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NOISE AS A BOOLEAN ALGEBRA OF σ -FIELDS

BY BORIS TSIRELSON

Tel Aviv University

A noise is a kind of homomorphism from a Boolean algebra of domains
to the lattice of σ -fields. Leaving aside the homomorphism we examine its
image, a Boolean algebra of σ -fields. The largest extension of such Boolean
algebra of σ -fields, being well-defined always, is a complete Boolean alge-
bra if and only if the noise is classical, which answers an old question of
J. Feldman.

Introduction. The product of two measure spaces, widely known among
mathematicians, leads to the tensor product of the corresponding Hilbert spaces L2.
The less widely known product of an infinite sequence of probability spaces leads
to the so-called infinite tensor product space. A continuous product of probabil-
ity spaces, used in the theory of noises, leads to a continuous tensor product of
Hilbert spaces, used in noncommutative dynamics. Remarkable parallelism and
fruitful interrelations between the two theories of continuous products, commuta-
tive (probability) and noncommutative (operator algebras) are noted [17, 19, 20].

The classical theory, developed in the 20th century, deals with independent in-
crements (Lévy processes) in the commutative case, and quasi-free representations
of canonical commutation relations (Fock spaces) in the noncommutative case.
These classical continuous products are well understood, except for one condition
of classicality, whose sufficiency was conjectured by H. Araki and E. J. Woods in
1966 ([1], page 210), in the noncommutative case (still open), and by J. Feldman
in 1971 ([8], Problem 1.9), in the commutative case (now proved).

Araki and Woods note ([1], pages 161–162), that lattices of von Neumann alge-
bras occur in quantum field theory and quantum statistical mechanics; these alge-
bras correspond to domains in space–time or space; in most interesting cases they
fail to be a Boolean algebra of type I factors. As a first step toward an understand-
ing of such structures, Araki and Woods investigate “factorizations,” complete
Boolean algebras of type I factors, leaving aside their relation to the domains in
space(–time), and conjecture that all such factorizations contain sufficiently many
factorizable vectors.

Feldman defines “factored probability spaces” that are in fact complete Boolean
algebras of sub-σ -fields (corresponding to Borel subsets of a parameter space,
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which does not really matter), investigates them assuming sufficiently many “de-
composable processes” (basically the same as factorizable vectors) and asks
whether this assumption holds always, or not.

In both cases the authors failed to prove that the completeness of the Boolean
algebra implies classicality (via sufficiently many factorizable vectors).

In both cases the authors did not find any nonclassical factorizations, and did
not formulate an appropriate framework for these. This challenge in the noncom-
mutative case was met in 1987 by Powers [13] (“type III product system”), and
in the commutative case in 1998 by Vershik and myself [20] (“black noise”). In
both cases the framework was an incomplete Boolean algebra indexed by one-
dimensional intervals and their finite unions. More interesting nonclassical noises
were found soon (see the survey [19]), but the first highly important example is
given recently by Schramm, Smirnov and Garban [14]—the noise of percolation,
a conformally invariant black noise over the plane.

Being indexed by planar domains (whose needed regularity depends on some
properties of the noise), such a noise exceeds the limits of the existing framework
based on one-dimensional intervals. Abandoning the intervals, it is natural to re-
turn to the Boolean algebras, leaving aside (once again!) their relations to planar
(or more general) domains; this time, however, the Boolean algebra is generally
incomplete.

The present article provides a remake of the theory of noises, treated here as
Boolean algebras of σ -fields. Completeness of the Boolean algebra implies classi-
cality, which answers the question of Feldman.

The noncommutative case is still waiting for a similar treatment.
The author thanks the anonymous referee and the associate editor; several ex-

amples and the whole Section 1.6 are added on their advices.

1. Main results.

1.1. Definitions. Let (�, F ,P ) be a probability space; that is, � is a set, F
a σ -field (in other words, σ -algebra) of its subsets (throughout, every σ -field is
assumed to contain all null sets), and P a probability measure on (�, F ). We as-
sume that L2(�, F ,P ) is separable. The set � of all sub-σ -fields of F is partially
ordered (by inclusion: x ≤ y means x ⊂ y for x, y ∈�), and is a lattice:

x ∧ y = x ∩ y, x ∨ y = σ(x, y) for x, y ∈�;
here σ(x, y) is the least σ -field containing both x and y. (See [4] for basics about
lattices and Boolean algebras.) The greatest element 1� of � is F ; the smallest
element 0� is the trivial σ -field (only null sets and their complements).

A subset B ⊂� is called a sublattice if x ∧ y, x ∨ y ∈ B for all x, y ∈ B . The
sublattice is called distributive if x ∧ (y ∨ z)= (x ∧ y)∨ (x ∧ z) for all x, y, z ∈ B .

Let B ⊂ � be a distributive sublattice, 0� ∈ B , 1� ∈ B . An element x of B

is called complemented (in B), if x ∧ y = 0�, x ∨ y = 1� for some (necessarily
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unique) y ∈ B; in this case one says that y is the complement of x, and writes
y = x′.

DEFINITION 1.1. A noise-type Boolean algebra is a distributive sublattice
B ⊂� such that 0� ∈ B , 1� ∈ B , all elements of B are complemented (in B), and
for every x ∈ B the σ -fields x, x′ are independent [i.e., P(X ∩ Y) = P(X)P (Y )

for all X ∈ x, Y ∈ y].

From now on B ⊂� is a noise-type Boolean algebra.

DEFINITION 1.2. The first chaos space H(1)(B) is a (closed linear) subspace
of the Hilbert space H = L2(�, F ,P ) consisting of all f ∈H such that

f = E(f |x)+E
(
f |x′) for all x ∈ B.

Here E(·|x) is the conditional expectation, that is, the orthogonal projection
onto the subspace Hx of all x-measurable elements of H .

DEFINITION 1.3. (a) B is called classical if the first chaos space generates
the whole σ -field F .

(b) B is called black if the first chaos space contains only 0 (but 0� 	= 1�).

The lattice � is complete; that is, every subset X ⊂ � has an infimum and a
supremum,

infX = ⋂
x∈X

x, supX = σ

( ⋃
x∈X

x

)
.

A noise-type Boolean algebra B is called complete if

(infX) ∈ B and (supX) ∈ B for every X ⊂ B.

1.2. The simplest nonclassical example. Let � = {−1,1}∞ (all infinite se-
quences of ±1) with the product measure μ∞ where μ({−1}) = μ({1}) = 1/2.
The coordinate projections ξn :�→ {−1,1}, ξn(s1, s2, . . .) = sn, treated as ran-
dom variables, are independent random signs. The products ξ1ξ2, ξ2ξ3, ξ3ξ4, . . .

are also independent random signs.
We introduce σ -fields

xn = σ(ξn, ξn+1, . . .) and yn = σ(ξnξn+1) for n= 1,2, . . . .

Then

1� = x1 ≥ x2 ≥ · · · ;
yn ≤ xn;

y1, . . . , yn, xn+1 are independent;
yn ∨ xn+1 = xn.
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The independent σ -fields y1, . . . , yn, xn+1 are atoms of a finite noise-type Boolean
algebra Bn (containing 2n+1 elements), and Bn ⊂ Bn+1. The union

B = B1 ∪B2 ∪ · · ·
is an infinite noise-type Boolean algebra. As a Boolean algebra, B is isomorphic
to the finite/cofinite Boolean algebra, that is, the algebra of all finite subsets of
{1,2, . . .} and their complements; xn ∈ B corresponds to the cofinite set {n,n +
1, . . .}, while yn ∈ B corresponds to the single-element set {n}. The first chaos
space H(1)(B)=H(1)(B1)∩H(1)(B2)∩ · · · consists of linear combinations

c1ξ1ξ2 + c2ξ2ξ3 + c3ξ3ξ4 + · · ·
for all c1, c2, . . . ∈ R such that c2

1 + c2
2 + · · · < ∞. It is not {0}, which shows

that B is not black. On the other hand, all elements of H(1)(B) are invariant un-
der the measure preserving transformation (s1, s2, . . .) �→ (−s1,−s2, . . .); there-
fore σ(H(1)(B)) is not the whole 1�, which shows that B is not classical.

The complement x′n of xn in B is y1 ∨ · · · ∨ yn−1 = σ(ξ1ξ2, ξ2ξ3, . . . , ξn−1ξn).
Clearly, xn ↓ 0� (i.e., infn xn = 0�). Strangely, the relation x′n ↑ 1� fails; x′n ↑
supn yn = σ(ξ1ξ2, ξ2ξ3, . . .) 	= 1�. “The phenomenon . . . tripped up even Kol-
mogorov and Wiener” [22], Section 4.12.

This example goes back to an unpublished dissertation of Vershik [21]. Accord-
ing to Emery and Schachermayer ([7], page 291), it is a paradigmatic example,
well known in ergodic theory, independently discovered by several authors. See
also [22], Section 4.12, [19], Section 1b.

1.3. On Feldman’s question.

THEOREM 1.4. If a noise-type Boolean algebra is complete, then it is classi-
cal.

THEOREM 1.5. The following conditions on a noise-type Boolean algebra B

are equivalent:

(a) B is classical;
(b) there exists a complete noise-type Boolean algebra B̂ such that B ⊂ B̂;
(c) (supn xn)∨ (infn x′n)= 1� for all xn ∈ B such that x1 ≤ x2 ≤ · · ·.

See also Theorem 7.7 for another important condition of classicality.

1.4. On completion. Bad news: a noise-type Boolean algebra cannot be ex-
tended to a complete one unless it is classical. (See Theorem 1.5. True, every
Boolean algebra admits a completion [9], Section 21, but not within �.)

Good news: an appropriate notion of completion exists and is described below
(Definition 1.8).
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The lower limit

lim inf
n

xn = sup
n

inf
k

xn+k

is well defined for arbitrary x1, x2, . . . ∈�. (The upper limit is defined similarly.)

THEOREM 1.6. Let B be a noise-type Boolean algebra and

Cl(B)=
{
lim inf

n
xn :x1, x2, . . . ∈ B

}

(the set of lower limits of all sequences of elements of B). Then:

(a) (infn xn) ∈ Cl(B) whenever x1, x2, . . . ∈ Cl(B);
(b) (supn xn) ∈ Cl(B) whenever x1, x2, . . . ∈ Cl(B), x1 ≤ x2 ≤ · · ·.
Thus, we add to B limits of all monotone sequences, iterate this operation until

stabilization and get Cl(B), call it the closure of B . (It is not a noise-type Boolean
algebra, unless B is classical.)

THEOREM 1.7. Let B and Cl(B) be as in Theorem 1.6, and

C = {
x ∈ Cl(B) :∃y ∈ Cl(B) x ∧ y = 0�,x ∨ y = 1�

}
[the set of all complemented elements of Cl(B)]. Then

(a) C is a noise-type Boolean algebra such that B ⊂ C ⊂ Cl(B);
(b) C contains every noise-type Boolean algebra C1 satisfying B ⊂ C1 ⊂

Cl(B).

DEFINITION 1.8. The noise-type Boolean algebra C of Theorem 1.7 is called
the noise-type completion of a noise-type Boolean algebra B .

EXAMPLE 1.9. Let B , yn and ξn be as in Section 1.2. Then Cl(B) \ B con-
sists of σ -fields of the form supn∈I yn = σ({ξnξn+1 :n ∈ I }) where I runs over all
infinite subsets of {1,2, . . .}. The noise-type completion of B is B itself.

If two noise-type Boolean algebras have the same closure, then clearly they have
the same completion.

PROPOSITION 1.10. If two noise-type Boolean algebras have the same clo-
sure, then they have the same first chaos space.

Thus if Cl(B1) = Cl(B2), then classicality of B1 is equivalent to classicality
of B2, and blackness of B1 is equivalent to blackness of B2.

QUESTION 1.11. It follows from Theorem 1.6 that the following conditions
are equivalent: Cl(B) is a lattice; Cl(B) is a complete lattice; x ∨ y ∈ Cl(B) for all
x, y ∈ Cl(B). These conditions are satisfied by every classical B . Are they satisfied
by some nonclassical B? By all nonclassical B?
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1.5. On sufficient subalgebras. Let B,B0 be noise-type Boolean algebras such
that B0 ⊂ B . Clearly, Cl(B0)⊂ Cl(B) and H(1)(B0)⊃H(1)(B). We say that:

• B0 is dense in B if Cl(B0)= Cl(B);
• B0 is sufficient in B if H(1)(B0)=H(1)(B).

If B0 is sufficient in B , then clearly, classicality of B0 is equivalent to classical-
ity of B , and blackness of B0 is equivalent to blackness of B .

A dense subalgebra is sufficient by Proposition 1.10. Surprisingly, a nondense
subalgebra can be sufficient.

DEFINITION 1.12. A noise-type Boolean algebra B is atomless if

inf
x∈F

x = 0�

for every ultrafilter F ⊂ B .

Recall that a set F ⊂ B is called a filter if for all x, y ∈ B

x ∈ F, x ≤ y �⇒ y ∈ F,

x, y ∈ F �⇒ x ∧ y ∈ F,

0� /∈ F ;
a filter F is called ultrafilter if it is a maximal filter; equivalently, if

∀x ∈ B
(
x /∈ F �⇒ x′ ∈ F

)
.

THEOREM 1.13. If a noise-type subalgebra is atomless, then it is sufficient.

Some applications of this result are mentioned in the end of Section 1.6.

1.6. On available examples and frameworks. Several examples of nonclas-
sical noise-type Boolean algebras are available in the literature but described in
somewhat different frameworks.

