states there is thus the mathematically intriguing
question of whether the methods developed here are use-
ful for the study of groups.

The essential feature of our procedure is the association
of a destruction operator with a unitary group in such a
fashion that the eigenstates of the operator transform
into themselves under the action of the group. Because
eigenstates of destruction operators are of necessity in-
finite dimensional, this leads to infinite dimensional rep-
resentations of the group. However, there is a limiting
sense in which the association between destruction opera-
tor, eigenstate, and group carries over into finite dimen-
sional spaces. In this section we illustrate this by ex-
tending our formalism to include representations of

0(3) as well as 0(2, 1).

Our starting point is a consideration of the effect of re-
moving the restriction — 1< k< « from the parameter
k by extending it to the complex plane. The operators
A(k) of Eq. (3.27) and the H of Eq. (3. 33) remain well
defined, Their matrix elements on the number basis are
in fact analytic in the complex 2-plane cut from —1 to

— . Further,the | @, %) of Eq. (3.28) continue to be
normalized eigenstates of A(k) for [a|[< VIE +1

The Hermiticity of the H, which is of course generally
lost in this process, can be restored for negative integ-
ral 2 (approached, for example, from the upper half-
plane) by a simple modification based on the fact that
the H now reduce the oscillator space to two invariant
subspaces. Thus,let ¥ = — p, where p is a positive in-
teger greater than unity. The Eq, (3. 33a) shows that

Hlp—1)=0 (5.1a)

and

H_ Ip) =0, (5.1b)

Therefore, a natural division of the number basis into

two invariant bases is defined. The vectors |n) with

0 <n = p — 1 span the p-dimensional subspace X,, while

those withn = p span the infinite dimensional subspace
©, In the latter subspace the H remain Hermitian as

defined, and are in fact identical, except for a relabeling

of the basic states, with those for the case 2 = + p.

We therefore fix our attention on the subspace X,
where multiplication of H, by — ¢ achieves the desired
result. The re-defined Hamiltonians,

Hy +iHy=H,=H' = VNp — N) E+ (5.2a)

and

Hy=N—(p—1)/2 (5. 2b)
satisfy the O(3) commutation rules. We have thus been
led naturally to the p-dimensional representation of the
0(3) algebra. In conventional notation,p = 2j + 1 and

Jg = N —j.

The question of obvious interest at this point is the sta-
tus of the | @, k) states. Inspection of Eq. (3.28) shows
that, as & approaches — p from the upper half of the
complex plane, the coefficients of | a, k) in X° becomes
vanishingly small. In the limit, a well-deﬁneg p-dimen-
sional state | @,p) is obtained:

2 - 2 p1 — a n
‘ a,p> = <1 +£I_1>-(P v Eo (pn 1)<J1>__—i) I(:>3’)
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where

p—1\__(p—1!
n nl(p—1—n)!
is the standard binomial coefficient. The state | a,p) is

now defined for all @, and not merely those within some
spectral radius, as it is when & is not a negative integer.

(5.4)

Note that A(k), which now becomes

_ _p /No=1
4= a-p=£ [T,

is well defined on X,. Also, its commutators with the H
of (5.2) satisfy the basic relation (3. 6). However, the
la,p) of (5.3) are no longer eigenstates of A in the
strict sense in view of the fact that a destruction opera-
tor cannot have eigenstates in a finite dimensional
space. There is, nevertheless, a limiting sense in which
the |a,p) are eigenstates of A,. This can be seen from
the equation A(R) | a, k) = a| a, k), which holds rigor-
ously for % indefinitely close to — p. We therefore have

(5.5)

iim A(k) l C!,k> = l a9p>;
~>-p

which, however, does not imply 4, | @,p)= a | a,p). In
effect, the singular limiting behavior of A(%k) on the state
| ) combines with the vanishingly small projection of
la, k) on |p) to give a finite amplitude on {p — 1).
This feature is not present when A is restricted to X,,.

(5. 6)

The above remarks suggest the retention of the concept
of eigenstate of A(k) even in the limit, and we thus refer
to the | a,p) as extended eigenstates of A(k). We now
show that these states also retain the property of trans-
forming among themselves under transformations gene-
rated by the Hamiltonians of Eq. (5.2).

