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Abstract. The addition spectrum of a classical short-range interaction model for a disordered
quantum dot is calculated numerically. The average change in the chemical potential needed
to add a particle, as well as the fluctuations in this quantity, are proportional to the interaction
strength, and their ratio is one for a wide range of interaction strengths. Analytical arguments
which lead to the same result are also presented. On the basis of these results the behaviour of
these quantities for real Coulomb interactions at the high-density limit may be reproduced, and
speculations on the behaviour at low densities are presented.

1. Introduction

Due to the great advances in microstructure fabrication and measurement techniques, the
addition spectra of quantum dots have recently became experimentally accessible [1–4].
When the conductance is measured as a function of an applied gate voltageVg, a series
of conductance peaks appears. Each peak corresponds to an additional electron in the dot,
and the spacings between the conductance peaks1Vg are proportional to the change in the
chemical potential of the dot as an additional electron enters. This may be expressed by

e1Vg ∝ µN+1− µN = 1µN. (1)

The conductance peak spacing is mainly determined by the charging energy and is
proportional toe2/C, which is the well known Coulomb blockade phenomenon [5].

For small quantum dots, in which the single-electron-level spacing is already significant,
careful measurements [2–4] of the conductance peak spacings show fluctuations. One would
expect fluctuations of the order of the single-level spacings which do not depend on the
charging energy (or the interaction between the electrons), but some of these experiments
seem to indicate larger fluctuations [2, 3]. An exact-diagonalization study on a small many-
particle tight-binding model with long-range Coulomb interactions indicates that such large
fluctuations appear in the low-density regime, i.e., when the ratio of the Coulomb interaction
between neighbouring electrons and their kinetic energy

rs = e2/vF = 1/
√
πnaB > 1

(wherevF is the Fermi velocity,n is the electronic density andaB is the Bohr radius) [2, 6].
This density region includes the density of the experimental dots.

The numerical study indicates that forrs > 1 the peak spacing fluctuations depend
on the interaction strength and are proportional to the peak spacing [2]. At these densities,
short-range correlations also appear in the electronic density, although the system is far from
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the Wigner crystallization regime [6]. It was suggested that the behaviour of the fluctuation
is due to the essentially classical appearance of the short-range correlations in the system,
which lead to interaction-dependent fluctuations.

This work has motivated several studies of the addition spectrum based on classical
models such as the Coulomb glass [7] and the Wigner crystal island [8], in which long-
range Coulomb interactions for classical models are considered. In the study of the Coulomb
glass it was shown that the average conductance peak spacing, as well as the fluctuations
of the peak spacing, increase with interaction strength and their ratio is of order 0.3.

The experiments described in references [1–4] were carried out at a temperature of
30 mK, and thus the configuration is expected to be the ground state. In order to rule
out the possibility of extremely long thermalization times, such that the ground state was
not attained during the experiment, the sweep along the gate voltage was done both up
and down. Comparison of the peak positions confirms that the system did enter its ground
state. We thus study the spacing of the ground states of the system for different numbers
of electrons.

In this paper we check the behaviour of a classical model which incorporates the features
of short-range correlations and disorder. We will show that in this model the peak spacing
fluctuations increase with interaction strength and are proportional to the average peak
spacing, as is the case for the quantum model in reference [2] and the Coulomb glass model
of reference [7]. This is rather surprising, since naively one would expect the fluctuations
for short-range interactions to depend on the disorder and not on the interaction strength.

On the other hand, the proportionality ratio is of the order of one, which is much
larger than the ratio in the full quantum treatment, or the Coulomb glass case. The reason
for this behaviour lies in the different roles played by short- and long-range interactions
in determining the average and fluctuations in the ground-state energies of the systems.
The average value of the peak spacing is mainly determined by the long-range part of the
interactions, while the short-range correlations determine the dependence of the fluctuations
on the interaction strength. If we add an infinite-range component to the interaction, the
average peak spacing will increase, with no influence on the fluctuations. Thus, by such a
combination any desired ratio between the peak spacing fluctuations and the average peak
spacing can be achieved. When the magnitudes of both components of the interaction are
compared on physical grounds, the proportionality ratio coincides with the one obtained
from RPA (random-phase approximation) results.