According to Tsirelson and Vershik ([20], Definition 1.2), a measure factor-
ization over a Boolean algebra A is a map ϕ : A → � such that ϕ(a1 ∧ a2) =
ϕ(a1) ∧ ϕ(a2), ϕ(a1 ∨ a2) = ϕ(a1) ∨ ϕ(a2), ϕ(0A) = 0�, ϕ(1A) = 1�, and two
σ -fields ϕ(a), ϕ(a′) are independent (for all a, a1, a2 ∈ A). In this case the image
B = ϕ(A)⊂� evidently is a noise-type Boolean algebra. A measure factorization
over A may be defined equivalently as a homomorphism ϕ from A onto some
noise-type Boolean algebra. Assuming that ϕ is an isomorphism (which usually
holds) we may apply several notions introduced in [20] to noise-type Boolean al-
gebras.

In particular, an element of the first chaos space H(1)(B) is the same as a square
integrable real-valued additive integral [20], Definition 1.3 and Theorem 1.7.
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Complex-valued multiplicative integrals are also examined in [20], Theorem 1.7;
these generate a σ -field that contains the σ -field generated by H(1)(B). These two
σ -fields differ in the “simplest nonclassical example” of Section 1.2. Namely, the
latter σ -field consists of all measurable sets invariant under the sign change, while
the former σ -field is the whole 1�, since the coordinates ξ1, ξ2, . . . are multiplica-
tive integrals [indeed, ξ1 = (ξ1ξ2)(ξ2ξ3) · · · (ξnξn+1)ξn+1]. A sufficient condition
for equality of the two σ -fields, given by [20], Theorem 1.7, is the minimal up con-
tinuity condition [20], Definition 1.6: supx∈F x′ = 1� for every ultrafilter F ⊂ B .
This is stronger than the condition infx∈F x = 0� called minimal down continuity
in [20], Definition 1.6, and just atomless here (Definition 1.12). The “continuous
example” in [19], Section 1b, is atomless but violates the minimal up continuity
condition. The seemingly evident relation supx∈F x′ = (infx∈F x)′ may fail (see
Section 1.2), since sup and inf are taken in � rather than B; see also Remark 4.1.

A wide class of countable atomless black noise-type Boolean algebras is ob-
tained in [20], Section 4a, via combinatorial models on trees.

According to [19], Definition 3c1, a continuous product of probability spaces
(over R) is a family (xs,t )s<t of σ -fields xs,t ∈� given for all s, t ∈R, s < t , such
that sups,t xs,t = 1� and

xr,s ⊗ xs,t = xr,t whenever r < s < t

in the sense that xr,s and xs,t are independent and generate xr,t . This is basically
the same as a measure factorization over the Boolean algebra A of all finite unions
of intervals (s, t) treated modulo finite sets (see [19], Section 11a, for details).

According to Tsirelson [19], Definition 3d1, a noise (over R) is a homogeneous
continuous product of probability spaces; “homogeneous” means existence of a
measurable action (Th)h∈R of R on � such that

Th sends xs,t to xs+h,t+h whenever s < t and h ∈R

(see [19], Section 3d for details). It follows from homogeneity (and separability
of H ) that [19], Proposition 3d3 and Corollary 3d5

inf
ε>0

xs−ε,t+ε = xs,t = sup
ε>0

xs+ε,t−ε,(1.1)

which implies the minimal up continuity condition (since an ultrafilter must con-
tain all neighborhoods of some point from [−∞,+∞]). Thus, additive and multi-
plicative integrals generate the same sub-σ -field, called the stable σ -field in [19],
Section 4c, where it is defined in a completely different but equivalent way. Note
also that every noise leads to an atomless noise-type Boolean algebra.

Two examples of a nonclassical, but not black, noise were published in 1999
and 2002 by J. Warren (see [19], Sections 2c, 2d).

Existence of a black noise was proved first in 1998 ([20], Section 5), via projec-
tive limit; see also [18], Section 8.2. However, this was not quite a construction of
a specific noise; existence of a subsequence limit was proved, uniqueness was not.
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All other black noise examples available for now use random configurations
over R

1+d for some d ≥ 1 (in most cases d = 1); the σ -field xs,t consists of all
events “observable” within the domain (s, t)×R

d ⊂R
1+d .

Examples based on stochastic flows were published in 2001 by Watanabe and
in 2004 by the author Le Jan, O. Raimond and S. Lemaire. In these examples the
first coordinate of R

1+d is interpreted as time, the other d coordinates as space.
Blackness is deduced from the relation ‖E(f |xt,t+ε)‖2 = o(ε) as ε→ 0+ for all
f ∈ L2(�, F ,P ) such that Ef = 0. For details and references see [19], Section 7.

The first highly important example is the black noise of percolation. The cor-
responding random configuration over R

2 is the full scaling limit of critical site
percolation on the triangular lattice. This example was conjectured in 2004 ([18],
Question 8.1 and Remark 8.2, [19], Question 11b1). It was rather clear that the
noise of percolation must be black; it was less clear how to define its probability
space and σ -fields xs,t , and it was utterly unclear whether xr,s and xs,t generate
xr,t , or not. (It is not sufficient to know that xr,s+ε and xs,t generate xr,t .) The
affirmative answer was published in 2011 [14].

In order to say that the noise of percolation is a conformally invariant black
noise over R

2 we must first define a noise over R
2. Recall that a noise over R is

related to the Boolean algebra of all finite unions of intervals modulo finite sets.
Its two-dimensional counterpart, according to Schramm and Smirnov [14], Corol-
lary 1.20, is “an appropriate algebra of piecewise-smooth planar domains (e.g.,
generated by rectangles).” However, the algebra generated by rectangles hides the
conformal invariance of this noise. The class of all piecewise-smooth domains is
conformally invariant, however, two Ck-smooth curves may have a nondiscrete
intersection. Piecewise analytic boundaries could be appropriate for this noise.

Stochastic flows on R
1+d , mentioned above, lead to noises over R, generally not

R
1+d since, being uncorrelated in time, they may be correlated in space. However,

two of them are also uncorrelated in (one-dimensional) space: Arratia’s coalesc-
ing flow, or the Brownian web (see [19], Section 7f), and its sticky counterpart
(see [19], Section 7j). For such flow it is natural to conjecture that a σ -field ya,b

consisting of all events “observable” within the domain R× (a, b)⊂R
2 is well de-

fined whenever a < b, and ya,b ⊗ yb,c = ya,c. Then (ya,b)a<b is the second noise
(over R) obtained from this flow. Moreover, the σ -fields xs,t ∧ ya,b indexed by
rectangles (s, t)× (a, b) should form a noise over R

2. For Arratia’s flow this con-
jecture was proved in 2011 [6]. It appears that the relation ya,b ⊗ yb,c = ya,c is
harder to prove than the relation xr,s ⊗ xs,t = xr,t . Unlike percolation, Arratia’s
flow, being translation-invariant (in time and space), is not rotation-invariant, and
the two noises (xs,t )s<t , (ya,b)a<b are probably nonisomorphic.

Still, the notion of a noise over R
2 is obscure because of nonuniqueness of an

appropriate Boolean algebra of planar domains. Surely, a single “noise of perco-
lation” is more satisfactory than “the noise of percolation on rectangles” different
from “the noise of percolation on piecewise analytic domains” etc. These should
be treated as different generators of the same object. On the level of noise-type
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Boolean algebras the problem is solved by the noise-type completion (Section 1.4).
However, it remains unclear how to relate the σ -fields belonging to the completion
to something like planar domains.

Any reasonable definition of a noise over R
2 leads to a noise-type Boolean al-

gebra B , two noises (xs,t )s<t , (ya,b)a<b over R, their noise-type Boolean algebras
B1 ⊂ B , B2 ⊂ B , and the corresponding first chaos spaces H(1)(B), H(1)(B1),
H(1)(B2). As was noted after (1.1), B1 and B2 are atomless. By Theorem 1.13
they are sufficient, that is,

H(1)(B1)=H(1)(B)=H(1)(B2).

Thus, if one of these three noises (one over R
2 and two over R) is classical, then

the other two are classical; if one is black, then the other two are black.
For the noise of percolation we know that the noise over R

2 is black and con-
clude that the corresponding two (evidently isomorphic) noises over R are black.

For the Arratia’s flow we know that the first noise over R is black and conclude
that the second noise over R is also black.

2. Preliminaries. This section is a collection of useful facts (mostly folk-lore,
I guess), more general than noise-type Boolean algebras.

Throughout, the probability space (�, F ,P ), the complete lattice � of sub-
σ -fields and the separable Hilbert space H = L2(�, F ,P ) are as in Section 1.1.
Complex numbers are not used; H is a Hilbert space over R. A “subspace” of H

always means a closed linear subset. Recall also 0�,1�,x ∧ y, x ∨ y for x, y ∈�,
the notion of independent σ -fields, operators E(·|x) of conditional expectation,
and infX, supX ∈� for X ⊂� (Section 1.1).

2.1. Type L2 subspaces.

FACT 2.1 ([15], Theorem 3). The following two conditions on a subspace H1
of H are equivalent:

(a) there exists a sub-σ -field x ∈ � such that H1 = L2(x), the space of all
x-measurable functions of H ;

(b) H1 is a sublattice of H , containing constants. That is, H1 contains f ∨ g

and f ∧ g for all f,g ∈ H1, where (f ∨ g)(ω) = max(f (ω), g(ω)) and (f ∧
g)(ω)=min(f (ω), g(ω)), and H1 contains the one-dimensional space of constant
functions.

HINT TO THE PROOF THAT (B) �⇒ (A). 1(0,∞)(f )= limn((0 ∨ nf ) ∧ 1) ∈
H1 for f ∈H1. �

Such subspaces H1 will be called type L2 (sub)spaces. (In [15] they are called
measurable, which can be confusing.)

Due to linearity of H1 the condition f ∨ g,f ∧ g ∈H1 boils down to |f | ∈H1
for all f ∈H1. [Hint: f ∨ g = f + (0∨ (g − f )) and 0∨ f = 0.5(f + |f |).]
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FACT 2.2. If A ⊂ L∞(�, F ,P ) is a subalgebra containing constants, then
the closure of A in H is a type L2 space.

(“Subalgebra” means fg ∈A for all f,g ∈A, in addition to linearity.)

HINT. Approximating the absolute value by polynomials we get |f | ∈H1 (the
closure of A) for f ∈A, and by continuity, for f ∈H1. �

NOTATION 2.3. We denote the type L2 space L2(x) corresponding to x ∈�

by Hx , and the orthogonal projection E(·|x) by Qx . In particular, H0 = {c1 : c ∈R}
is the one-dimensional subspace of constant functions on �, and Q0f = (Ef )1=
〈f,1〉1. Also, H1 =H , and Q1 = I is the identity operator.

Thus:

Hx ⊂H ; Qx :H →H ; QxH =Hx for x ∈�;(2.1)

Hx ⊂Hy ⇐⇒ Qx ≤Qy ⇐⇒ x ≤ y;(2.2)

QxQy =Qx =QyQx whenever x ≤ y;(2.3)

Hx =Hy ⇐⇒ Qx =Qy ⇐⇒ x = y;(2.4)

Hx∧y =Hx ∩Hy;(2.5)

(2.3) and (2.4) follow from (2.2); (2.5) is a special case of Fact 2.4.

FACT 2.4. HinfX =⋂
x∈X Hx for X ⊂�.

HINT. Measurability w.r.t. the intersection of σ -fields is equivalent to measur-
ability w.r.t. each one of these σ -fields. �

However, Hx∨y is generally much larger than the closure of Hx +Hy .

FACT 2.5 ([11], Theorem 3.5.1). Hx∨y is the subspace spanned by pointwise
products fg for f ∈Hx ∩L∞(�, F ,P ) and g ∈Hy ∩L∞(�, F ,P ).

HINT. Linear combinations of these products are an algebra; by Fact 2.2 its
closure is Hz for some z ∈�; note that z≥ x, z≥ y, but also z≤ x ∨ y. �

FACT 2.6. Let x, x1, x2, . . . ∈�, x1 ≤ x2 ≤ · · · and x = supn xn. Then Hx is
the closure of Hx1 ∪Hx2 ∪ · · · .

HINT. By Fact 2.1, the closure of
⋃

n Hxn is Hz for some z ∈ �; note that
z≥ xn for all n, but also z≤ x. �
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That is,

xn ↑ x �⇒ Hxn ↑Hx;(2.6)

xn ↓ x �⇒ Hxn ↓Hx(2.7)

(the latter holds by Fact 2.4).

2.2. Strong operator convergence. Let H be a Hilbert space and A,A1,

A2, . . . :H →H operators (linear, bounded). Strong operator convergence of An

to A is defined by

(An→A) ⇐⇒ (∀ψ ∈H ‖Anψ −Aψ‖ n→∞−→ 0
)
.

We write just An→A, since we do not need other types of convergence for oper-
ators.

FACT 2.7 ([12], Remark 2.2.11). An → A if and only if ‖Anψ − Aψ‖ → 0
for a dense set of vectors ψ and supn ‖An‖<∞.

FACT 2.8 ([10], Problem 93; [12], Section 4.6.1). If An → A and Bn → B ,
then AnBn→AB .

FACT 2.9. If An→A, Bn→ B and AnBn = BnAn for all n, then AB = BA.

HINT. Use Fact 2.8. �

The following fact allows us to write An ↑ A (or An ↓ A) unambiguously. We
need it only for commuting orthogonal projections.

FACT 2.10 ([3], Proposition 43.1). Let A,A1,A2, . . . :H →H be Hermitian
operators, A1 ≤A2 ≤ · · ·, then

A= sup
n

An ⇐⇒ An→A.

The natural bijective correspondence between subspaces of H and orthogonal
projections H →H is order preserving, therefore

Hn ↓H∞ ⇐⇒ Qn ↓Q∞ also Hn ↑H∞ ⇐⇒ Qn ↑Q∞(2.8)

whenever H1,H2, . . . ,H∞ ⊂H are subspaces and Q1,Q2, . . . ,Q∞ :H →H the
corresponding orthogonal projections.