Our demonstration is based on the fact that the H can be
represented as differential operators when acting on the
nonnormalized states || @, p). The following equations
are easily verified from (5. 2) and (5. 3):

Hyla,p)= (a 5% - 2—%1> la,p), (5.7a)
Hlep)=Vp=1 o= lap), (5.70)

s DR S )
H ua,p>_(J—p e aa) ||a,p(>5. .

The differential relations imply that one can immediately
employ the methods of Sec.4,beginning with Eq. (4. 2).

In fact, one obtains, “mutatis mutandis”, as the analog of
Eq. (4. 13), the result

exp{— it[(p — 1) V2(foH, + fEH.) + f1HoTH a,p)

= exp{ (p—1)1n [cosst + 2(71 _ fJa) sizst}}

aa + ibvp — 1

-1 — = , 5.8
x [ Vp ib*aﬂ*m,m (5.8)
where
/
s=<f_f+M>”>o, (5.9)
4 p—1

and
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inst
a = cosst — ié sins , (5.10a)
2 s
p—_ _Jo_ sinst (5. 10b)
vp—1 s
The analog of Egs. (4.17) and (4. 18) is
D,(p, )| 0) = [Np —1 et? tanp,p), (5.11a)
D,(p,¢) = expipei® H,— pe i®H_} . (5. 11b)

With these formulas, our extension of the formalism to
0(3) is complete.

We can characterize the results of this section in group
theoretical terms by saying that we pass continuously
from unitary representations of 0(2, 1) to the unitary
representations of O(3) via a continuum of nonunitary
representations of O(2, 1). Thus, representations of the
compact group appear at isolated values of the para-
meter which labels the representations of the noncom-
pact group.

6. REPRESENTATIONS OF O(3) AND 0(2,1)

We have shown in the preceding sections that the groups
underlying the dynamics of phase states are 0(2, 1) and
O(3). These groups are realized in our formalism in
two distinct way: (i) as mappings of the eigenvalues of
the generalized destruction operator, and (ii) as trans-
formations of the Hilbert space of harmonic oscillator
states, The transformations involved are familar,23-25
In the case of O(2, 1), the eigenvalue mappings are the
linear fractional transformations obtained by stereo-
graphic projection of the unit hyperboloid onto the com-
plex plane. The group of such transformations is known
to be isomorphic with 0(2, 1), and can therefore be iden-
tified with this group. A similar situation obtains with
respect to O(3) and projections of the unit sphere. The
spectrum of the generalized destruction operator can
therefore be regarded as the supporting space of the
underlying groups O(2, 1) and O(3). The transformations
of Hilbert space on the other hand are simply the linear
irreducible representations of the two groups.

The generalized destruction operator brings the support-
ing spaces of the group and of its representations into
particularly close association. It is an operator which

is defined on the representation space and whose spec-
trum serves as the space on which the group itself acts,
Further, the mapping of the spectrum is associated with
a mapping of eigenstates by the group, and thereby deter-
mines the transformation in Hilbert space associated
with a particular group element. It will be shown in a
forthcoming paper that these features are general and
apply to groups other than O(3) and O(2,1). Here, we con-
tent ourselves with showing that some of the familiar re-
sults pertaining to representations of the 0(2,1) and

O(3) groups appear in the present context.

We begin by identifying the representations that have
been obtained. In the case of 0O(2, 1), irreducible repre-
sentations are characterized25 by the value of the Casi-
mir operator @ = — H? — HZ + HZ and the spectrum of
the generator H;. These are found from Eq.(3.33) in
our case:

Q=3(k2—1),

Hy=n+3(k+1),

(6.1)
n=0,1,2-.-, (6.2)

This infinite family of representations, labeled by the
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real parameter &, coincides with the representations
D~(®) of Ref. (25), with ® = — 3 (¢ + 1). The represen-
tations D*(®) are also obtained in our formalism by a
different choice of labeling for the generators, which
corresponds to the substitutions H, »> — H, and

H, » — H,. These are multivalued representations of
0?2, 1) unless % is an odd integer. Our basic require-
ment associating a generalized destruction operator
with a representation therefore leads to all the unitary
representations of 0(2, 1) in which the spectrum of Hy
is bounded either from above or from below. The re-
maining representations, in which #; has an unbounded
spectrum, cannot be supported on the harmonic oscilla-
tor basis. They can be obtained, however, by our method
if an extension of the basis to negative » is made. The
details of this extension will be given in a future paper.