2. The model and results

The model that we study is one of classical spinless electrons on a disordered 2D
square lattice, which only interact with nearest neighbours. In fact, this is similar to the
Coulomb glass Hamiltonian with the long-range interactions replaced by nearest-neighbour
interactions. The Hamiltonian is given by

H =
∑
i

(hi − µ)ni + U
∑
〈ij〉

ninj (2)

whereni = 0, 1. The disordered on-site potentialhi is randomly chosen from a uniform
distribution U [−1, 1], and µ is the chemical potential proportional to the external gate
voltageVg applied to the dot. Asµ gets higher, the ground state of the dot becomes more
and more populated. As can be seen from equation (1), the conductance peak spacings are
proportional to the change inµ needed to add an additional particle to the dot, and hence
we study the statistics of the change inµ needed to add another particle to the ground-state
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configuration of the dot, i.e.,1µN = µN+1−µN . We study the relative fluctuations of the
spacings √

〈δ21µ〉/〈1µ〉
where

〈δ21µ〉 = 〈1µ2〉 − 〈1µ〉2

and〈· · ·〉 denotes averages with respect to disorder realizations.
Numerical calculations of the ground state of this system become simpler on using the

mapping of the problem to a related network problem, as suggested in [9]. A network
is defined such that its minimum-cut capacity is equal to the ground-state energy of the
Hamiltonian (2) [10]. To determine the capacity of the minimum cut, the ‘max-flow min-cut’
theorem is used [11]. This theorem states that the minimum cut is equal to the maximal
flow in the network. The maximal flow, in turn, can be calculated by employing the
Ford–Fulkerson algorithm [11, 12]. Using this mapping, the ground state can be exactly
determined in a polynomial time, O(n2), wheren is the lattice size.
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Figure 1. The ground-state densityρ versus the chemical potentialµ for three disorder
realizations of a 16× 16 lattice.U = 1.0.

The numerical calculation was done as follows. For each realization of the disordered
system, we started with a very low value of the chemical potentialµ such that the ground-
state density was zero, and then searched for the value ofµ for which the density changes.
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The process thus continues until all of the lattice is filled. Thus we generate for each
realization a density versusµ plot. Such a plot is presented in figure 1. Usually, a change
in the density involves the addition of one new particle, but in many cases, especially
close to half-filling, two or even more particles were added simultaneously. This happens
whenever there is an electron or a domain which is located in a potential well in a non-
optimal way, such that it prevents new particles from coming in. It takes then a big change
in µ to make it possible to add a new electron, but when this happens, the whole domain
moves and there is room for more electrons.
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Figure 2. The average gap1µ as a function of the ground-state densityρ. The various
lines correspond to different values ofU/H , whereU takes the values (from bottom to top)
10−2, 0.1, 0.3, 0.5, 0.8, 1.0.

We then repeat the calculation for many realizations and look at the statistics for1µ

needed to add thej th particle, as a function of the interaction strengthU . The average
〈1µ〉 as a function of density is presented in figure 2 for various values ofU . Most of the
calculations were done for 250 realizations of 16× 16 lattices. It can be seen that asU
increases, the spacings near half-filling become larger. The reason for this behaviour is as
follows. For an exactly half-filled ground state in a finite system, it is clear that for large
U the electrons will be ordered on one of the two sub-lattices such that no interaction term
will contribute to the energy. To put in the next electron, one needs a change inµ of the
order of 4U (plus some disorder contribution). Thus we get a spacing which scales O(1)
while all other gaps are O(1/N). As one comes close to half-filling, the system organizes
itself into the ordered phase of the half-filling ground state. As explained before, this means
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moving large domains from lower-potential positions to places in which they fit the global
order. Thus larger and larger spacings occur. Like in to the situation for the random-field
Ising model [13], one expects that as the system size goes to infinity, the picture of an
ordered ground state at half-filling breaks down. The ground state of an infinite 2D system
is built up from ordered domains of linear dimensionLc ∼ exp(U2). This cut-off length
controls the divergence in theN →∞ limit.
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Figure 3. The average gap1µ (circles) and the square root of the fluctuations
√
〈δ21µ〉

(diamonds) as a function of the ground-state densityρ for U = 0.5. The solid line shows the
relative fluctuations.

We now look at the relative fluctuation. Figure 3 presents the fluctuations〈δ21µ〉 for
U = 0.5, together with the average〈1µ〉. It is clearly seen that the behaviour of the
fluctuations as a function of the density is exactly the same as that of the average gap. This
behaviour persists for all other values ofU . We therefore obtain the result that the relative
fluctuation in our model is constant with respect to changes of both the density andU .

The average1µ can be crudely estimated as follows. It is clear that the first particle
enters the dot whenµ = −hmin ∼ −1, and the addition of the last particle costs
4U + hmax ∼ U + 1, i.e., the range ofµ needed to fill all of the lattice is

−1< µ < 4U + 1.

Thus, neglecting density correlations, the average gap should be(4U + 2)/N . This is
indeed what we get for small values ofU , where interaction plays no role. We see that the
average gap depends onU , and this is even more important when one takes into account the
density dependency of the gap as explained before, since near half-filling the gap diverges
as a function ofU . This dependency onU is expected. However, we see that fluctuations
in the gaps as a result of disorder in the configuration depend onU in the same manner.
This is less obvious, since one might expect only the disorder to affect these fluctuations.
This behaviour is in agreement with the quantum model in reference [2] and the Coulomb
glass model of reference [7].
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In the following we give a simple argument to show that this behaviour should be
attributed to the short-range character of the interaction, and this is the reason for not
finding it in the infinite-range Coulomb blockade model. In real systems, however, the
interaction is long ranged but not infinite ranged, and thus we get an intermediate result,
which has the characteristics of both the short-range behaviour of the fluctuations in1µ

and the infinite-range behaviour of the average1µ, as will be explained.
We make two assumptions.