In combination with (2.6), (2.7) it gives

xn ↓ x implies Qxn ↓Qx; also, xn ↑ x implies Qxn ↑Qx.(2.9)

Let H1,H2 be Hilbert spaces, and H =H1 ⊗H2 their tensor product.
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FACT 2.11. Let A,A1,A2, . . . :H1 →H1, B,B1,B2, . . . :H2 →H2. If An→
A and Bn→ B , then An ⊗Bn→A⊗B .

HINT. The operators are uniformly bounded, and converge on a dense set; use
Fact 2.7. �

2.3. Independence and tensor products.

FACT 2.12. If x, y ∈ � are independent, then Hx∨y = Hx ⊗ Hy up to the
natural unitary equivalence:

Hx ⊗Hy � f ⊗ g ←→ fg ∈Hx∨y.

HINT. By the independence, 〈f1g1, f2g2〉 = E(f1g1f2g2) = E(f1f2) ×
E(g1g2) = 〈f1, f2〉〈g1, g2〉 = 〈f1 ⊗ g1, f2 ⊗ g2〉, thus, Hx ⊗Hy is isometrically
embedded into Hx∨y ; by Fact 2.5 the embedding is “onto.” �

It may be puzzling that Hx is both a subspace of H and a tensor factor of H

(which never happens in the general theory of Hilbert spaces). Here is an expla-
nation. All spaces Hx contain the one-dimensional space H0 of constant functions
(on �). Multiplying an x-measurable function f ∈ Hx by the constant function
g ∈Hx′ , g(·)= 1, we get the (puzzling) equality f ⊗ g = f .

NOTATION 2.13. For u,x ∈� such that u≤ x we denote by Q
(x)
u the restric-

tion of Qu to Hx .

Thus

Q(x)
u :Hx →Hx, Q(x)

u Hx =Hu for u≤ x.

FACT 2.14. If x, y ∈� are independent, u≤ x, v ≤ y, then treating Hx∨y as
Hx ⊗Hy , we have

Qu∨v =Q(x)
u ⊗Q(y)

v .

HINT. By Fact 2.12, Hu∨v =Hu⊗Hv , and this factorization may be treated as
embedded into the factorization Hx∨y =Hx ⊗Hy ; the projection onto Hu⊗Hv ⊂
Hx ⊗Hy factorizes. �

In a more probabilistic language,

E(fg|u∨ v)= E(f |u)E(g|v) for f ∈ L2(x), g ∈ L2(y).

Here is a very general fact (no σ -fields, no tensor products, just Hilbert spaces).
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FACT 2.15 ([10], Problem 96, [3], Exercise 45.4). Let Q1,Q2 be orthogonal
projections in a Hilbert space H . Then (Q1Q2)

n converges strongly (as n→∞)
to the orthogonal projection onto (Q1H)∩ (Q2H).

FACT 2.16. (QxQy)
n→Qx∧y strongly (as n→∞) whenever x, y ∈�.

HINT. (QxH)∩ (QyH)=Qx∧yH by (2.5); use Fact 2.15. �

FACT 2.17. (Q
(x)
u1 Q

(x)
u2 )n → Q

(x)
u1∧u2 strongly (as n → ∞) whenever

u1, u2 ≤ x.

HINT. Similar to Fact 2.16. �

FACT 2.18. If x, y ∈� are independent, u1, u2 ≤ x and v1, v2 ≤ y, then

(u1 ∨ v1)∧ (u2 ∨ v2)= (u1 ∧ u2)∨ (v1 ∧ v2).

HINT. By Fact 2.16, (Qu1∨v1Qu2∨v2)
n → Q(u1∨v1)∧(u2∨v2). By Fact 2.17,

(Q
(x)
u1 Q

(x)
u2 )n → Q

(x)
u1∧u2 and (Q

(y)
v1 Q

(y)
v2 )n → Q

(y)
v1∧v2 . By Fact 2.14, Qu1∨v1 ×

Qu2∨v2 = (Q
(x)
u1 ⊗ Q

(y)
v1 )(Q

(x)
u2 ⊗ Q

(y)
v2 ) = (Q

(x)
u1 Q

(x)
u2 ) ⊗ (Q

(y)
v1 Q

(y)
v2 ) and

Q(u1∧u2)∨(v1∧v2) =Q
(x)
u1∧u2 ⊗Q

(y)
v1∧v2 ; use (2.4). �

REMARK. In a distributive lattice the equality stated by Fact 2.18 is easy to
check (assuming x∧y = 0 instead of independence). However, the lattice � is not
distributive.

Useful special cases of Fact 2.18 (assuming that x, y are independent, u ≤ x

and v ≤ y):

(u∨ v)∧ x = u, (u∨ v)∧ y = v;(2.10)

(u∨ y)∧ (x ∨ v)= u∨ v.(2.11)

Here is another very general fact (no σ -fields, no tensor products, just random
variables).

FACT 2.19. Assume that X,X1,X2, . . . and Y,Y1, Y2, . . . are random vari-
ables (on a given probability space), and for every n the two random variables
Xn,Yn are independent; if Xn → X, Yn → Y in probability, then X,Y are inde-
pendent.

HINT. If f,g : R→ R are bounded continuous functions, then E(f (Xn))→
E(f (X)), E(g(Yn)) → E(g(Y )), E(f (Xn))E(g(Yn)) = E(f (Xn)g(Yn)) →
E(f (X)g(Y )), thus, E(f (X)g(Y ))= E(f (X))E(g(Y )). �

The same holds for vector-valued random variables.
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2.4. Measure class spaces and commutative von Neumann algebras. See [5,
16] or [3] for basics about von Neumann algebras; we need only the commutative
case.

FACT 2.20 ([5], Section I.7.3, [16], Theorem III.1.22, [12], E4.7.2). Every
commutative von Neumann algebra A of operators on a separable Hilbert space H

is isomorphic to the algebra L∞(S,
,μ) on some measure space (S,
,μ).

Here and henceforth all measures are positive, finite and such that the corre-
sponding L2 spaces are separable. The isomorphism α : A → L∞(S,
,μ) pre-
serves linear operations, multiplication and norm. Hermitian operators of A corre-
spond to real-valued functions of L∞; we restrict ourselves to these and observe
an order isomorphism,

A ≤ B ⇐⇒ α(A)≤ α(B);
(2.12)

A= sup
n

An ⇐⇒ α(A)= sup
n

α(An).

FACT 2.21 ([5], Section I.4.3, Corollary 1, [3], Section 46, Proposition 46.6 and
Exercise 1). Every isomorphism of von Neumann algebras preserves the strong
operator convergence (of sequences, not nets).

The measure μ may be replaced with any equivalent (i.e., mutually absolutely
continuous) measure μ1. Thus we may turn to a measure class space (see [2],
Section 14.4) (S,
, M) where M is an equivalence class of measures, and write
L∞(S,
, M); we have an isomorphism

α : A → L∞(S,
, M)(2.13)

of von Neumann algebras. (See [2], Section 14.4, for the Hilbert space L2(S,
, M)

on which L∞(S,
, M) acts by multiplication.)

FACT 2.22. Let A and α be as in (2.13), A,A1,A2, . . . ∈ A, supn ‖An‖<∞.
Then the following two conditions are equivalent:

(a) An→A in the strong operator topology;
(b) α(An)→ α(A) in measure.

HINT. (An → A strongly)⇐⇒ (α(An)→ α(A) strongly)⇐⇒ (‖α(An)f −
α(A)f ‖2 → 0 for every bounded f )⇐⇒ (α(An)→ α(A) in measure). �

Let 
1 ⊂
 be a sub-σ -field. Restrictions μ|
1 of measures μ ∈ M are mutu-
ally equivalent; denoting their equivalence class by M|
1 we get a measure class
space (S,
1, M|
1). Clearly, L∞(S,
1, M|
1) ⊂ L∞(S,
, M) or, in shorter
notation, L∞(
1)⊂L∞(
); this is also a von Neumann algebra.
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FACT 2.23. Every von Neumann subalgebra of L∞(
) is L∞(
1) for some
sub-σ -field 
1 ⊂
.

HINT. Similar to Fact 2.2. �

We have L∞(
1)= α(A1) where A1 = α−1(L∞(
1))⊂ A is a von Neumann
algebra. And conversely, if A1 ⊂ A is a von Neumann algebra, then α(A1) =
L∞(
1) for some sub-σ -field 
1 ⊂
.

Given two von Neumann algebras A1, A2 ⊂ A, we denote by A1 ∨A2 the von
Neumann algebra generated by A1, A2. Similarly, for two σ -fields 
1,
2 ⊂ 


we denote by 
1 ∨
2 the σ -field generated by 
1,
2.

FACT 2.24. L∞(
1)∨L∞(
2)=L∞(
1 ∨
2).

HINT. By Fact 2.23, L∞(
1) ∨ L∞(
2) = L∞(
3) for some 
3; note that

3 ⊃
1, 
3 ⊃
2, but also 
3 ⊂
1 ∨
2. �

FACT 2.25. If α(A1)= L∞(
1) and α(A2)= L∞(
2), then α(A1 ∨A2)=
L∞(
1 ∨
2).

HINT. α(A1 ∨ A2) = α(A1) ∨ α(A2), since α is an isomorphism; use
Fact 2.24. �

The product (S,
, M) = (S1,
1, M1) × (S2,
2, M2) of two measure
class spaces is a measure class space [2], 14.4; namely, (S,
) = (S1,
1) ×
(S2,
2), and M is the equivalence class containing μ1 × μ2 for some (there-
fore all) μ1 ∈ M1, μ2 ∈ M2. In this case L∞(S,
, M) = L∞(S1,
1, M1) ⊗
L∞(S2,
2, M2).

Given two commutative von Neumann algebras A1 on H1 and A2 on H2, their
tensor product A = A1 ⊗ A2 is a von Neumann algebra on H =H1 ⊗H2. Given
isomorphisms α1 : A1 → L∞(S1,
1, M1) and α2 : A2 → L∞(S2,
2, M2), we
get an isomorphism α = α1 ⊗ α2 : A → L∞(S,
, M), where (S,
, M) =
(S1,
1, M1)× (S2,
2, M2); namely, α(A1 ⊗A2)= α1(A1)⊗ α2(A2) for A1 ∈
A1, A2 ∈ A2. Note that α(A1 ⊗ I )= L∞(
̃1) and α(I ⊗ A2)= L∞(
̃2), where

̃1 = {A1× S2 :A1 ∈
1} and 
̃2 = {S1×A2 :A2 ∈
2} are M-independent sub-
σ -fields of 
, and 
̃1 ∨ 
̃2 =
.

DEFINITION 2.26. Let (S,
, M) be a measure class space. Two sub-σ -fields

1,
2 ⊂
 are M-independent, if they are μ-independent for some μ ∈ M, that
is, μ(X ∩ Y)μ(S)= μ(X)μ(Y ) for all X ∈
1, Y ∈
2.

FACT 2.27. If σ -fields 
1,
2 ⊂ 
 are independent, then L∞(
1 ∨ 
2) =
L∞(
1)⊗L∞(
2) up to the natural isomorphism

L∞(
1)⊗L∞(
2) � f ⊗ g ←→ fg ∈ L∞(
1 ∨
2).
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HINT. Recall Fact 2.12. �

FACT 2.28. For every isomorphism α : A1 ⊗ A2 → L2(S,
, M), there ex-
ist M-independent 
1,
2 ⊂ 
 such that α(A1 ⊗ I ) = L∞(
1), α(I ⊗ A2) =
L∞(
2), and 
1 ∨
2 =
.

HINT. We get 
1,
2 from Fact 2.23; 
1 ∨
2 = 
 by Fact 2.24; for prov-
ing independence we choose μ1 ∈ M1, μ2 ∈ M2, take isomorphisms α1 : A1 →
L∞(S1,


′
1, M1), α2 : A2 → L∞(S2,


′
2, M2) and use the isomorphism β =

(α1⊗ α2)α
−1 :L∞(S,
, M)→ L∞((S1,


′
1, M1)× (S2,


′
2, M2)) for defining

μ ∈ M by
∫

f dμ= ∫
(βf )d(μ1 ×μ2); then 
1,
2 are μ-independent. �

Given an isomorphism α : A → L∞(S,
, M) of von Neumann algebras, we
have subspaces H(E), for E ∈
, of the space H on which acts A:

H(E)= α−1(1E)H ⊂H ;
H(E1 ∩E2)=H(E1)∩H(E2);

(2.14)
H(E1 �E2)=H(E1)⊕H(E2);
H(E1 ∪E2)=H(E1)+H(E2)

[the third line differs from the fourth line by assuming that E1,E2 are disjoint and
concluding that H(E1),H(E2) are orthogonal]. By (2.12), (2.8)

En ↑E implies H(En) ↑H(E),
(2.15)

En ↓E implies H(En) ↓H(E).

2.5. Boolean algebras. Every finite Boolean algebra b has 2n elements,
where n is the number of the atoms a1, . . . , an of b; these atoms satisfy ak∧al = 0b

for k 	= l, and a1 ∨ · · · ∨ an = 1b. All elements of b are of the form

ai1 ∨ · · · ∨ aik , 1≤ i1 < · · ·< ik ≤ n.(2.16)

We denote by Atoms(b) the set of all atoms of b and rewrite (2.16) as

∀x ∈ b x = ∨
a∈Atoms(b),a≤x

a.(2.17)

FACT 2.29. Let B be a Boolean algebra, b1, b2 ⊂ B two finite Boolean sub-
algebras and b ⊂ B the Boolean subalgebra generated by b1, b2. Then b is finite.
If a1 ∈ Atoms(b1), a2 ∈ Atoms(b2) and a1 ∧ a2 	= 0B , then a1 ∧ a2 ∈ Atoms(b),
and all atoms of b are of this form.