The case of O(3) is simpler. It is evident from the re-
marks following Eq. (5. 2) and from the allowed values
of p that we obtain all of the unitary representations ex-
cept for the trivial one belonging to the eigenvalue zero
of the Casimir operator @ = J2 = HZ + H§ + H. Thus
the generalized destruction operator and its eigenstates
bring into association the unitary representations of
0O(3) and the bounded unitary representations of 0(2, 1).

If we now turn our attention to the eigenstates (3.28) and
(5. 3), we find that they have a simple group theoretic
significance: they are the transforms under the opera-
tors of the group of the single state | 0). The existence
of the operators D,(p, ¢) and Dp(p, ¢) of Egs. (4.16) and
(5.11) guarantees that all the eigenstates can be obtained
from the ground states in this way, and the basic prop-
erty (3. 6) insures that we obtain only eigenstates.

In the case of the rotation group, the ground state cor-
responds, for a given representation j = 3(p — 1), to the
state with H; = — j, i.e., the state with “spin down” with
respect to the 3-axis, The rotation which transforms
this state into another extended eigenstate of the general-
ized destruction operator simply rotates this spin to
some other direction in space. We may therefore charac-
terize the eigenstates as those states having the mini-
mum value of the component of angular momentum in
some definite direction.

A similar characterization is possible for 0(2,1) if we
interpret H; and H, as the generators of pure Lorentz
transformations in two orthogonal spatial directions,
and H; as the generator of rotations in the plane of these
directions. Here again, although the eigenvalues of H,
are no longer restricted to integers or half-integers,
the state | 0) corresponds to the minimum eigenvalue,
Therefore the eigenstates of the generalized destruction
operator are just those states which have minimum
eigenvalue of H, in some definite Lorentz frame.

Another interesting description of the eigenstates is
obtained by considering their components {x | @) with
respect to the number basis. The above remarks indi-
cate that these components can be written in the form
{(rn|D]0) for some operator D belonging to the repre-
sentation. Furthermore, the quantities (x| D|0) for an
arbitrary operator of the representation form the com-
ponents of some eigenstate of the generalized destruc-
tion operator. This shows that the first columns of the
matrix representatives of all the operators of the rep-
resentation comprise the class of eigenvectors of the
generalized destruction operator.

The full matrix for an operator D of exponential form
is also calculable from the eigenstates of the general-
ized destruction operator. The results are not new and
the derivation is similar to treatments found in the
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literature,24 but the method given here offers a consi-
derable conceptual simplification, Beginning from
Eqgs. (4. 13) and (5. 8), we obtain an equation

(n|Dlla) = exp{—i [ atgla@®)]}{nllaw)

in which the left-hand side is expressible as a conver-
gent power series in o with coefficients proportional to
{n|D |n’),and the right-hand side is a known analytic
function of « for a given D. We can therefore obtain
{n|D |n" by comparison of coefficients on either side
of Eq. (6. 3). In this way we can obtain, for example, the
familiar result26 for the matrix elements of exp(— i8H,)
for O(3), and its analog for the bounded representations
D~(®) of 0(2,1):

<nle-i¢H2(k)In,> _ n'1T(n +k+1)\1/2
n!T(n' +k+1)

(6.3)

n!
r (W'—7)l(n—n'+7r)!

I'(n +k+7r+1)
rIT'(n + &+ 1)

X (— 1)n-n’+r

X (coshi y)n~n""k~1-27(ginh Y)rn"2r, (6.4)
The summation over the integer 7 runs over a finite
range which is determined by the factorials in the de-
nominator.