(a) The effect of the deposition of thej th electron on the deposition of the(j + 1)th
electron may be neglected. This is plausible when the system is much larger than the
interaction range, and generally, thej th and the(j + 1)th particles will be positioned far
enough apart that there is no interaction between them. We neglect here the possibility of
a global change in the system caused by the addition of a new particle. We have checked
and seen that this happens only in the vicinity of half-filling. Otherwise, almost always
the correlation between thej -particle ground state and the(j + 1)-particle ground state is
maximal.

(b) The probability density of1µP(0) 6= 0, i.e., there is a finite probability for1µ = 0.
This is in fact related to the first assumption. If there is no connection between the deposition
of the two particles, there is nothing to prevent them entering together.

Under these two assumptions, we can state the following. We look at a given configuration,
and denote bȳhi the effective local field at each site(interaction+ disorder). The next two
particles will enter in at the two sites with the smallest effective local field. We denote the
probability distribution of the effective local field byp(x). It is easy to see that

G(1) = n(n− 1)
∫

dx0 p(x > x0+1)n−2P(x0)P (x0+1) (3)

is the probability density for having the smallest effective potentialx0, and the next one
x0+1 (such that1µ = 1), integrated over all possiblex0, i.e., the probability density for
having1µ = 1. This can also be written as

G(1) = −n ∂

∂1

∫
dx0 p(x > x0+1)n−1P(x0). (4)

Since the spacings (apart from in the vicinity of half-filling) scale O(1/N), we may assume
x0, x0+1� 1, and write

G(1) ∼ −nP (0) ∂

∂1

∫
dx0 exp(−(n− 1)P (0)(x0+1))

∼ (n− 1)P (0) exp(−(n− 1)P (0)1) (5)

where in the last equation we replacedn by n− 1 to maintain normalization. We thus see
that the probability distribution of1µ is exponential and it is therefore clear that the ratio
of the fluctuations should be 1.

3. Discussion

Thus, we find that the relative fluctuations for a nearest-neighbour classical model do not
depend on the interaction parameterU for a considerable region of interaction strength and
densities. Since the averages1µ certainly do depend onU , this means that the interaction
enhances the disorder-induced fluctuations. This effect is actually what is seen in reference
[2] where a full quantum mechanical many-particle Hamiltonian with long-range Coulomb
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interactions was treated. We therefore claim that the origin of this effect is not the quantum
mechanical behaviour, but the local correlations induced by short-range interactions.

However, the ratio between the fluctuations of1µ and its average value, i.e., the
magnitude of the relative fluctuations, does depend on the long-range nature of the inter-
action. This can be seen from adding an infinite-range interaction to equation (2):

H =
∑
i

(hi − µ)ni + U
∑
〈ij〉

ninj + (e2/2C)
∑
ij

ninj . (6)

While the fluctuations in1µ will not be influenced by the additional infinite-range term,
the average value of〈1µ〉 ∼ e2/C. Thus, using the value for the fluctuations obtained in
the previous section, the ratio√

〈δ21µ〉/〈1µ〉 ∼ 4UC/e2N

which, since it depends on two parametersU andC, can correspond to any ratio.
A natural extension of the classical model results into the quantum regime can be

performed in the following way.U is the strength of the nearest-neighbour interaction,
i.e. U ∼ e2/a, wherea is the lattice constant. SinceC ∼ L andN = (L/a)d (whered is
the dimensionality), one obtains√

〈δ21µ〉
〈1µ〉 ∼

(
a

L

)d−1

. (7)

Assuming that the range of the nearest-neighbour interactions is of the order of the screening
lengthκ−1, the result is√

〈δ21µ〉
〈1µ〉 ∼

(
1

κL

)d−1

(8)

which is exactly the RPA result for these fluctuations [6]. Since the classical behaviour
of the fluctuations seems to hold for any value ofU , the qualitative behaviour should not
change beyond the RPA limit (i.e.,rs > 1, orκ−1 is smaller than the mean distance between
particles) except for the fact that the screening length should be replaced byλ ∼ 1/n1/d ,
the mean distance between particles [7]. Thus, according to these considerations,√

〈δ21µ〉
〈1µ〉 ∼

(
λ

L

)d−1

(9)

beyond the RPA limit. On the other hand, it is possible that beyond the RPA regime there
is some collective behaviour that will lead to a departure from the above behaviour. A
detailed study of the size dependence of the fluctuation ratio is still needed for the full
quantum model in order to clarify this point.
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