HINT. These a1∧a2 are the atoms of some finite Boolean subalgebra b3; note
that b1 ⊂ b3 and b2 ⊂ b3, but also b3 ⊂ b. �
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FACT 2.30. The following four conditions on a Boolean algebra B are equiv-
alent:

sup
n

xn exists for all x1, x2, . . . ∈ B;
inf
n

xn exists for all x1, x2, . . . ∈ B;
sup
n

xn exists for all x1, x2, . . . ∈ B satisfying x1 ≤ x2 ≤ · · · ;
inf
n

xn exists for all x1, x2, . . . ∈ B satisfying x1 ≥ x2 ≥ · · · .

HINT. First, infn xn = (supn x′n)′; second, supn xn = supn(x1 ∨ · · · ∨ xn). �

A Boolean algebra B satisfying these equivalent conditions is called σ -complete
(in other words, a Boolean σ -algebra).

FACT 2.31 ([9], Section 14, Lemma 1). The following two conditions on a
Boolean algebra B are equivalent:

(a) no uncountable subset X ⊂ B satisfies x ∧ y = 0B for all x, y ∈ B (“the
countable chain condition”);

(b) every subset X of B has a countable subset Y such that X and Y have the
same set of upper bounds.

FACT 2.32 ([9], Section 14, Corollary). If a σ -complete Boolean algebra sat-
isfies the countable chain condition, then it is complete.

HINT. Use Fact 2.31(b). �

2.6. Measurable functions and equivalence classes. Let (S,
,μ) be a mea-
sure space, μ(S) <∞. As usual, we often treat equivalence classes of measur-
able functions on S as just measurable functions, which is harmless as long as
only countably many equivalence classes are considered simultaneously. Other-
wise, dealing with uncountable sets of equivalence classes, we must be cautious.

All equivalence classes of measurable functions S → [0,1] are a complete lat-
tice. Let Z be some set of such classes. If Z is countable, then its supremum,
supZ, may be treated naively (as the pointwise supremum of functions). For an
uncountable Z we have supZ = supZ0 for some countable Z0 ⊂ Z. In particular,
the equality holds whenever Z0 is dense in Z according to the L1 metric.

The same holds for functions S → {0,1} or, equivalently, measurable sets.
Functions S→[0,∞] are also a complete lattice, since [0,∞] can be transformed
into [0,1] by an increasing bijection.

In the context of (2.14), (2.15) we have

H
(

inf
i∈I

Ei

)
=⋂

i∈I

H(Ei)(2.18)



328 B. TSIRELSON

for an arbitrary (not just countable) family of equivalence classes Ei of measurable
sets. Similarly,

H
(
sup
i∈I

Ei

)
= sup

i∈I

H(Ei),(2.19)

the closure of the sum of all H(Ei).

FACT 2.33. For every increasing sequence of measurable functions fn :S→
[0,∞) there exist n1 < n2 < · · · such that almost every s ∈ S satisfies one of two
incompatible conditions:

either lim
n

fn(s) <∞ or fnk
(s)≥ k for all k large enough

[here “k large enough” means k ≥ k0(s)].

HINT. Take nk such that
∑
k

μ
(
{s :fnk

< k} ∩
{
s : lim

n
fn(s)=∞

})
<∞.

�

All said above holds also for a measure class space (S,
, M) (see Section 2.4)
in place of the measure space (S,
,μ).

3. Convergence of σ -fields and independence. Throughout this section
(�, F ,P ),�,H and Qx are as in Section 2.

3.1. Definition of the convergence. The strong operator topology on the pro-
jection operators Qx induces a topology on �; we call it the strong operator topol-
ogy on �. It is metrizable (since the strong operator topology is metrizable on
operators of norm ≤ 1; see [3], Section 8, Exercise 1). Thus, for x, x1, x2, . . . ∈�,

xn→ x means ∀f ∈H‖Qxnf −Qxf ‖ n→∞−→ 0.

On the other hand we have the monotone convergence derived from the partial
order on �,

xn ↓ x means x1 ≥ x2 ≥ · · · and inf
n

xn = x,

xn ↑ x means x1 ≤ x2 ≤ · · · and sup
n

xn = x.

By Fact 2.10,

xn ↓ x implies xn→ x; also, xn ↑ x implies xn→ x.(3.1)
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3.2. Commuting σ -fields.

DEFINITION 3.1. Elements x, y ∈ � are commuting, if QxQy = QyQx .
A subset of � is commutative, if its elements are pairwise commuting.

By (2.3),

every linearly ordered subset of � is commutative.(3.2)

By Fact 2.9,

if xn→ x, yn→ y,

and for every n the two elements xn, yn are commuting,(3.3)

then x, y are commuting.

In particular,

the closure of a commutative set is commutative.(3.4)

It follows from Fact 2.16, or just (2.5), that

if x, y ∈� are commuting then QxQy =Qx∧y.(3.5)

Recall lim infn xn for xn ∈� defined in Section 1.3.

LEMMA 3.2. If xn ∈ � are pairwise commuting and xn → x, then
lim infk xnk

= x for some n1 < n2 < · · ·.
PROOF. The commuting projection operators Qxn generate a commutative

von Neumann algebra; by Fact 2.20 this algebra is isomorphic to the algebra L∞
on some measure space (of finite measure). Denoting the isomorphism by α we
have α(Qxn)= 1En , α(Qx)= 1E (indicators of some measurable sets En,E). Us-
ing (3.5) we get

α(Qxm∧xn)= 1Em∩En

for all m,n; the same holds for more than two indices.
The strong convergence of operators Qxn →Qx implies by Fact 2.22 conver-

gence in measure of indicators, 1En → 1E . We choose a subsequence convergent
almost everywhere, 1Enk

→ 1E , then lim infk 1Enk
= 1E , that is,

sup
k

inf
i

1Enk+i
= 1E.

We have α(Qxnk
∧xnk+1∧···∧xnk+i

) = 1Enk
∩Enk+1∩···∩Enk+i

, therefore (for i →∞),
α(Qinfi xnk+i

) = infi 1Enk+i
, and further (for k → ∞), α(Qsupk infi xnk+i

) =
supk infi 1Enk+i

. We get α(Qlim infk xnk
) = lim infk 1Enk

= 1E = α(Qx), therefore
lim infk xnk

= x. �
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PROPOSITION 3.3. Assume that a set B ⊂� is commutative, and x ∧ y ∈ B

for all x, y ∈ B . Then the set

Cl(B)=
{
lim inf

n
xn :x1, x2, . . . ∈ B

}

(lower limits of all sequences of elements of B) is equal to the topological closure
of B .

PROOF. On one hand, if xn→ x, then x ∈ Cl(B) by Lemma 3.2. On the other
hand, lim infxn = supn infk xn+k belongs to the topological closure by (3.1). �

PROPOSITION 3.4. Let xn, yn, x, y ∈ �, xn → x, yn → y, and for each n

(separately), xn, yn commute. Then xn ∧ yn→ x ∧ y.

PROOF. By (3.3), QxQy = QyQx . By (3.5), Qx∧y = QxQy . Similarly,
Qxn∧yn = QxnQyn . Using Fact 2.8 we get Qxn∧yn → Qx∧y , that is, xn ∧ yn →
x ∧ y. �

3.3. Independent σ -fields.

PROPOSITION 3.5. The following two conditions on x, y ∈� are equivalent:

(a) x, y are independent;
(b) x, y are commuting, and x ∧ y = 0�.

PROOF. (a) �⇒ (b): independence of x, y implies E(f |y) = Ef for all f ∈
L2(x), that is, Qyf = 〈f,1〉1 for f ∈ Hx , and therefore QyQx =Q0 =QxQy ;
use (3.5).

(b) �⇒ (a): by (3.5), QyQx =Q0 =QxQy ; thus Qyf = 〈f,1〉1 for f ∈Hx ,
and therefore P(A ∩ B) = 〈1A,1B〉 = 〈1A,Qy1B〉 = 〈Qy1A,1B〉 = 〈1A,1〉 ×
〈1,1B〉 = P(A)P (B) for all A ∈ x, B ∈ y. �

It may happen that x ∧ y = 0 but x, y are not commuting. (In particular, it may
happen that x, y are independent w.r.t. some measure equivalent to P , but not w.r.t.
P .)

COROLLARY 3.6. If xn→ x, yn→ y, and xn, yn are independent for each n

(separately), then x, y are independent.

PROOF. By Proposition 3.5, xn, yn are commuting, and xn ∧ yn = 0�.
By (3.3), x, y are commuting. By Proposition 3.4, x ∧ y = 0�. By Proposition 3.5
(again), x, y are independent. �
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3.4. Product σ -fields. For every x ∈� the triple (�,x,P |x) is also a proba-
bility space, and it may be used similarly to (�, F ,P ), giving the complete lattice
�(�,x,P |x), endowed with the topology, etc. This lattice is naturally embedded
into �,

�(�,x,P |x)= {y ∈� :y ≤ x}.
The lattice operations (∧, ∨), defined on �(�,x,P |x), do not differ from these
induced from � (which is evident); also the topology, defined on �(�,x,P |x),
does not differ from the topology induced from � (which follows easily from the
equality Qy =Q

(x)
y Qx for y ≤ x; see Notation 2.13 for Q

(x)
y ). Thus it is correct to

define �x , as a lattice and topological space,1 by

�(�,x,P |x)=�x = {y ∈� :y ≤ x} ⊂�.

Given x, y ∈�, the product set �x ×�y carries the product topology and the
product partial order, and is again a lattice (see [4], Section 2.15, for the product
of two lattices), moreover, a complete lattice (see [4], Exercise 2.26(ii)).

On the other hand, for independent x, y ∈� we introduce

�x,y = {u∨ v :u≤ x, v ≤ y} ⊂�x∨y.

Generally, �x,y is only a small part of �x∨y ; indeed, a sub-σ -field on the product
of two probability spaces is generally not a product of two sub-σ -fields. This fact
is a manifestation of nondistributivity of the lattice �; the equality

(x ∧ z)∨ (y ∧ z)= (x ∨ y)∧ z

fails whenever z ∈�x∨y \�x,y .

LEMMA 3.7. Every element of �x,y is commuting with x (and y).

PROOF. By Fact 2.14, treating Hx∨y as Hx ⊗ Hy we have Qu∨v = Q
(x)
u ⊗

Q
(y)
v whenever u ≤ x, v ≤ y. Also, Qx =Q

(x)
x ⊗Q

(y)
0 . By (3.2), Q

(x)
u and Q

(x)
x

are commuting; the same holds for Q
(y)
v and Q

(y)
0 . Therefore Qu∨v and Qx are

commuting. �

THEOREM 3.8. If x, y ∈� are independent, then �x,y is a closed subset of �,
the maps

�x ×�y � (u, v) �→ u∨ v ∈�x,y,

�x,y � z �→ (x ∧ z, y ∧ z) ∈�x ×�y

are mutually inverse bijections, and each of them is both an isomorphism of lattices
and a homeomorphism of topological spaces.

1Not “topological lattice” since the lattice operations are generally not continuous.
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PROOF. The composition map �x ×�y →�x,y →�x ×�y is the identity
by (2.10). Taking into account that the map �x ×�y →�x,y is surjective we get
mutually inverse bijections.

The map �x ×�y →�x,y preserves lattice operations: “∧” by Fact 2.18, and
“∨” trivially. It is a bijective homomorphism, therefore, isomorphism of lattices.

Let u,u1, u2, . . . ∈�x , un→ u, and v, v1, v2, . . . ∈�y , vn → v. Then Q
(x)
un →

Q
(x)
u and Q

(y)
vn →Q

(y)
v . By Fact 2.11, Q

(x)
un ⊗Q

(y)
vn →Q

(x)
u ⊗Q

(y)
v . By Fact 2.14,

Qun∨vn → Qu∨v , that is, un ∨ vn → u ∨ v. The map �x × �y → �x,y is thus
continuous.

Let z1, z2, . . . ∈ �x,y , zn → z ∈ �. By Lemma 3.7 and Proposition 3.4, x ∧
zn → x ∧ z. Similarly, y ∧ zn → y ∧ z. In particular, taking z ∈�x,y we see that
the map �x,y →�x ×�y is continuous. In general (for z ∈�) we get zn = (x ∧
zn)∨ (y ∧ zn)→ (x ∧ z)∨ (y ∧ z), therefore z= (x ∧ z)∨ (y ∧ z) ∈�x,y ; we see
that �x,y is closed. �

It follows that

�x,y = {
z ∈� : z= (x ∧ z)∨ (y ∧ z)

}
.(3.6)

REMARK 3.9. By Theorem 3.8, any relation between elements of �x,y ex-
pressed in terms of lattice operations (and limits) is equivalent to the conjunction
of two similar relations “restricted” to x and y. For example, the relation

(z1 ∨ z2)∧ z3 = z4 ∨ z5

between z1, z2, z3, z4, z5 ∈�x,y splits in two; first,
(
(x ∧ z1)∨ (x ∧ z2)

)∧ (x ∧ z3)= (x ∧ z4)∨ (x ∧ z5),

and second, a similar relation with y in place of x.

4. Noise-type completion. Throughout Sections 4–7, B ⊂� is a noise-type
Boolean algebra (as defined by Definition 1.1); �, H and Qx are as in Section 2.

4.1. The closure; proving Theorem 1.6. By separability of H ,

B satisfies the countable chain condition,(4.1)

since otherwise there exists an uncountable set of pairwise orthogonal nontrivial
subspaces of H . By Fact 2.32,

B is complete if and only if it is σ -complete.(4.2)

Recall that every x ∈ B has its complement x ′ ∈ B ,

x ∧ x′ = 0�, x ∨ x′ = 1�; x, x′ are independent.
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(The complement in B is unique, however, many other independent complements
may exist in �.)