Note added in proof: Since submitting this paper it has
come to our attention that some properties of the states
of Eq.(5.3) have been discussed in other contexts by
various authors.27

APPENDIX

We show here that when an oscillator is in a state |z) of
the form (3.1) with 2z positive real,i.e.,¢ = 0 in Eq.
(2.11), then 6¢/ g) approaches a finite number less than
unity and §p becomes vanishingly small as (N) — <,

It is convenient to normalize units so that

g=@)Y2(@+a), p=[-i2)V2](@a—a"). (A1)
In terms of the unit shift operator E of Eq. (2. 10) we

have

a=EVN =VWN +1E (A2)
and

a2 =VN + 1 EJN + 1 E=+(N + 1)(N + 2) E2. (A3)
Using the fact that E | z) = z | 2) and z is real gives
(q2) _ 1
(g2 2(VN +1)2

x<((N> + %Er()NH D (VN T D@ + 2))), (A4)

where {(N) is related to z by Eq. (2.11). We shall see
that the behavior of this expression depends strongly on
the behavior of the expectation value

(VN + 1) = (1— 2?) % Vn + 1 227

n=0

(A5)

which we now examine.
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Let
2= A g, (48)
(N) +1
so that
(WF1) =2 (\n + 1 — Vn)en, (A7)
n=0
Noting that
Iy 1 rn dr
n+1‘—‘/7_l-—5 o ,.-_.__.__n+r, (A8)
enables us to write
1 o dx 1— e
= — e — A9
(WD) = = [ 2 1t (A9)
where we have used
1 o 1
—_— ~ntr)x? = Alo
7 Lo = (410

Expressing ¢ in terms of (N') and making the change of

integration variable toy = xv¥(N) puts (A9) into the form

AN A+ () jody
N 0 y2 1 +(N) (1 — e»¥N)

(Al11)
For very large (N ) the integrand in (A11) goes as

[(M (1 + y2)]"L. This suggests writing (VN + 1 as

o c(yz 1), (A12)

— 11— e-yz/(N>
(VN + 1) =

<m>= 1+(N)

Va(N) 0 1+y2 (N,
where the function G(x, €) is defined by
Glx,e) = [1+ (/x)V[1+ (1 fx, €))] (A13)
e flx, €) = (1 — e)/e. (A14)

It may be verified by straightforward calculation that
G(x, €) decreases monotonically from the value G(0, €)=
1to G(©,€) = 1/(1 + €). This then gives

$VI(N) < (VN + 1) = 3Va(N) (1 + 1AN)).  (A15)
Going back to Eq. (A4) and using
(N) + 3 <(V(N + 1)(N + 2)) <(N) + 1, (A16)

which follows directly from the fact that

(VIN+ DN +2))=(1—2¢) 2}) Vin+1)(n+2)¢7,
* (A17)

with the appropriate inequalities holding term by term,
we get

4 <1 + (1/2({N))

W%<i(.hi_+_i_>
()2 = 2(N) 4(N)2

7\ 1+ (1/(N))
(A18)
Thus as (N) becomes indefinitely large,
®g)2 (g% .4 4 (A19)
(g)2 (q)2 ﬂ
or
%4 ~ g, 52, (A20)
(@)

J. Math. Phys., Vol. 14, No. 6, June 1973

755

Now, since (p) = 0 for a state |z) with ¢ = 0, the calcu-
lation of §p involves only the calculation of (»2), which
from Egs. {Al) and (A3) is given by

(p2) =(N) + 4 —<ﬂ~><¢w TN + 2)

(N) +1 (A21)

The demonstration that this expression becomes vanish-
ingly small for large (N) requires a somewhat tighter
inequality than that of Eq. (A16). Such an inequality is

W F DN FD> () + 3 — 4 (-

3
N+3

> , (A22)

which again follows from the fact that it holds term by
term if one writes out the expectation value as in Eq.
(A17). Thus,

1 1\1 3 1 1
(P2)<(N>+E—<1+<—N—>> 6N>+§—4<N+%>>.

(A23)

Using the obvious fact that the expectation value
(1/(N + %)) is bounded from above by unity, we see that
for (N) > 1

1 1 1
)< =2 (——) +0[—]}.
%) 4 <N+§> ((N))
The relevant expectation value is

(yap/=0-0 3 Shcizt i i,

(A24)

n=0 n + 2 g n=0 p + 1
(A25)
so that
1 1-¢ In((N) + 1)
<— In(1—¢) =
ey < ma- o =R e
(A26)

We see, then, that (p2), and thus 5p,becomes vanishingly
small as (N) becomes indefinitely large.

*A preliminary report of this work and its possible group theoretic
implications is contained in Y. Aharonov, H. W. Huang, J. M.
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