By distributivity of B , y = (x ∧ y)∨ (x′ ∧ y) for all x, y ∈ B; by (3.6),

B ⊂�x,x′ for every x ∈ B.(4.3)

By Lemma 3.7,

B is a commutative subset of �.(4.4)

Recall Cl(B) introduced in Theorem 1.6; by Proposition 3.3,

the topological closure of B is Cl(B)=
{
lim inf

n
xn :x1, x2, . . . ∈ B

}
.(4.5)

Taking into account that �x,x′ is closed by Theorem 3.8, we get from (4.3)

Cl(B)⊂�x,x′ for every x ∈ B.(4.6)

By (4.4) and (3.4),

Cl(B) is a commutative subset of �.(4.7)

By Proposition 3.4,

x ∧ y ∈ Cl(B) for all x, y ∈ Cl(B).(4.8)

By (3.5),

QxQy =Qx∧y for all x, y ∈ Cl(B).(4.9)

PROOF OF THEOREM 1.6. If xn ∈ Cl(B) and xn ↑ x, then xn → x by (3.1),
therefore x ∈ Cl(B), which proves item (b) of the theorem.

If xn ∈ Cl(B) and x = infn xn, then x1 ∧ · · · ∧ xn = yn ∈ Cl(B) by (4.8) and
yn ↓ x, thus yn → x by (3.1) (again) and x ∈ Cl(B), which proves item (a) of the
theorem. �

By Proposition 3.5 and (4.7), for x, y ∈ Cl(B),

x ∧ y = 0� if and only if x, y are independent.(4.10)

By Proposition 3.4 and (4.7), for x, xn, y, yn ∈ Cl(B),

if xn→ x, yn→ y then xn ∧ yn→ x ∧ y.(4.11)

REMARK 4.1. In contrast, xn ∨ yn need not converge to x ∨ y, even if xn ∈
B , xn ↓ 0�, yn = x′n; it may happen that yn ↑ y, y 	= 1�. This situation appears
already in the (simplest nonclassical) example given in Section 1.2.

On the other hand, if xn ∈ B , xn → 1�, then necessarily x′n → 0� (but we do
not need this fact).
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By Theorem 3.8, for every z ∈ B the map x �→ x ∧ z is a lattice homomorphism
�z,z′ →�z, thus, (x ∨ y)∧ z= (x ∧ z)∨ (y ∧ z) for all x, y ∈�z,z′ ; in particular,
it holds for all x, y ∈ Cl(B) by (4.6). If x ∨ y = 1�, then z= (x ∧ z)∨ (y ∧ z). If
in addition x ∧ y = 0�, then x, y are independent by (4.10), and z ∈�x,y by (3.6).
Thus B ⊂�x,y . By Theorem 3.8 �x,y is closed, and we conclude.

PROPOSITION 4.2. If x, y ∈ Cl(B), x ∧ y = 0�, x ∨ y = 1�, then Cl(B) ⊂
�x,y .

COROLLARY 4.3. For every x ∈ Cl(B) there exists at most one y ∈ Cl(B)

such that x ∧ y = 0� and x ∨ y = 1�.

PROOF. Assume that y1, y2 ∈ Cl(B), x ∧ yk = 0� and x ∨ yk = 1� for k =
1,2. By Proposition 4.2, y2 ∈�x,y1 , that is, y2 = (x ∧ y2) ∨ (y1 ∧ y2)= y1 ∧ y2.
Similarly, y1 = y2 ∧ y1. �

4.2. The completion; proving Theorem 1.7. Let B and Cl(B) be as in Sec-
tion 4.1, and

C = {
x ∈ Cl(B) :∃y ∈ Cl(B) x ∧ y = 0�,x ∨ y = 1�

}
as in Theorem 1.7; clearly,

B ⊂ C ⊂ Cl(B).(4.12)

Taking Corollary 4.3 into account, we extend the complement operation, x �→ x′,
from B to C:

x′ ∈ C for x ∈ C; (
x′

)′ = x;
x ∧ x′ = 0�; x ∨ x′ = 1�.

By (4.10), x, x′ are independent; and by Proposition 4.2,

∀x ∈ C Cl(B)⊂�x,x′ .(4.13)

LEMMA 4.4. For every x ∈ C the map

Cl(B) � y �→ x ∨ y ∈�

is continuous.

PROOF. Let yn, y ∈ Cl(B), yn → y; we have to prove that x ∨ yn → x ∨ y.
By (4.11), x′ ∧ yn → x′ ∧ y. Applying Theorem 3.8 to (x, x′ ∧ yn) ∈ �x ×�x′
we get x ∨ (x′ ∧ yn)→ x ∨ (x′ ∧ y). It remains to prove that x ∨ (x′ ∧ yn) =
x ∨ yn and x ∨ (x′ ∧ y)= x ∨ y. We prove the latter; the former is similar. Note
that y ∈ Cl(B)⊂�x,x′ by (4.13). The lattice isomorphism �x,x′ →�x ×�x′ of
Theorem 3.8 maps x into (x,0) and y into (x ∧ y, x ′ ∧ y); therefore it maps x ∨ y

into (x ∨ (x ∧ y),0∨ (x ′ ∧ y))= (x, x′ ∧ y), which implies x ∨ (x′ ∧ y)= x ∨ y.
�
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LEMMA 4.5.

∀x ∈ C ∀y ∈ Cl(B) x ∨ y ∈ Cl(B).

PROOF. By Lemma 4.4 it is sufficient to consider y ∈ B . Applying Lemma 4.4
(again) to y ∈ B ⊂ C we see that the map Cl(B) � z �→ y ∨ z ∈� is continuous.
This map sends B into B , and therefore it sends x ∈C ⊂ Cl(B) into Cl(B). �

LEMMA 4.6. For all x, y ∈C,

x ∨ y ∈ C and (x ∨ y)′ = x′ ∧ y′.

PROOF. By Lemma 4.5, x ∨ y ∈ Cl(B). By (4.8), x′ ∧ y′ ∈ Cl(B). We have to
prove that (x ∨ y) ∧ (x′ ∧ y′)= 0� and (x ∨ y) ∨ (x′ ∧ y′)= 1�. We do it using
Remark 3.9.

First, x, y, x′, y′ ∈ C ⊂ Cl(B)⊂�x,x′ .
Second, we consider z= (x ∨ y)∧ (x′ ∧ y′) and “restrict” it first to x: x ∧ z=

(x ∨ (x ∧ y))∧ (0�∧ (x ∧ y′))= 0�, and second, to x′: x′ ∧ z= (0�∨ (x′ ∧ y))∧
x′ ∧ (x′ ∧ y′)≤ y ∧ y′ = 0�. We get z= 0�, that is, (x ∨ y)∧ (x ′ ∧ y′)= 0�.

Third, we consider z= (x ∨ y)∨ (x′ ∧ y′) and get x ∧ z= x ∨ (x ∧ y)∨ (x ∧
x ′ ∧y′)= x and x′ ∧z= (x′ ∧x)∨ (x′ ∧y)∨ (x′ ∧x′ ∧y′)= (x′ ∧y)∨ (x′ ∧y′)=
x′ ∧ (y ∨ y′) = x′. Therefore z = x ∨ x′ = 1�, that is, (x ∨ y) ∨ (x′ ∧ y′) = 1�.

�

In addition, x ∧ y = (x′ ∨ y′)′ ∈ C for all x, y ∈ C; thus C is a sublattice of �.
The lattice C is distributive, that is, x ∧ (y ∨ z)= (x ∧ y)∨ (x ∧ z) for all x, y, z ∈
C, since C ⊂ �x,x′ by (4.12), (4.13), and the map �x,x′ � y �→ x ∧ y ∈ �x is a
lattice homomorphism by Theorem 3.8. Also, 0� ∈ C, 1� ∈ C, and each x ∈ C has
a complement x′ in C. By (4.12) and (4.10), x, x′ are independent for every x ∈ C.
Thus C is a noise-type Boolean algebra satisfying (4.12), which proves item (a) of
Theorem 1.7.

If C1 is also a noise-type Boolean algebra satisfying B ⊂ C1 ⊂ Cl(B), then ev-
ery element of C1 belongs to C, since its complement in C1 is also its complement
in Cl(B). Thus C1 ⊂ C, which proves item (b) of Theorem 1.7.

COROLLARY 4.7. The following two conditions on a noise-type Boolean al-
gebra B are equivalent:

(a) C = Cl(B) (where C is the completion of B);
(b) there exists a complete noise-type Boolean algebra B̂ such that B ⊂ B̂ .

PROOF. (a) �⇒ (b): the noise-type Boolean algebra C = Cl(B) is closed;
by (3.1) it is σ -complete (recall Section 2.5); by (4.2) it is complete.

(b) �⇒ (a): Given x ∈ Cl(B), we take xn ∈ B such that x = lim infn xn

[recall (4.5)]; x ∈ B̂ . The complement x′ of x in B̂ belongs to Cl(B), since
(lim infn xn)

′ = lim supn x′n in B̂ . Thus, x is complemented in Cl(B), that is, x ∈ C.
�
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5. Classicality and blackness.

5.1. Atomless algebras. Recall Section 1.5.

PROPOSITION 5.1. If B is atomless, then for every f ∈H satisfying Q0f = 0
and ε > 0 there exist n and x1, . . . , xn ∈ B such that

x1 ∨ · · · ∨ xn = 1� and ‖Qx1f ‖ ≤ ε, . . . ,‖Qxnf ‖ ≤ ε.

The proof is given after three lemmas.

LEMMA 5.2. Let F ⊂ B be a filter such that infx∈F x = 0�. Then
infx∈F ‖Qxf ‖ = 0 for all f ∈H satisfying Q0f = 0.

PROOF. Given such f , we denote c = infx∈F ‖Qxf ‖, assume that c > 0 and
seek a contradiction.

We choose xn ∈ F such that x1 ≥ x2 ≥ · · · and ‖Qxnf ‖ ↓ c. Necessarily, xn ↓ x

for some x ∈�; by (2.9), Qxn →Qx , thus ‖Qxf ‖ = c.
For arbitrary y ∈ F we have ‖QyQxnf ‖ ≥ c [since QyQxn =Qy∧xn by (4.9),

and y ∧ xn ∈ F ], therefore ‖QyQxf ‖ ≥ c = ‖Qxf ‖, which implies QyQxf =
Qxf , that is, Qxf ∈Hy for all y ∈ F . By Fact 2.4,

⋂
y∈F Hy =H0. We get Qxf ∈

H0, Q0Qxf = 0 and ‖Qxf ‖ 	= 0; a contradiction. �

LEMMA 5.3. Let a function m :B → [0,∞) satisfy m(x ∨ y)+m(x ∧ y) ≥
m(x)+m(y) for all x, y ∈ B , and m(0�)= 0. Then the following two conditions
on m are equivalent:

(a) for every ε > 0 there exist n and x1, . . . , xn ∈ B such that x1∨· · ·∨xn = 1�

and m(x1)≤ ε, . . . ,m(xn)≤ ε;
(b) infx∈F m(x)= 0 for every ultrafilter F ⊂ B .

PROOF. (a) �⇒ (b): the ultrafilter must contain at least one xk , thus
infx∈F m(x)≤ ε for every ε.

(b) �⇒ (a): we assume that (a) is violated and prove that (b) is violated.
Note that m(x∨y)≥m(x)+m(y)≥m(x) whenever x∧y = 0�, and therefore

m(x)≥m(y) whenever x ≥ y.
We define γ :B→[0,∞) by

γ (x)= inf
x1∨···∨xn=x

max
(
m(x1), . . . ,m(xn)

)
,

the infimum being taken over all n and all x1, . . . , xn ∈ B such that x1 ∨ · · · ∨
xn = x. We denote c = γ (1�) and note that c > 0 [since (a) is violated]. Clearly,
γ (x)≤m(x), and γ (x ∨ y)=max(γ (x), γ (y)) for all x, y ∈ B .
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CLAIM. For every x ∈ B and ε > 0 there exists y ∈ B such that y ≤ x and
γ (x)= γ (y)≤m(y)≤ γ (x)+ ε.

PROOF. Take x1, . . . , xn such that x1∨· · ·∨xn = x and maxk m(xk)≤ γ (x)+
ε; note that γ (x)=maxk γ (xk), choose k such that γ (x)= γ (xk), and then y = xk

fits. �

Iterating the transition from x to y we construct x0, x1, x2, . . . ∈ B such that
1� = x0 ≥ x1 ≥ x2 ≥ · · ·, γ (xn)= c for all n, and m(xn) ↓ c as n→∞.

We introduce

F =
{
y ∈ B : lim

n
m(xn ∧ y)≥ c

}
= {

y ∈ B :m(xn ∧ y) ↓ c
}

and note that infy∈F m(y)≥ c > 0 [just because m(y)≥m(xn∧y)]. It is sufficient
to prove that F is an ultrafilter.

If y ∈ F and y ≤ z, then z ∈ F [just because m(xn ∧ y)≤m(xn ∧ z)].
If y, z ∈ F , then m(xn) ≥ m((xn ∧ y) ∨ (xn ∧ z)) ≥ m(xn ∧ y) + m(xn ∧

z) − m((xn ∧ y) ∧ (xn ∧ z)), therefore limn m(xn ∧ y ∧ z) ≥ limn m(xn ∧ y) +
limn m(xn ∧ z)− limn m(xn)= c, thus y ∧ z ∈ F . We conclude that F is a filter.

For arbitrary y ∈ B we have c = γ (xn) ≤ max(m(xn ∧ y),m(xn ∧ y′)) for all
n; thus c ≤ limn max(m(xn ∧ y),m(xn ∧ y′))=max(limn m(xn ∧ y), limn m(xn ∧
y′)), which shows that y /∈ F �⇒ y′ ∈ F . We conclude that F is an ultrafilter,
which completes the proof. �

LEMMA 5.4. Qx +Qy ≤Qx∨y +Qx∧y for all x, y ∈ B .

PROOF. By (4.4), Qx and Qy are commuting projections, which implies Qx+
Qy =Qx ∨Qy +Qx ∧Qy , where Qx ∨Qy and Qx ∧Qy are projections onto
QxH +QyH and QxH ∩QyH , respectively. Using (4.9), Qx ∧Qy =QxQy =
Qx∧y . It remains to note that Qx ∨ Qy ≤ Qx∨y just because Qx ≤ Qx∨y and
Qy ≤Qx∨y . �

Taking into account that ‖Qxψ‖2 = 〈Qxψ,ψ〉 we get

‖Qxf ‖2 + ‖Qyf ‖2 ≤ ‖Qx∨yf ‖2 + ‖Qx∧yf ‖2(5.1)

for all x, y ∈ B and f ∈H . Thus, the function m :x �→ ‖Qxf ‖2 satisfies the con-
dition m(x ∨ y)+m(x ∧ y) ≥ m(x)+m(y) of Lemma 5.3; the other condition,
m(0�)= 0, is also satisfied if Q0f = 0.

PROOF OF PROPOSITION 5.1. Let f ∈ H , Q0f = 0. By Lemma 5.2,
infx∈F ‖Qxf ‖ = 0 for every ultrafilter F ⊂ B . It remains to apply Lemma 5.3
to m :x �→ ‖Qxf ‖2. �

5.2. The first chaos; proving Proposition 1.10. Let C be the completion of B;
see Definition 1.8. Recall the first chaos space H(1)(B)⊂H (Definition 1.2).
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LEMMA 5.5. The following three conditions on f ∈H are equivalent:

(a) f ∈H(1)(B), that is, f =Qxf +Qx′f for all x ∈ B;
(b) Qx∨yf =Qxf +Qyf for all x, y ∈ B satisfying x ∧ y = 0�;
(c) Qx∨yf +Qx∧yf =Qxf +Qyf for all x, y ∈ B , and Q0f = 0.

PROOF. Condition (a) for x = 0� gives f = Q0f + f , that is, Q0f = 0.
Condition (b) for x = y = 0� gives Q0f =Q0f +Q0f , that is, Q0f = 0 (again).
Condition (c) requires Q0f = 0 explicitly. Thus, we restrict ourselves to f satis-
fying Q0f = 0.

Clearly, (c) �⇒ (b) �⇒ (a); we’ll prove that (a) �⇒ (b) �⇒ (c). Recall (4.9):
QxQy =Qx∧y .

(a)�⇒ (b): If x∧y = 0�, then Qx∨yf =Qx∨y(Qxf +Qx′f )=Qx∨yQxf +
Qx∨yQx′f =Q(x∨y)∧xf +Q(x∨y)∧x′f =Qxf +Qyf .

(b) �⇒ (c): we apply (b) twice; first, to x and x′ ∧ y, getting Qx∨yf =Qxf +
Qx′∧yf , and second, to x ∧ y and x′ ∧ y, getting Qyf = Qx∧yf +Qx′∧yf . It
remains to eliminate Qx′∧yf . �

PROOF OF PROPOSITION 1.10. It is sufficient to prove that H(1)(B) =
H(1)(C). The inclusion H(1)(B) ⊃ H(1)(C) follows readily from the inclu-
sion B ⊂ C. We have to prove that H(1)(B) ⊂ H(1)(C). Let f ∈ H(1)(B). By
Lemma 5.5, Q0f = 0 and Qx∨yf +Qx∧yf =Qxf +Qyf for all x, y ∈ B; it
is sufficient to extend this equality to all x, y ∈ C. We do it in two steps: first, we
extend it to x ∈ B , y ∈ C by separate continuity in y for fixed x; and second, we
extend it to x, y ∈ C by separate continuity in x for fixed y. The separate continu-
ity of x ∨ y is ensured by Lemma 4.4. Continuity of x ∧ y is ensured by (4.11).

�

From now on we often abbreviate H(1)(B) to H(1).

CLAIM. The space H(1) is invariant under projections Qx for x ∈ B and
moreover, for x ∈ Cl(B).

PROOF. For f ∈H(1), x ∈ Cl(B) and g =Qxf we have, using (4.7), Qyg +
Qy′g = (Qy + Qy′)Qxf = Qx(Qy + Qy′)f = Qxf = g for all y ∈ B , which
means g ∈H(1). �

We denote the restriction of Qx to H(1) by Q
(1)
x ; using (4.9) and Lemma 5.5 we

have for all x, y ∈ B ,

Q
(1)
x :H(1)→H(1); Q

(1)
x f =Qxf ; Q

(1)
0 = 0, Q

(1)
1 = I ;(5.2)

Q
(1)
x∧y =Q

(1)
x Q

(1)
y ;(5.3)
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Q
(1)
x∨y +Q

(1)
x∧y =Q

(1)
x +Q

(1)
y ;(5.4)

Q
(1)
x∨y =Q

(1)
x +Q

(1)
y whenever x ∧ y = 0�;(5.5)

Q
(1)
x +Q

(1)
x′ = I ;(5.6)

here I is the identity operator on H(1).

5.3. Sufficient subalgebras; proving Theorem 1.13.

LEMMA 5.6. The following two conditions on x ∈ B and f ∈H are equiva-
lent:

(a) f =Qxf +Qx′f ;
(b) Ef = 0, and E(fgh)= 0 for all g ∈Hx , h ∈Hx′ satisfying Eg = 0, Eh=

0.

PROOF. Treating H as Hx ⊗Hx′ according to Fact 2.12 we have

H = (
(Hx !H0)⊕H0

)⊗ (
(Hx′ !H0)⊕H0

)
= (Hx !H0)⊗ (Hx′ !H0)⊕ (Hx !H0)⊗H0⊕H0⊗ (Hx′ !H0)

⊕H0⊗H0;
here Hx !H0 is the orthogonal complement of H0 in Hx (it consists of all zero-
mean functions of Hx). In this notation Qx +Qx′ becomes

I ⊗Q
(x′)
0 +Q

(x)
0 ⊗ I

= ((
I −Q

(x)
0

)+Q
(x)
0

)⊗Q
(x′)
0 +Q

(x)
0 ⊗ ((

I −Q
(x′)
0

)+Q
(x′)
0

)

= (
I −Q

(x)
0

)⊗Q
(x′)
0 +Q

(x)
0 ⊗ (

I −Q
(x′)
0

)+ 2Q
(x)
0 ⊗Q

(x′)
0 ,

the projection onto (Hx !H0)⊗H0⊕H0⊗ (Hx′ !H0) plus twice the projection
onto H0 ⊗H0 (= H0). Thus, the equality f = (Qx +Qx′)f [item (a)] becomes
f ∈ (Hx !H0)⊗H0 ⊕H0 ⊗ (Hx′ !H0), or equivalently, orthogonality of f to
H0 and (Hx !H0)⊗ (Hx′ !H0), which is item (b). �

REMARK 5.7. The proof given above shows also that

{f ∈H :f =Qxf +Qx′f } = (Hx !H0)⊕ (Hx′ !H0)

for all x ∈ B .

Let B0 ⊂ B be a noise-type subalgebra, and f ∈ H(1)(B0). We say that f is
B0-atomless, if for every ε > 0 there exist n and x1, . . . , xn ∈ B0 such that x1 ∨
· · · ∨ xn = 1� and ‖Qx1f ‖ ≤ ε, . . . ,‖Qxnf ‖ ≤ ε.
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PROPOSITION 5.8. If f ∈H(1)(B0) is B0-atomless, then f ∈H(1)(B).

PROOF. Given x ∈ B , we have to prove that f =Qxf +Qx′f . Let g ∈Hx !
H0, h ∈Hx′ !H0; by Lemma 5.6 it is sufficient to prove that E(fgh)= 0.

Given ε > 0, we take y1, . . . , yn in B0 such that y1∨· · ·∨yn = 1�, ‖Qyi
f ‖ ≤ ε

for all i, and in addition, yi ∧ yj = 0� whenever i 	= j . We have f =∑
i Qyi

f

by Lemma 5.5, thus, E(fgh) = ∑
i E((Qyi

f )gh). Further, E((Qyi
f )gh) =

〈Qyi
f, g ⊗ h〉 = 〈Qyi

f,Qyi
(g ⊗ h)〉 = 〈Qyi

f, (Q
(x)
ui ⊗ Q

(x′)
vi )(g ⊗ h)〉 =

〈Qyi
f, (Q

(x)
ui g) ⊗ (Q

(x′)
vi h)〉, where ui = yi ∧ x and vi = yi ∧ x′; it follows that

|E(fgh)| ≤ ∑
i ‖Qyi

f ‖ · ‖Q(x)
ui g‖ · ‖Q(x′)

vi h‖. By (5.1),
∑

i ‖Q(x)
ui g‖2 ≤ ‖g‖2

and
∑

i ‖Q(x′)
vi h‖2 ≤ ‖h‖2. We get |E(fgh)| ≤ (maxi ‖Qyi

f ‖)(∑i ‖Q(x)
ui g‖ ·

‖Q(x′)
vi h‖)≤ ε‖g‖‖h‖ for all ε. �

PROOF OF THEOREM 1.13. Given an atomless noise-type subalgebra B0 ⊂ B ,
we have to prove that H(1)(B0)⊂H(1)(B). Applying Proposition 5.1 to B0 we see
that every f ∈H(1)(B0) is B0-atomless. By Proposition 5.8, f ∈H(1)(B). �

6. The easy part of Theorem 1.5.

6.1. From (a) to (b). In this subsection we assume that B is a classical noise-
type Boolean algebra and prove that its completion, C, is equal to its closure,
Cl(B); in combination with Corollary 4.7 it gives the implication (a) �⇒ (b) of
Theorem 1.5.

The first chaos space H(1) is invariant under Qx for x ∈ B and moreover, for
x ∈ Cl(B), as noted in Section 5.2. We denote by Down(x), for x ∈ Cl(B), the
restriction of Qx to H(1) (treated as an operator H(1) →H(1)), recall Section 5.2
and note that

Down(x) :H(1)→H(1), Down(x)f =Qxf for x ∈ Cl(B);(6.1)

Down(x)=Q
(1)
x for x ∈ B;(6.2)

Down(x)+Down
(
x′

)= I for x ∈ B;(6.3)

x ≤ y implies Down(x)≤Down(y) for x, y ∈ Cl(B).(6.4)

We denote by Q the closure of {Down(x) :x ∈ B} in the strong operator topol-
ogy; Q is a closed set of commuting projections on H(1); we have Down(x) ∈Q
for x ∈ B , and by continuity for x ∈ Cl(B) as well.

Note that q ∈Q implies I −q ∈Q [since Down(xn)→ q implies Down(x′n)→
I − q by (6.3)].

For q ∈ Q we define Up(q) = σ(qH(1)) ∈� (the σ -field generated by qf for
all f ∈H(1)) and note that

q1 ≤ q2 implies Up(q1)≤Up(q2);(6.5)

Up(q)∨Up(I − q)= 1� for q ∈Q;(6.6)
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in general, Up(q)∨Up(I −q)= σ(H(1)), since qH(1)+ (I −q)H(1) =H(1); and
the equality σ(H(1))= 1� is the classicality (Definition 1.3).

LEMMA 6.1. Up(q) and Up(I − q) are independent (for each q ∈Q).

PROOF. We take xn ∈ B such that Down(xn)→ q , then Down(x′n)→ I − q .
We have to prove that σ(qH(1)) and σ((I − q)H(1)) are independent, that is, two
random vectors (qf1, . . . , qfk) and ((I − q)g1, . . . , (I − q)gl) are independent
for all k, l and all f1, . . . , fk, g1, . . . , gl ∈ H(1). It follows by Fact 2.19 from the
similar claim for Down(xn) in place of q . �

LEMMA 6.2. Up(Down(x))= x for every x ∈ B .

PROOF. Denote q = Down(x), then Down(x′) = I − q by (6.3). We have
Up(q) ≤ x (since qf = Qxf is x-measurable for f ∈ H(1)); similarly, Up(I −
q)≤ x′. By (6.6) and (2.10), Up(q)= (Up(q)∨Up(I − q))∧ x = x. �

LEMMA 6.3. If q, q1, q2, . . . ∈Q satisfy qn ↑ q , then Up(qn) ↑Up(q).

PROOF. qnH
(1) ↑ qH(1) implies σ(qnH

(1)) ↑ σ(qH(1)). �

LEMMA 6.4. If q, q1, q2, . . . ∈Q satisfy qn ↓ q , then Up(qn) ↓Up(q).

PROOF. We have Up(qn) ↓ x for some x ∈ �, x ≥ Up(q). By Lemma 6.1,
Up(qn) and Up(I − qn) are independent; thus, x and Up(I − qn) are independent
for all n. By Lemma 6.3, Up(I − qn) ↑Up(I − q). Therefore x and Up(I − q) are
independent. By (6.6) and (2.10), Up(q)= (Up(q)∨Up(I − q))∧ x = x. �

Now we prove that C = Cl(B). By (4.5), every x ∈ Cl(B) is of the form

x = lim inf
n

xn = sup
n

inf
k

xn+k

for some xn ∈ B . It follows that Down(x) = lim infn Down(xn); by Lemmas 6.3,
6.4, Up(Down(x)) = lim infn Up(Down(xn)); using Lemma 6.2 we get
Up(Down(x))= lim infn xn = x.

On the other hand, I − Down(x) = lim supn(I − Down(xn)) =
lim supn Down(x′n) by (6.3), thus the element y = Up(I − Down(x)) satisfies
(by Lemmas 6.3, 6.4 and 6.2 again) y = lim supn Up(Down(x′n)) = lim supn x′n ∈
Cl(B).

By Lemma 6.1, x and y are independent. By (6.6), x ∨ y = 1�. Therefore, y is
the complement of x in Cl(B), and we conclude that x ∈ C. Thus, C = Cl(B).
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6.2. From (b) to (c). As before, C stands for the completion of B . Let x ∈
Cl(B) be such that xn ↑ x for some xn ∈ B .

PROPOSITION 6.5. The following five conditions on x are equivalent:

(a) x ∈C;
(b) x ∨ limn x′n = 1� for some xn ∈ B satisfying xn ↑ x;
(c) x ∨ limn x′n = 1� for all xn ∈ B satisfying xn ↑ x;
(d) limm limn(xm ∨ x′n)= 1� for some xn ∈ B satisfying xn ↑ x;
(e) limm limn(xm ∨ x′n)= 1� for all xn ∈ B satisfying xn ↑ x.

LEMMA 6.6. (supn xn)∧ (infn x′n)= 0� for every increasing sequence (xn)n
of elements of B .

PROOF. Note that xm ∧ (infn x′n)≤ xm ∧ x′m = 0�, and use (4.11). �

PROOF OF PROPOSITION 6.5. (c) �⇒ (b): trivial.
(b) �⇒ (a): by Lemma 6.6, x ∧ limn x′n = 0�, thus, x has the complement

limn x′n and therefore belongs to C.
(a) �⇒ (c): if xn ↑ x, then (taking complements in the Boolean algebra C)

x′n ≥ x′, therefore limn x′n ≥ x′ and x ∨ limn x′n ≥ x ∨ x ′ = 1�.
We see that (a)⇐⇒ (b)⇐⇒ (c); Lemma 6.7 below gives (b)⇐⇒

(d) and (c)⇐⇒ (e). �

LEMMA 6.7. For every increasing sequence (xn)n of elements of B ,(
lim
n

xn

)
∨

(
lim
n

x′n
)
= lim

m
lim
n

(
xm ∨ x′n

)
.

PROOF. Denote for convenience y = limn xn and z = limn x′n. We have x′n ≤
x′m for n≥m. Applying Theorem 3.8 to the pairs (xm, x′n) ∈�xm×�x′m for a fixed
m and all n≥m we get xm∨x′n→ xm∨z as n→∞. Further, xm∧z≤ xm∧x′m =
0 for all m; by (4.11), y ∧ z= 0, and by (4.10), y and z are independent. Applying
Theorem 3.8 (again) to (xm, z) ∈ �y × �z we get xm ∨ z→ y ∨ z as m→∞.
Finally, limm limn(xm ∨ x′n)= limm(xm ∨ z)= y ∨ z= (limn xn)∨ (limn x′n). �

By Corollary 4.7, condition (b) of Theorem 1.5 is equivalent to C = Cl(B). If
it is satisfied, then Proposition 6.5 gives (supn xn)∨ (infn x′n)= 1� for all xn ∈ B

such that x1 ≤ x2 ≤ · · ·, which is condition (c) of Theorem 1.5.

7. The difficult part of Theorem 1.5. The proof of the implication (c) �⇒
(a) of Theorem 1.5, given in this section, is a remake of [18], Sections 6c/6.3.
In both cases spectrum is crucial. The one-dimensional framework used in [18]
leads to “spectral sets”—random compact subsets of the parameter space R. The
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Boolean framework used here, being free of any parameter space, leads to a more
abstract “spectral space”; see Section 7.2. The number of points in a spectral set,
used in [18], becomes here a special function (denoted by K in Section 7.4) on the
spectral space.

7.1. A random supremum. By Proposition 6.5, condition (c) of Theorem 1.5
may be reformulated as follows:

sup
n

xn ∈ C for all xn ∈ B such that x1 ≤ x2 ≤ · · ·(7.1)

or equivalently,

lim
m

lim
n

(
x1 ∨ · · · ∨ xm ∨ (x1 ∨ · · · ∨ xn)

′)= 1 for all xn ∈ B.(7.2)

In order to effectively use this condition we choose a sequence (xn)n, xn ∈ B ,
whose supremum is unlikely to belong to C. Ultimately it will be proved that
supn xn ∈ C only if B is classical.

However, we do not construct (xn)n explicitly. Instead we use probabilistic
method: construct a random sequence that has the needed property with a nonzero
probability.

Our noise-type Boolean algebra B consists of sub-σ -fields on a probability
space (�, F ,P ). However, randomness of xn does not mean that xn is a func-
tion on �. Another probability space, unrelated to (�, F ,P ), is involved. It may
be thought of as the space of sequences (xn)n endowed with a probability measure
described below.

A measure on a Boolean algebra b is defined as a countably additive function
b→ [0,∞) ([9], Section 15). However, the distribution of a random element of
b (assuming that b is finite) is rather a probability measure ν on the set of all
elements of b, that is, a countably additive function ν : 2b → [0,∞), ν(b)= 1. It
boils down to a function b→[0,∞), x �→ ν({x}), such that

∑
x∈b ν({x})= 1.

Given a finite Boolean algebra b and a number p ∈ (0,1), we introduce a prob-
ability measure νb,p on the set of elements of b by

νb,p

({ai1 ∨ · · · ∨ aik }
)= pk(1− p)n−k for 1≤ i1 < · · ·< ik ≤ n(7.3)

[using the notation of (2.16)]. That is, each atom is included with probability p,
independently of others.

Given finite Boolean subalgebras b1 ⊂ b2 ⊂ · · · ⊂ B and numbers p1,p2, . . . ∈
(0,1), we consider probability measures νn = νbn,pn and their product, the prob-
ability measure ν = ν1 × ν2 × · · · on the set b1 × b2 × · · · of sequences (xn)n,
xn ∈ bn. We note that supn xn ∈ Cl(B) for all such sequences and ask, whether or
not

sup
n

xn ∈ C for ν-almost all sequences (xn)n,(7.4)
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or equivalently,

lim
m

lim
n

(
x1 ∨ · · · ∨ xm ∨ (x1 ∨ · · · ∨ xn)

′)= 1�

(7.5)
for ν-almost all sequences (xn)n.

PROPOSITION 7.1. If (7.5) holds for all such b1, b2, . . . and p1,p2, . . . ,

then B is classical.

In order to prove the implication (c) �⇒ (a) of Theorem 1.5 it is sufficient to
prove Proposition 7.1. To this end we need spectral theory.

7.2. Spectrum as a measure class factorization. The projections Qx for x ∈
Cl(B) commute by (4.7), and generate a commutative von Neumann algebra A.
Section 2.4 gives us a measure class space (S,
, M) and an isomorphism

α : A → L∞(S,
, M).(7.6)

We call (S,
, M) (endowed with α) the spectral space of B . Projections Qx turn
into indicators

α(Qx)= 1Sx , Sx ∈
 for x ∈ Cl(B)(7.7)

(of course, Sx is an equivalence class rather than a set); (4.9) gives

Sx ∩ Sy = Sx∧y for x, y ∈ Cl(B).(7.8)

(In contrast, the evident inclusion Sx ∪ Sy ⊂ Sx∨y is generally strict.)

CLAIM.

xn ↓ x implies Sxn ↓ Sx; also xn ↑ x implies Sxn ↑ Sx;(7.9)

here x, x1, x2, . . . ∈ Cl(B).

PROOF. let xn ↑ x, then Qxn ↑ Qx , thus α(Qxn) ↑ α(Qx) by (2.12), which
means Sxn ↑ Sx ; the case xn ↓ x is similar. �

The subspaces Hx = QxH ⊂ H for x ∈ Cl(B) are a special case of the sub-
spaces H(E)= α−1(1E)H ⊂H for E ∈
 [recall (2.14)]; by (7.7),

H(Sx)=Hx for x ∈ Cl(B).(7.10)

Every subset of B leads to a subalgebra of A. In particular, for every x ∈ B we
introduce the von Neumann algebra

Ax ⊂ A
(7.11)

generated by {Qy :y ∈ B,x ∨ y = 1�} = {Qu∨x′ :u ∈ B,u≤ x}
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and the σ -field 
x ⊂
 such that

α(Ax)= L∞(
x) for x ∈ B(7.12)

(see Fact 2.23). Note that

x ≤ y implies Ax ⊂ Ay and 
x ⊂
y for x, y ∈ B.(7.13)

Recall Notation 2.13: Q
(x)
u :Hx →Hx for u≤ x, and Fact 2.14: given indepen-

dent x, y, treating Hx∨y as Hx ⊗Hy we have Qu∨v =Q
(x)
u ⊗Q

(y)
v for all u≤ x,

v ≤ y. Introducing von Neumann algebras A(x) of operators on Hx ,

A(x) generated by
{
Q(x)

u :u ∈ B,u≤ x
}
,(7.14)

we get

A(x∨y) = A(x) ⊗A(y) whenever x ∧ y = 0, x, y ∈ B.(7.15)

In the case y = x′, treating H as Hx ⊗Hx′ we have

A = A(x)⊗A(x′) and Ax = A(x)⊗ I for x ∈ B(7.16)

(for the latter, fix v = x′),—a natural isomorphism between Ax and A(x). Thus,
α(A(x)⊗ I )= L∞(
x), α(I ⊗A(x′))=L∞(
x′) and α(A(x)⊗A(x′))= L∞(
).
By Fact 2.28, for all x ∈ B ,


x and 
x′ are M-independent,(7.17)


x ∨
x′ =
.(7.18)

(Thus, the spectral space is a measure class (or “type”) factorization as defined
in [20], Section 1c and discussed in [2], Section 14.4, [19], Section 10.)

REMARK 7.2. The closure of B determines uniquely the algebra A and there-
fore also the spectral space.

EXAMPLE 7.3. Let a noise-type Boolean algebra B be finite, with n atoms.
Then A is of dimension 2n; (S,
, M) is the discrete space with 2n points. Up to
isomorphism we may treat both B and S as consisting of all subsets of Atoms(B),
and then Sx consists of all subsets of x.

EXAMPLE 7.4. Let B and yn be as in Section 1.2 and Example 1.9. The sign
change transformation �→� decomposes the Hilbert space: H =Heven⊕Hodd.
Introducing y = supn yn ∈ Cl(B) \B we have Hy =Heven; the projection Qy onto
Heven corresponds to the indicator of Sy . Up to isomorphism we may treat Sy

as consisting of all finite subsets of {1,2, . . .}, and S \ Sy as consisting of their
complements, the cofinite subsets of {1,2, . . .}. Both B and S become the same
countable set, and Sx consists of all finite/cofinite subsets of x (i.e., finite subsets
of a finite x, but finite/cofinite subsets of a cofinite x). See also [19], Section 9a
(for m= 2).
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EXAMPLE 7.5. Let B correspond to a noise over R (see Section 1.6), and as-
sume that the noise is classical, which is equivalent to classicality of B (as defined
by Definition 1.3); it is also equivalent to existence of Lévy processes whose in-
crements generate the noise. Assume that the noise is not trivial, that is, 1B 	= 0B .
Then B as a Boolean algebra is isomorphic to the Boolean algebra of all finite
unions of intervals (on R) modulo finite sets. Up to isomorphism we may treat
(S,
, M) as the space of all finite subsets of R; a measure μ on S belongs to M
if and only if μ is equivalent (i.e., mutually absolutely continuous) to the (sym-
metrized) n-dimensional Lebesgue measure on the subset Sn ⊂ S of all n-point
sets, for every n = 0,1,2, . . .; for n = 0 it means an atom: μ({∅}) > 0. As be-
fore, Sx consists of all s ∈ S such that s ⊂ x; but now S and B are quite different
collections of sets. See also [19], Example 9b9.

In contrast, for a black noise the elements of S may be thought of as some
perfect compact subsets of R (including the empty set), of Lebesgue measure zero.
And if a noise is neither classical nor black, then all finite sets belong to S, but also
some infinite compact sets of Lebesgue measure zero belong to S. These may be
countable or not, depending on the noise. See also [19], Sections 9b, 9c.

7.3. Restriction to a sub-σ -field. As was noted in Section 3.4, for an arbitrary
x ∈� the triple (�,x,P |x) is also a probability space, and its lattice of σ -fields is
naturally embedded into �,

�(�,x,P |x)=�x = {y ∈� :y ≤ x} ⊂�.

Dealing with a noise-type Boolean algebra B ⊂� over (�, F ,P ), we introduce

Bx = B ∩�x = {u ∈ B :u≤ x} ⊂ B for x ∈ B

and note that

Bx ⊂�x is a noise-type Boolean algebra over (�,x,P |x);
thus, notions introduced for B have their counterparts for Bx . We mark them by
the left index x. Some of these counterparts were used in previous (sub)sections.
For x ∈ B:

xH =Hx; see Section 2.3,

xQu =Q
(x)
u for u ∈ Bx; see Notation 2.13,

x A = A(x); see (7.14),

xS = S; x
 =
x; see (7.12),

xα : A(x)→ L∞(
x), xα(A)= α(A⊗ I ); see (7.16),

xSu = Su∨x′ for u ∈ Bx; see (7.7),

xH
(1) =H(1) ∩Hx;
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the last line follows easily from Lemma 5.5; the next to the last line holds,

since xα(xQu) = α(Q
(x)
u ⊗ I ) = α(Q

(x)
u ⊗ Q

(x′)
x′ ) = α(Qu∨x′). The counterpart

of H(E)= α−1(1E)H for E ∈
 is xH(E)= xα
−1(1E)Hx for E ∈
x .

LEMMA 7.6. For every x ∈ B , treating H as Hx ⊗Hx′ we have H(E ∩F)=
(xH(E))⊗ (x′H(F)) for all E ∈
x , F ∈
x′ .

PROOF. We take A ∈ A(x), B ∈ A(x′) such that α(A⊗ I )= 1E , α(I ⊗ B)=
1F , then α(A ⊗ B) = 1E1F = 1E∩F and H(E ∩ F) = (A ⊗ B)(Hx ⊗ Hx′) =
(AHx)⊗ (BHx′)= (xH(E))⊗ (x′H(F)). �

7.4. Classicality via spectrum. Let b⊂ B be a finite Boolean subalgebra. For
almost every s ∈ S the set {x ∈ b : s ∈ Sx} is a filter on b due to (7.8); like every
filter on a finite Boolean algebra, it is generated by some xb(s) ∈ b,

∀x ∈ b
(
s ∈ Sx ⇐⇒ x ≥ xb(s)

)
.(7.19)

Like every element of b, xb(s) is the union of some of the atoms of b [recall (2.17)];
the number of these atoms will be denoted by Kb(s),

Kb(s)=
∣∣{a ∈Atoms(b) :a ≤ xb(s)

}∣∣.
For two finite Boolean subalgebras,

if b1 ⊂ b2 then Kb1(·)≤Kb2(·) and xb1(s)≥ xb2(s).(7.20)

Each Kb is an equivalence class (rather than a function), and the set of all b need
not be countable. We take supremum in the complete lattice of all equivalence
classes of measurable functions S→[0,+∞] (recall Section 2.6):

K = sup
b

Kb, K :S→[0,+∞],(7.21)

where b runs over all finite Boolean subalgebras b⊂ B .

THEOREM 7.7. B is classical if and only if K(·) <∞ almost everywhere.

We split this theorem in two propositions as follows. Recall that classicality is
defined by Definition 1.3 as the equality σ(H(1))= 1�. Introducing

Ek = {
s ∈ S :K(s)= k

}
and H(k) =H(Ek) for k = 0,1,2, . . .

[recall (2.14)] we reformulate the condition K(·) <∞ as S =⊎
k Ek and further,

by (2.15), as H =⊕
k H (k). For k = 1 the new notation conforms to the old one in

the following sense.

PROPOSITION 7.8. H(E1) is equal to the first chaos space H(1) (defined by
Definition 1.2).
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PROPOSITION 7.9. σ(H(k))⊂ σ(H(1)) for all k = 2,3, . . . .

Thus,
⊕

k H (k) = H ⇐⇒ σ(H(1)) = σ(H) ⇐⇒ σ(H(1)) = 1�. We see that
Theorem 7.7 follows from Propositions 7.8, 7.9.

The proof of Proposition 7.8 is given after three lemmas.
We introduce minimal nontrivial finite Boolean subalgebras bx = {0, x, x′,1}

for x ∈ B .

LEMMA 7.10. For every x ∈ B ,

{f ∈H :f =Qxf +Qx′f } =H
({

s :Kbx (s)= 1
})

.

PROOF. {s :Kbx (s) = 1} = {s :Kbx (s) ≤ 1} \ {s :Kbx (s) = 0} = (Sx ∪ Sx′) \
S0 = (Sx \S0)�(Sx′ \S0) (since Sx∩Sx′ = S0), thus H({s :Kbx (s)= 1})=H(Sx \
S0)⊕H(Sx′ \ S0)= (Hx !H0)⊕ (Hx′ !H0); use Remark 5.7. �

LEMMA 7.11. Assume that b1, b2 ⊂ B are finite Boolean subalgebras, and
b⊂ B is the (finite by Fact 2.29) Boolean subalgebra generated by b1, b2. Then{

s :Kb1(s)≤ 1
}∩ {

s :Kb2(s)≤ 1
}⊂ {

s :Kb(s)≤ 1
}
.

PROOF. If Kb1(s) ≤ 1, Kb2(s) ≤ 1 and s /∈ S0, then xb1(s) ∈ Atoms(b1),
xb2(s) ∈Atoms(b2), thus xb(s)≤ xb1(s)∧ xb2(s) ∈Atoms(b) by Fact 2.29, there-
fore Kb(s)≤ 1. �

LEMMA 7.12. {s :K(s) ≤ 1} = infx∈B{s :Kbx (s) ≤ 1}, and {s :K(s) = 1} =
infx∈B{s :Kbx (s)= 1} (the infimum of equivalence classes).

PROOF. Every finite Boolean subalgebra b is generated by the Boolean subal-
gebras bx for x ∈ b; by Lemma 7.11, {s :Kb(s) ≤ 1} ⊃⋂

x∈b{s :Kbx (s) ≤ 1}; the
infimum over all b gives {s :K(s)≤ 1} ⊃ infx∈B{s :Kbx (s)≤ 1}. The converse in-
clusion being trivial, we get the first equality. The second equality follows, since
the set {s :Kb(s)= 0} is equal to S0, irrespective of b. �

PROOF OF PROPOSITION 7.8. It follows from the second equality of Lem-
ma 7.12, using (2.18), that H(E1) = ⋂

x∈B H({s :Kbx (s) = 1}). Using Lem-
ma 7.10 we get H(E1)=⋂

x∈B{f ∈H :f =Qxf +Qx′f } =H(1). �

In order to prove Theorem 7.7 it remains to prove Proposition 7.9.
We have K introduced for B by (7.21), but also for Bx we have xK , the coun-

terpart of K in the sense of Section 7.3;

xK = sup
b

xKb, xK :S→[0,∞] for x ∈ B,

where b runs over all finite Boolean subalgebras b ⊂ Bx ; xK is an equivalence
class of 
x -measurable functions S→[0,∞].
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LEMMA 7.13. x∨yK = xK + yK for all x, y ∈ B such that x ∧ y = 0�.

PROOF. When calculating x∨yK we may restrict ourselves to finite subalge-
bras b ⊂ Bx∨y that contain x and y; recall (7.20). Each such b may be thought of
as a pair of b1 ⊂ Bx and b2 ⊂ By . We have Atoms(b)= Atoms(b1) �Atoms(b2),
xb(s)= xb1(s)∨ xb2(s) (recall that xSu = Su∨x′ for u≤ x), thus x∨yKb = xKb1 +
yKb2 ; take the supremum in b1, b2. �

LEMMA 7.14. {s ∈ S :K(s)= 2} = supx∈B{s ∈ S : xK(s)= x′K(s)= 1} (the
supremum of equivalence classes).

PROOF. The “⊃” inclusion follows from Lemma 7.13; it is sufficient to prove
that {s ∈ S :K(s) = 2} ⊂ ⋃

x∈b1∪b2∪···{s ∈ S : xK(s) = x′K(s) = 1} if b1 ⊂ b2 ⊂
· · · satisfy Kbn ↑K .

Given s such that K(s) = 2, we take n such that Kbn(s) = 2, that is, xbn(s)

contains exactly two atoms of bn. We choose x ∈ bn that contains exactly one of
these two atoms; then xKbn(s) = x′Kbn(s) = 1, therefore xK(s) = x′K(s) = 1,
since 1= xKbn(s)≤ xK(s)=K(s)− x′K(s)≤ 2− x′Kbn(s)= 1. �

We use the counterpart (in the sense of Section 7.3) of Proposition 7.8:
xH(xE1)= xH

(1), that is, for every x ∈ B ,

xH
({

s ∈ S : xK(s)= 1
})=H(1) ∩Hx.(7.22)

PROOF OF PROPOSITION 7.9 FOR k = 2. It follows from Lemma 7.14
and (2.19) that H(2) is generated (as a closed linear subspace of H ) by the union,
over all x ∈ B , of the subspaces H({s ∈ S : xK(s)= x′K(s)= 1}). In order to get
σ(H(2))⊂ σ(H(1)) it is sufficient to prove that

σ
(
H

({
s ∈ S : xK(s)= x′K(s)= 1

}))⊂ σ
(
H(1)) for all x ∈ B.(7.23)

By Lemma 7.6 and (7.22), H({s ∈ S : xK(s) = x′K(s) = 1}) = xH({s ∈ S :
xK(s) = 1}) ⊗ x′H({s ∈ S : x′K(s) = 1}) = (Hx ∩ H(1)) ⊗ (Hx′ ∩ H(1)), which
implies (7.23). �

The proof of Proposition 7.9 for higher k is similar. Lemma 7.14 is generalized
to {

s ∈ S :K(s)= k
}= sup

x∈B

{
s ∈ S : xK(s)= k− 1, x′K(s)= 1

}
,

and (7.23) to

σ
(
H

({
s ∈ S : xK(s)= k − 1, x′K(s)= 1

}))⊂ σ
(
H(k−1) ∪H(1)).

Thus, σ(H(k))⊂ σ(H(k−1)∪H(1)). By induction in k, σ(H(k))⊂ σ(H(1)), which
completes the proof of Proposition 7.9 and Theorem 7.7.
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7.5. Finishing the proof.

PROPOSITION 7.15. If (7.5) holds for all b1 ⊂ b2 ⊂ · · · and p1,p2, . . . ∈
(0,1), then K(·) <∞ almost everywhere.

By Theorem 7.7, in order to prove Proposition 7.1 it is sufficient to prove Propo-
sition 7.15.

The relation limm limn(ym∨y′n)= 1� for y1 ≤ y2 ≤ · · · [appearing in (7.5) with
yn = x1 ∨ · · · ∨ xn] may be reformulated in spectral terms using (7.9); it turns into⋃

m

⋂
n Sym∨y′n = S, in other words, almost every s ∈ S satisfies ∃m∀n s ∈ Sym∨y′n .

Accordingly, (7.5) may be rewritten as follows:

for ν-almost all sequences (xn)n, for almost all s ∈ S,∃m∀n
(7.24)

s ∈ Sx1∨···∨xm∨(x1∨···∨xn)′ .

We choose p1,p2, . . . ∈ (0,1) and c1, c2, . . . ∈ {1,2,3, . . .} such that∑
n

pn < 1,(7.25)

(1− pn)
cn → 0 as n→∞.(7.26)

We also choose finite Boolean subalgebras b1 ⊂ b2 ⊂ · · · ⊂ B such that Kbn ↑K

and introduce b= b1 ∪ b2 ∪ · · · ⊂ B (a countable Boolean subalgebra).

CLAIM.

xKbn ↑ xK for every x ∈ b.(7.27)

PROOF. xK ≥ limn xKbn = limn(Kbn − x′Kbn)≥K − x′K = xK . �

REMARK. For x ∈ bn, by xKbn we mean xKbn∩Bx . Thus xKbn is well defined
for all n large enough, provided that x ∈ b.

Using Fact 2.33 we take n1 < n2 < · · · such that for almost every s ∈ S

either xK(s) <∞,
(7.28)

or xKbnk
(s)≥ ck for all k large enough.

These nk depend on x ∈ b. However, countably many x can be served by a sin-
gle sequence (nk)k using the well-known diagonal argument. This way we en-
sure (7.28) with a single (nk)k for all x ∈ b. Now we rename bnk

into bk , discard a
null set of bad points s ∈ S and get

either xK(s) <∞,
(7.29)

or xKbn(s)≥ cn for all n large enough
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for all x ∈ b and s ∈ S; here “n large enough” means n≥ n0(x, s).
We recall the product measure ν = ν1 × ν2 × · · · introduced in Section 7.1 on

the product set b1 × b2 × · · ·; as before, νn = νbn,pn . For notational convenience
we treat the coordinate maps Xn : (b1 × b2 × · · · , ν)→ bn, Xn(x1, x2, . . .) = xn,
as independent bn-valued random variables; Xn is distributed νn, that is, P(Xn =
x)= νn({x}) for x ∈ bn. We introduce bn-valued random variables

Yn =X1 ∨ · · · ∨Xn.

LEMMA 7.16. P(Y ′nK(s) <∞)≤ p1+· · ·+pn for all s ∈ S such that K(s)=
∞ and all n.

PROOF. There exists a ∈Atoms(bn) such that aK(s)=∞ [since
∑

a aK(s)=
K(s)=∞]. We have Y ′nK(s) <∞�⇒ a ≤ Yn �⇒∃k ∈ {1, . . . , n} a ≤Xk , there-
fore P(Y ′nK(s) <∞)≤∑n

k=1 P(a ≤Xk)=∑n
k=1 pk . �

LEMMA 7.17. If x ∈ bm and s ∈ S satisfy xK(s)=∞, then

P
(∀n > m Xn ∧ x ∧ xbn(s)= 0�

)= 0.

PROOF. For n > m,

P
(
Xn ∧ x ∧ xbn(s)= 0�

)= (1− pn)
xKbn(s),

since x ∧ xbn(s) contains xKbn(s) atoms of bn. By (7.29), xKbn(s) ≥ cn for all
n large enough. Thus, P(Xn ∧ x ∧ xbn(s) = 0�) ≤ (1 − pn)

cn → 0 as n→∞
by (7.26). �

LEMMA 7.18.

P
(
Y ′mK(s)=∞ and ∀n > m s ∈ SYm∨Y ′n

)= 0

for all s ∈ S and m.

PROOF. By (7.19), s ∈ SYm∨Y ′n ⇐⇒ Ym ∨ Y ′n ≥ xbn(s) for n > m. We have to
prove that

P
(
Y ′m = y and ∀n > m y′ ∨ Y ′n ≥ xbn(s)

)= 0

for every y ∈ bm satisfying yK(s)=∞. By Lemma 7.17,

P
(∀n > m Xn ∧ y ∧ xbn(s)= 0�

)= 0.

It remains to note that y′ ∨ Y ′n ≥ xbn(s)⇐⇒ (y ∧ Yn)
′ ≥ xbn(s)⇐⇒ (y ∧ Yn) ∧

xbn(s)= 0� �⇒ y ∧Xn ∧ xbn(s)= 0�. �

Now we prove Proposition 7.15. We use (7.24) for b1, b2, . . . and p1,p2, . . .

satisfying (7.25), (7.26),

∃m ∀n s ∈ SYm∨Y ′n
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almost surely, for almost all s ∈ S. In combination with Lemma 7.18 it gives

P
(∃m Y ′mK(s) <∞)= 1

for almost all s ∈ S. On the other hand, by Lemma 7.16 and (7.25),

P
(∃m Y ′mK(s) <∞)= lim

m
P

(
Y ′mK(s) <∞)≤ p1 + p2 + · · ·< 1

for all s ∈ S such that K(s) =∞. Therefore K(s) <∞ for almost all s, which
completes the proof of Propositions 7.15, 7.1 and finally, Theorem 1.5. Theo-
rem 1.4 follows immediately.
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